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Abstract: This paper proposes a new recurrent neural network method (RNN) that can be used for 
parameter identification and optimal current  (OC) solution for interior permanent magnet synchronous 
motor (IPMSM) in electric vehicles (EVs). Firstly, the problem of parameter identification of IPMSM is 
modeled as a regression problem, and the least absolute deviation method (LAD) is used to estimate the 
parameters. Then the optimization theory and variational theory are adopted to convert it into a 
variational problem, and the projection dynamic equation (PDS) is utilized to find the solution. Finally, 
the RNN corresponding to the PDS is designed which can be multiplexed for the optimal solution, aiming 
at achieving the motor parameter identification in parallel. This paper proves the convergence of the 
proposed projection dynamic equation. The convergence value and the identity of the PMSM parameter  
are estimated. The IPMSM drive system is built and simulated. The simulation results show that the 
proposed method can identify the motor parameters quickly and accurately, and it verifies the rationality 
and effectiveness of the proposed method. 
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1. INTRODUCTION 

Permanent magnet synchronous motors (IPMSM) are superior 
to other types of motors, such as induction motors, in that they 
have high efficiency and high power density. They are widely 
used in electric vehicles and as power supply components 
(JianHua Wu et al., 2018). In the EV power-driven system, the 
motor is the largest energy-consuming device. In order to 
improve its efficiency and increase the endurance mileage for 
one charge, it is very important to adopt efficiency 
optimization control strategy for the power-driven system 
(Qingbo Guo et al., 2017; A. M. Bazzi et al., 2010). Compared 
with other efficiency optimization control methods, model-
based efficiency optimization control is most suitable for 
electric vehicle drive systems (Guangxu Zhou et al., 2007; 
Xianqing Cao et al., 2009; M. A. Khan et al., 2011). Since the 
operating state of the motor needs to be switched frequently, it 
is difficult to maintain a stable status for a long time. When 
optimizing the efficiency of the system, it is necessary to 
calculate the OC for performing the efficiency control as 
quickly as possible. However, for model-based efficiency 
optimization control methods, the performance of the 
efficiency optimization depends on the accuracy of the motor 
parameters. Due to the characteristics of IPMSM for electric 
vehicles, e.g. high power density, small volume, large power, 
the internal temperature range of the motor varies greatly. In a 
short time, the winding current varies greatly and changes 
rapidly. Therefore, the parameters of the motor are almost 
always changing during the operation duration  (Chi D. 
Nguyen et al., 2015). 

In order to improve the performance of IPMSM efficiency 
optimization for electric vehicles, it is necessary to accurately 
and quickly estimate the parameters of the motor. According to 
the real-time of parameter identification, it can be divided into 

online and offline identification. The offline methods can be 
divided into two categories: finite element analysis and 
experimental test. On-line methods include single parameter 
and multi-parameter identification where recursive least squares 
method, differential algebra method and artificial intelligence 
method, etc, are widely used. The finite element method was 
adopted to determine the parameters of the motor (T. Windisch 
et al., 2011; W. Peters et al., 2012), aiming at achieving the 
efficiency optimization control of PMSM. However, for 
methods based on finite element parameter identification, a 
priori knowledge of motor structure and materials is required. 
Most of the experimental test-based methods are to apply DC 
excitation or AC excitation in the stator loop of the motor when 
the motor is at standstill. The off-line identification of the motor 
parameters is realized by analyzing the relationship between 
excitation and response (Weisgerber. S, 1997; Khatounian. F et 
al., 2006). The offline identification method of the motor 
parameters can obtain accurate identification results without 
considering the computational complexity and time overhead. 
However, this method cannot accurately reflect the influence of 
different operating conditions and temperature changes on the 
motor parameters during actual operation of the motor. 

The IPMSM parameter identification is performed online 
(Junggi Lee, 2009), considering only the variation of the q-axis 
inductance of the motor with the q-axis current, and the q-axis 
inductance and the q-axis current are expressed in an 
approximate linear relationship, while ignoring the changes of 
other parameters. The recursive least squares method with 
fading factor was applied to realize the parameter identification 
of the motor (Cui Naxin et al., 2007), but its parameter 
identification speed is slow, which is not suitable for the 
efficiency optimization control of EVs. Differential algebra 
method is adopted to realize the parameter identification of the 
motor (Li Hongmei et al., 2017). However, the matrix 
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operation is involved in the identification process. If it is 
implemented by a digital controller such as DSP, it requires a 
large amount of calculation. A genetic algorithm-based 
IPMSM parameter identification method is proposed (Xiao Xi 
et al., 2017). This method inherits the advantages of strong 
robustness of intelligence control methods and achieves higher 
recognition accuracy and convergence speed. The above 
mentioned methods are all based on software code to 
implement parameter identification in a sequential execution 
manner; Parameter identification is sensitive to measurement 
noise, such as least squares method, parameter estimation is 
unbiased only when measurement noise has Gaussian 
distribution characteristics; The parameter identification and 
the OC calculation of the motor drive system are implemented 
by different algorithms and cannot be balanced with each other. 
Based on the motor voltage equation, this paper models the 
motor parameter identification as a parameter regression 
problem, and uses the least absolute deviation method (LAD) 
for identification estimation. This method is not sensitive to the 
measurement noise distribution characteristics and outliers 
(bad data points). The identification of motor parameters based 
on LAD is transformed into variational problem by 
optimization theory and variational theory. Finally, a RNN is 
used to solve the variational problem, and the network can be 
used for finding OC solution of IPMSM drive system as well. 
Through theoretical and simulation analysis, the proposed 
method can estimate IPMSM parameters quickly and 
accurately. Since the parameter identification is implemented 
by RNN, it is easy to implement in parallel in hardware.  

2. IPMSM PARAMETER IDENTIFICATION 
MODELLING 

According to literature (Junggi Lee et al., 2009), in the syn-
chronous frame, the voltage equation of IPMSM can be exp-
ressed as 

didu r i L L id s d d e q qdt
diq

u r i L L iq s q q e d d e fdt



  

   

                          

(1) 

The physical meanings of the variables in (1) are as shown in 
Table 1. 

The q-axis voltage equation of equation (1) is discretized 
according to the sampling period T and subjected to a certain 
transformation, considering the measurement noise, it obtains 

w                                                    (2) 

where [ ( ), ( 1), ( 1) ( 1), ( 1)]i k i k k i k kq q e d e       , ( 1)u kq   ,

[ , , , ]Ta b c d , /a L Tq s , ( / )b R L Ts q s  , c Ld , d f ,

w  is measurement noise. 

When parameter identification is performed, multiple sets of 
data are adopted (let the number of sets as m), then the matrix 
form corresponding to equation (2) can be obtained. The 
parameter identification model of IPMSM is described as: 

y Y                                                (3) 

where   (1) (2) ( )
TT T TY a mij m n    

 
  , 

  [ (1) (2) ( )]
1

Ty b m
i m

      

[ (1) (2) ( )]Tv w w w m   

Table 1. Physical meaning of the variables. 

sr

di qi

e
dL

f

qL
du qu

 
3. IPMSM PARAMETER IDENTIFICATION 

DYNAMIC PROJECTION EQUATION 

Lemma 1： 

set 
[ , ]T T Tu e , [ , ]T T

mq y  1 4 10 , [ , ; , ]T
m m m mM Y Y    4 4 4 40 0 ,

( )F u Mu q  , 1[ ,..., ]T
me e e , 1ie  , thus the solution 

*u1  of the following equation (4) is in fact the solution of (3) 

which is the parameter identification value based on LAD. 

 * *( ),F u u u 0                                
(4) 

Proof：for (3), the LAD method is utilized for parameter 
identification, that is, the ( )   of the formula (5) is 

minimized, thus, the objective function (Youshen. X et al., 
2008) of the LAD is 

1
( ) Y y   

                                                     
(5) 

Set 
1[ ,..., ]T

me e e , where 1ie  , it obtains 

1
( )Te Y y Y y   

                                          
(6) 

Let ( )i ir Y y  , 0
1[ ( ),..., ( )]T

me sign r sign r ,one can 

get 0

1
( )e Y y Y y                                          

(7) 

Then 
11

max ( )T

e
Y y e Y y 


   , where 1 { |me R    

max 1, 1 }ie i m   , The parameters estimation can be 

transformed into an optimization problem as in equation (8), 
that is 

1

4

min max ( )T

e
e Y y

subject to R








                              

(8) 

Thus, a variational inequality corresponding to (8) is obtained 
(Youshen. X et al., 2008) 

* *

* *

( ) ( ) 0

( ) ( ) 0

T T

T

Y e

e e Y y

 



  


                             

( 9 ) 

rewritten as a matrix form, one can get the formula (4). 

Theorem 1： 

Set   0 ,   0 , ( )TH I M  ,  2 1,    , 2 ={ |nR 

[ , ], 1, 2, }j j jl h j n    , 
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1={ | max 1, 1 }m
ie R e i m     , max ( )H  is the 

maximum value of singular value of H , if max ( ) 2H  , 

then the projection dynamic equation  

[ ( ( ))]
du

H u P u F u
dt

    
        

(10) 

2
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l y l

P y y l y h

h y h



 


  
 

, 1

1 1

( ) 1 1

1 1

j

j j j

j

e

P e e e

e



  


   
 

 

is stable, and the convergence value is the solution of formula 
(4) . 

Proof: let [ ( )]u P u F u  , set *u as a solution of (10), then 

one can obtain (Francisco Facchine et al., 2003): 

* *

* *

( ) ( )

( ) ([ ( )] )

T

T

u u F u

u u u F u u





  


   

0

0



 
 

Add the two equations, it gets 

   * *( ) ( ) ( ) ( )
T

u u u u u u M u u       0 
*

* *

( ) ( )

( ) ( )

T

T

u u H u u

u u u u M u u

  

    2




 

Since M  is semi-positive, one gets 

*( ) ( )Tu u H u u u u    2 
 Set [ ( )]k k ku P u F u  , according to a literature (Bing. S. 

H, 2015), select measure function as 

( , )k k k ku u u u  
2

 
 

and the favourable direction as 

( , ) ( )k k k kd u u H u u    
thus 

*( ) ( , ) ( , )k T k k k ku u d u u u u  
 

take proper value of  , discretization (10), one gets 

( )k k k ku u H u u   1 
 

set 

2 2* 1 *

2 2* *

( )

( , )

k k

k k k k

k u u u u

u u u u d u u

    

     
 

  2*2 ( , ) ( , )k k k k ku u d u u d u u     

then 

( ) ( , ) ( , )k k k k
k k u u d u u  

2
2  

( )k k k ku u H u u   
2 2

2  
 

If ( ) ( )k k k k
k k u u H u u     

2 2
2 0 

 

Thus (10) is convergent. 

Since M  is an anti-symmetric matrix, M  and TM have the 
same eigenvalue, and the eigenvalue is zero or pure 
imaginary number. H is a matrix polynomial of TM , let 

eigenvalue of M  as 0 ja i   , then the eigenvalue 

of H is 1    ja i . H is a regular matrix, and the singular 

value of H is  2
1 ja   . Set max ( )H as the maximum 

value of singular value of H , then 

max( ) ( ) ( )k k k kH u u H u u   
 

Thus, if 
max ( ) 2H  , ( )k k 0 , then the equation (10) is stable 

and convergent, and the convergence value is the parameter 
identification value of the formula (3) based on LAD. 

Comment 1: Due to that [ , ; , ]TM Y Y 0 0  , and ( ) || ||M M  , 

in (3), the left and right sides of the equation are divided by a 
constant   at the same time, and the parameter value to be 
estimated is not changed. Therefore, proper selection of the 
constant   can always satisfy max ( ) 2H  , which ensures 

that the equation (10) is stable and converges to the 
parameters to be estimated of the motor. 

 According to the literature (Qinmu Wu et al., 2016), rewrite 
the formula (5) in the literature, it obtains 

0

2
2 2 2[ ( ( ))]e S e

du
u P u F u

dt
    

                       
(11) 

That is, the OC of IPMSM can be solved by (11), where the 
constant e is greater than zero, 1e  and the detailed 

convergence analysis of equation (11) can be found in 
(Qinmu Wu et al., 2016). 

Comment 2: According to equations (10) and (11), the 
parameter identification and optimization current of IPMSM 
can be solved by a unified projection dynamic equation, as 
follows: 

[ ( ( ))]u u

du
K u P u F u

dt
    

                              
(12) 

4. UNIFIED RECURRENT NEURAL NETWORKFOR 
IPMSM PARAMETER IDENTIFICATION AND 

OPTIMIZED CURRENT SOLUTION 

4.1 RNN for IPMSM parameter identification 

Based on Theorem 1, a recursive neural network for IPMSM 
parameter identification is available, which consists of four 
types of neurons, namely: 

111,in ,
121,kn ,

212,in and 
222,kn , as 

shown in Fig.1, where 
111,in ,

121,kn constitute the first layer of 
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the network, its weight is related to matrix Y  and coefficient 
 . 

212,in  and 
222,kn  constitute the second layer of the network, 

its weight is related to matrix H . If the number of param-
eters to be identified is n  and the number of sampled 
samples of the data is m , then there are n  nodes of 

111,in ,
212,in types of nodes, m nodes as type of 

121,kn ,
222,kn , 

Then the IPMSM parameter identification recursive neural 
network diagram is shown in Fig. 2. 

4.2  PMSM Optimized Current Calculation Module 

According to the formula (5) in the literature (Qinmu Wu et al., 
2016).),  also the formula (12) in this paper, the RNN shown in 
Fig. 3 can be obtained. The network consists of three neurons. 
When 

the neural network calculates its output, some of the weights are 

 adjusted in real time. The adjustment functions are 1( )f   

21.5 ( )n d qp L L x , 2 1( ) 1.5 ( )n d qf p L L x  , 3 ( ) max(0, ( ))f y g x    

From Fig. 2 and Fig. 3, the neural network shown in Fig. 3 
can be implemented by multiplexing three neurons of the 
neural network input layer and three neurons of the output 
layer shown in Fig. 2, as the neurons in the dotted box section 
in Fig.4. The second layer of non-multiplexed neurons has the 
ownership value set to 0, and the multiplexed 3 neurons only 
need to be adjusted to set part weights to 0, recalculate or set 
some weights and offsets. During the operation of the motor 
controlled by efficiency optimization control method, the OC 
calculation is required for each control cycle. The parameter 
identification of the motor can be performed once per control 
cycle, or once during multiple control cycles. Whatever, the 
parameter identification and optimized current calculation of 
the motor are performed at different time periods of a control 
cycle, it provides a condition for a neural network to take into 
account the parameter identification and the OC calculation of 
the motor. 



111,in



1i
x

1 
11ia
12ia

1mia

1e

me
1ix


 
a. 

111,in  



121,kn

1ke

1 
11ka
1 2ka

1k na

1x

nx
1e


1kb


 
b. 

121,kn  



2i
x


2 2,i ih
2 ,( 1)i nh 

1e


me
   2i

x

2 ,( )i n mh 

212,in
 

c. 
212,in  



1e


2 ,1n kh 
1x


nx
   2ke

2 ,n k nh 

2 2,n k n kh  

222,kn
 

d. 
222,kn  

Fig. 1. Four types of neurons for IPMSM parameter 
identification. 
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Fig. 2. RNN for IPMSM Parameters Identification. 
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Fig. 3. PMSM OC Calculation Module based on Recurrent 
Neural Network. 
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Fig. 4.  Network Diagram of OC Calculation Implemented by 
RNN shown in Fig. 2. 

5. SIMULATION EXPERIMEAT AND ANALYSIS 

The vector control-based IPMSM drive control system is 
established by MATLAB Simulink. The motor parameters 
used can be found in the literature (Junggi Lee et al., 2009). 
The system is simulated to obtain the motor /d q -axis current, 

-q axis voltage and rotor speed, as shown in fig. 5.  In order to 

ensure that the input and output of each neuron in the neural 
network system identifying motor parameters will not be too 

large, each entry of   in equation (3) is multiplied by 0.01, 

0.01, 0.001, 0.01 separately. By extracting 200 data sample 
among 4000 data values sampled from the speed, d/q-axis 
currents, torque and q-axis voltage signal of the motor starting 
from t=0s, which a datum point is record every interval 20 
data points, the matrix Y  and y  of the formula (3) whose 

column length are 200 are obtained. A suitable   is selected 
such that H  satisfies the requirement of the theorem 1. Based 
on Fig. 2, the RNN simulation model is built in the MATLAB 
Simulink.  
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ee
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s)
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A
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)

 

 

id

iq

Te

 

  a. The speed curve            b.  The d/q-axis currents 
and torque curves 

Fig. 5. The speed, d/q-axis currents and torque curves of the 
motor. 

When the motor parameter is the rated parameter, this is, 

 qL e H 835 6 , ( )dL e H 375 6 , . ( )sR m 29 5  , f   

. ( )Wb0 07 , and the noise signal overlap on the q-axis voltage is 

as shown in Fig.6, the identification results of qL , dL , sR , f  

of the motor are obtained by the recursive neural network 
based least absolute deviation method (RLADM) in this paper 
and the recursive least-squares method (RLSM) based on the 
above-mentioned Y and y , respectively, as shown in Fig.7

and Fig.8. According to the two figures, the RLADM can 
ensure that the parameter identification value is almost total 
equal to the real value. While the identification results 
obtained by the RLSM are  7qL e H 83 6 , 

30.6( )sR m  60 ( )dL e H 3 6 ,  . 698( )f Wb  0 0 , obviously, 

there exists a small deviation between the identification value 
and the real parameter value. 
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)

 

Fig. 6.  The noise signal overlapped in the q-axis voltage. 

If a certain set of measured values is abnormal caused by 
some reasons during the measurement process, e.g. the 
normal value of the above-mentioned (100, :)Y  should be  
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a. L q and L d identification curves 
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b. R s  
and f identification curves 

Fig. 7. The identification curves when the motor parameters 
are rated by using the RLADM. 
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a. L q and L d                            
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identification curves                  identification curves 

Fig. 8.  The identification values when the motor parameters 
are rated by using the RLSM. 

[ 0.0295 0.0292 0.4250 0.9042]   while the measured value 

is  3.000 3.0001 0.08 0.7038   . The normal value of 

(100,1)y  should be 6.1700 , however the measured one is 

0.8. In this case, the identified parameter results of  RLADM 
are shown in Fig. 9. It can accurately identify motor 
parameters, the results are 

 5.34qL e H 83 6 , 29.524sR  ( )m , 75.02 ( )dL e H 3 6 ,

. 7001( )f Wb  0 0 . However, the identifyed parameters 

results using RLSM change seriously when the abnormal 
measured values are introduced during identification process, 
as shown in Fig. 10; and they were significantly deviate from 
their real values within a period of time, therefore the results 
can not be used for the efficiency optimization of the motor. 
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Fig. 9.  Identification curves when abnormal measured values 
existed with the RLADM. 
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Fig. 10. The identification curves when abnormal measured 
values existed with the RLSM. 

For verifying the effectiveness of the RLADM, five data sets 
are extracted from the data corresponding to the curves of 
Fig.5. As shown in Fig.11(a)-Fig.11(e), the data set are 
obtained from the red curve, and a datum point is recorded 
every interval 20 data points, every data set contains 100 data 
points, and 90 datum points is same in two neighbourhood 
data sets. The simulated measure noise overlapped on the q-
axis voltage signal, as shown in Fig.11(f).  
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a. the curves forming the first data set with the red parts 
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b. the curves forming the second data set with the red parts 
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c. the curves forming the third data set with the red parts 

0 2 4 6
0

200

400

600

800

1000

t(s)


m
(r

ad
/s

)

0 2 4 6
-400

-200

0

200

400

t(s)

i d /i
q (

A
)/

T e (
N
  

m
)

 

 

id

iq

Te

 
d. the curves forming the fourth data set with the red parts 
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e. the curves forming the fifth data set with the red parts 
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f. The noise signal overlapped in the q-axis voltage 

Fig. 11.  Five data sets and noise signal. 

The simulation results of the parameter identification of the 
motor based on the five data sets are shown in Table.2. 
According to Table.2, the RLADM can obtain the 
identification results which are almost equal to the real 
parameter values. The identified results with the RLSM are 
closed to the real parameter values when using the first data 
set, it is because a white noise signal with zero even value is 
overlapped on the q-axis voltage, the identification results do 
not equal to the real parameter values. However, the 
identified results are increasingly deviated from their real 
parameter values from the second data set to the fifth data set. 
Especially, the identified results based on the fifth data set are 
seriously deviate from their real values, because the variation 
of the d/q-axis currents, the torque, the speed and the q-axis 
voltage of the motor are the slowest in the five data sets, in 
another word, the motor simulation systems is in severe 
under-excitation state. However, the RLADM does not have 
this problem. 

Table 2.  the identified parameter results with 
the RLADM and the RLSM based on five data sets. 

 Data set 1 Data set 2 
 RLADM RLSM RLADM RLSM 

Lq(H) 0.000835 0.000844 0.000834 0.000963 
Ld(H) 0.000375 0.000396 0.000376 0.000602 
Rs() 0.029530 0.033039 0.029615 0.191338 

f(Wb) 0.070002 0.068950 0.069997 0.065604 

 Data set 3 Data set 4 
 RLADM RLSM RLADM RLSM 

Lq(H) 0.000832 0.000242 0.000832 0.001498 
Ld(H) 0.000375 0.001686 0.000377 0.002316 
Rs() 0.029461 1.023055 0.029423 1.541884 
f(Wb) 0.070018 0.036560 0.069967 0.013800 

 Data set 5 
 RLADM RLSM 

Lq(H) 0.000831 -0.0000046
Ld(H) 0.000378 0.002300
Rs() 0.029408 1.565558
f(Wb) 0.070130 0.009084

For yielding a data set, some data are extracted from the red 
curve of Fig.12, which is the local zoom figure of the Fig.5. It 
forms Y and y in formula (3) with 50 column length. In order 
to analyse the immune ability of the RLADM against the 
noise, a noise signal whose length is 50 is yield, as shown in 
Fig.13. Four simulation experiments are finished which over-
lapped different intensity noise signal on the q-axis voltage 
signal, these noise signals come from the noise signal shown 

in Fig.13 multiplied a coefficient ek , ek =0.001, 0.01, 0.1, 
and 1. Some experimental results with the RLADM and the 
RLSM are obtained, as shown in Table.3. The Table.3 can 
achieve a conclusion that the identified parameter values are 
hardly affected by noise intensity when applying the 
RLADM, the deviation between these identification results  

are very small. Regardless of the value of the coefficient ek , 
the identification results are all almost equal to the real 
parameter value. By contrast, when using the RLSM, with the 

increase of the value ek , the identification results 
increasingly deviate from the real parameter value. 

When 1ek  , the deviation between the identified parameter 

values and the real parameter value of the qL , dL , sR , f are 

the biggest, and they are equal to 5.3%, 33.9%, 97% and 
1.6% of the real parameter value of the motor, respectively. 
Especially, the identified parameter values of the dL , sR  are 
seriously deviated from the real parameter values. 
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Fig. 12. The curves forming the data set with the red parts. 
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Fig. 13. The noise signal overlapped on the q-axis voltage. 
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Table 3.  the identified parameter results with the 
RLADM and the RLSM under four different intensity 

noise signals. 

 ke = 0.001 ke = 0.01 
 RLADM RLSM RLADM RLSM 

Lq(H) 0.000835 0.000835 0.000835 0.000835
Ld(H) 0.000375 0.000374 0.000375 0.000375
Rs() 0.029524 0.029845 0.029593 0.030091

f(Wb) 0.069999 0.069973 0.069996 0.069970

 ke = 0.1 ke = 1 
 RLADM RLSM RLADM RLSM 
Lq(H) 0.000835 0.000834 0.000832 0.000790
Ld(H) 0.000376 0.000380 0.000377 0.000502
Rs() 0.029672 0.033551 0.029900 0.058103
f(Wb) 0.069987 0.069928 0.070238 0.071093

 
6. CONCLUSION 

The motor model-based efficiency optimization control 
method requires online estimation of the electromagnetic 
parameters of the IPMSM for EVs in real time.  The accuracy 
of the estimation determines the performance of the 
efficiency optimization control. Based on IPMSM's voltage 
equation and flux equation, the motor parameters 
identification problem is modelled as regression problems. In 
addition, based on optimization theory, variational theory and 
projection dynamic theory, the regression problem is 
transformed into optimization problem, variational problem 
and finding projection-dynamic-equation solution. Finally, a  
RNN is used to deal with motor parameters identification, as 
well as analyzing the convergence conditions of the 
projection dynamic equation theoretically. The simulation 
results confirm the effectiveness and correctness of the 
proposed method. The weight of the designed recurrent 
neural network is directly taken from the state of the motor 
and some deter-mined coefficients of the projection dynamic 
equation, without pre-learning training. The RNN can be 
implemented  in an FPGA or a dedicated neural network chip. 
Therefore, the proposed method provides effective technical 
support for implementing the IPMSM driven system in a 
fully hardware manner for efficient and accurate efficiency 
control. 
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