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Abstract: We study numerical solutions of parameterized non–symmetric continuous–time algebraic
Riccati equations (PNAREs) related to issues in control system theory and differential games. Thanks to
good regularity properties of the solutions of PNAREs with respect to the parameter, our main tool
involving an analytically determined matrix sign function is applied to the computation of various
solutions, including the strongly stabilizing, the reverse dichotomic and the dichotomic ones. The
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The efficiency of the proposed method is illustrated by several numerical experiments.
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1. INTRODUCTION

Algebraic equations which are quadratic in the variable are
usually called algebraic Riccati equations (ARE), to pay tribute
to Count Jacopo Riccati (Bittanti et al., 1991; Jungers, 2017)
who initiated their study. In their most notorious form, they
feature matrix coefficients with Hermitian symmetry and one
is usually interested to solve them for the square Hermitian
unknown matrix. In contrast to linear equations, one of the
prominent AREs hallmarks is that they usually have several
solutions with quite distinct properties. However, even though
the AREs are essentially quadratic in the unknown, specific lin-
ear algebra tools are usually involved in their solving. Both the
theoretic study and the numerical computation of the solutions
to AREs have generated a rich body of literature. For example,
in the symmetric case, several approaches have been provided
to characterize all possible solutions (Ran and Rodman, 1992;
Abou-Kandil et al., 2003; Lancaster and Rodman, 1995), while
their properties proved to be keystone in several applications,
like optimal control for linear systems subject to quadratic cost
functions, optimal filtering, and robust stabilization and control,
to name just a few (see (Ionescu et al., 1999; Dorato et al., 1995;
Anderson and Moore, 1989)). In several contexts in control
system theory, the issue to solve is parameter dependent. This
is for instance the case of global stabilizing of linear systems
with input nonlinearities (Teel, 1995) or of gain scheduling
control (Apkarian and Gahinet, 1995). The solution of these
problems is obtained by the solution of a parameterized ARE.
The interest in this type of parameterized ARE goes back to the
seventies and eighties: this question has been treated numeri-
cally with imbedding equation in (Jamshidi et al., 1970). The
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continuity properties of the ARE with respect to the parame-
ter has been investigated in (Faibusovich, 1986), (Trentelman,
1987) and also in (Ran and Rodman, 1988).

Other different and quite distinct AREs – called non–symmetric
algebraic Riccati equations (NARE) – feature no symmetry
in the coefficients, while the unknown may be a rectangu-
lar (instead of square) matrix (see for example (Abou-Kandil
et al., 2003; Bini et al., 2012)). They are usually encountered
in game (Başar and Olsder, 1995; Ho, 1970; Abou-Kandil
et al., 2003) or transport theory (Juang, 1995; Lu, 2005; Weng
et al., 2012). For example, when considering a linear differ-
ential game with quadratic cost functions, the Nash (Freiling
et al., 1999; Engwerda, 2005) or Stackelberg (Abou-Kandil
et al., 2003; Jungers, 2008) strategies with open-loop infor-
mation structure may be solved via coupled AREs, which, in
turn, can be rewritten equivalently as NAREs. Precisely as the
symmetric AREs, NAREs may have several distinct solutions,
while their classification is considerably more difficult. To have
one example only, the stabilizing solution to symmetric AREs,
provided it exists, is unique, while a NARE may have several
different stabilizing solutions featuring different properties.

Among the various solutions to NAREs, perhaps the most well–
known is the strongly stabilizing one (see (Engwerda, 2005,
Definition 7.2)) which allows to stabilize the state and anti-
stabilize the co-state closed-loop matrices. The uniqueness of
this particular solution triggers certain properties in the robust
control theory of the underlying system. Medanic introduced
in (Medanic, 1982) other interesting solutions, like the di-
chotomic and reverse dichotomic, which substantiate the most
stable and anti–stable solutions of a given NAREs and proved
to be of particular interest in control systems or game theory.
Moreover, they play a crux role in solving AREs by integrating
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the related differential Riccati equation (see (Medanic, 1982,
Theorem 5)).

Apart from the theoretical study, the lack of symmetry of
NAREs is a source of difficulties when solving them nu-
merically. Several methods originally developed for sym-
metric AREs have been modified and extended to cope
with NAREs, for example the Popov function (Ionescu and
Weiss, 1993; Ionescu and Oară, 1996; Kremer, 2003; Jungers
and Oară, 2012; Jungers et al., 2009), Newton’s iterative
algorithm (Sandell, 1974; Guo and Laub, 2000), the in-
variant subspace method (Van Dooren, 1981; Abou-Kandil
et al., 2003; Guo, 2001; Laub, 1979), or more generally,
the deflating subspace method for matrix pencils, in both
continuous-time (Jungers and Oară, 2012) and discrete–time
settings (Jungers et al., 2009).

The main focus of this paper is on an alternative method based
on the matrix sign function (see (Roberts, 1980; Denman and
Beavers, 1976) and the refinements in (Gardiner and Laub,
1986)) which allows to linearize the quadratic NARE into an
overdetermined system of linear equations. Note that recently
the matrix sign function has been extended to the case of a
particular class of parameterized ARE (Guerra et al., 2012,
2015). The matrix sign function has been already applied in
the framework of NARE. One can cite mainly the contribu-
tions (Guo and Bai, 2005) and (Bini et al., 2012, Section 3.5).
It should be emphasized that these two results are possible
thanks to strong and restrictive assumptions: (Bini et al., 2012,
Section 3.5) assumes that the characteristic matrix has a suitable
eigenvalues splitting and (Guo and Bai, 2005) (or refinements
provided in (Bai et al., 2006)) assumes that the characteristic
matrix is a M-matrix implying the same eigenvalues splitting. In
other words, the matrix sign function applies naturally in these
cases because there is one and only one stabilizing solution (that
is the strongly stabilizing solution) of the NARE. Our main con-
tribution is to extend this approach by providing an analytical
parameterized strongly stabilizing solution to a parameterized
non–symmetric algebraic Riccati equations (PNARE) to possi-
bly include other specific solutions of NAREs.

The paper is focused on the continuous-time case of PNARE
and is organized as follows. Section 2 introduces the PNAREs
and various solutions of interest, and their main properties.
The main results on computing analytically the parameterized
strongly stabilizing solution of PNAREs are given in Section 4
and exemplified through several relevant numerical experi-
ments in Section 5. Some concluding remarks are contained in
Section 6.

Notation: By R and C we denote the real axis and the com-
plex plane, respectively. The open left–half plane (the stability
domain in continuous–time) is denoted by C−, the open right–
half plane by C+ and the open unit-disk by D. N and N∗ are
respectively the set of non-negative integers and the set of
positive integers. For a constant matrix A we denote by A′ its
transpose and if A is invertible by A−1 its inverse. Λ(A) is the
spectrum of a square matrix A, rank(A) its rank and trace(A) its
trace. An eigenvalue of A is called stable provided it is inside
C− for continuous-time and inside D for discrete-time, and
antistable otherwise. In1 and 0n1×n2 denote the identity matrix
of size n1×n1 and the null matrix of size n1×n2, respectively.
The diagonal matrix with the scalars α1, · · · ,αn on the diagonal
is denoted diag(α1, · · · ,αn). For a complex α , Re(α) denotes
its real part.

2. PARAMETERIZED NARES

In this section we introduce the parameterized non-symmetric
algebraic Riccati equations, define several solutions of interest,
and give several basic results.

Let us define U ⊆ R the set of admissible parameters. The
algebraic quadratic equation (n, p ∈ N∗), ∀α ∈U

M21(α)+M22(α)K(α)−K(α)M11(α)

−K(α)M12(α)K(α) = 0p×n (1)

in the unknown K(α)∈Rp×n, where M11(α)∈Rn×n, M12(α)∈
Rn×p, M21(α) ∈ Rp×n, and M22(α) ∈ Rp×p is called the Pa-
rameterized Continuous–time Non-symmetric Algebraic Ric-
cati Equation (PNARE). Since p and n are not necessary equal,
the unknown K(α) is, in general, a rectangular matrix. Equa-
tion (1) is associated with the characteristic matrix

M(α) =

[
M11(α) M12(α)
M21(α) M22(α)

]
∈ R(n+p)×(n+p), (2)

which plays an essential role for PNARE. The PNARE (1)
could be rewritten equivalently as the following equation:

M(α)

[
In

K(α)

]
=

[
In

K(α)

]
(M11(α)+M12(α)K(α)). (3)

To be more precise, in the latter equation, the first block is trivial
and the second one is equivalent to the PNARE (1).

Finding a solution K(α) to PNARE (1) aims at determining an
equivalence transformation matrix

T (α) :=
[

I 0
K(α) I

]
, (4)

leading without assumption on K(α) to the inverse

T−1(α) =

[
I 0

−K(α) I

]
, (5)

such that T−1(α)M(α)T (α) is block upper triangular.
Remark 1. In particular, if n = p, M11(α) = −M′22(α), and
M12(α) and M21(α) are both symmetric, we recover the well–
known parameterized symmetric algebraic Riccati equation for
which the characteristic matrix M(α) is Hamiltonian (Laub and
Meyer, 1974), the eigenvalues of M(α) have symmetry with
respect to the imaginary axis (see (Kuc̋era, 1972)), and one
usually seeks Hermitian solutions K(α) = K′(α).

The following two theorems are straightforward consequences
of Radon’s Lemma (Radon, 1927) (see also (Abou-Kandil et al.,
2003, Theorem 6.2.2 and Theorem 6.2.4) and (Bini et al., 2012;
Engwerda, 2005)).
Theorem 1. Let K(α)∈Rp×n be a solution to the PNARE over
α ∈ U . Then there are three parameterized matrices X(α) ∈
Rn×n, Y (α)∈Rp×n and J(α)∈Rn×n, with X(α) invertible and
J(α) a Jordan matrix, verifying

M(α)

[
X(α)
Y (α)

]
=

[
X(α)
Y (α)

]
J(α), (6)

and
Y (α) = K(α)X(α). (7)

�

Theorem 2. Let V (α) ⊂ R(n+p) be an invariant subspace of
the characteristic matrix M(α) of dimension n over α ∈ U .
Then there are three parameterized matrices X(α) ∈ Rn×n,
Y (α) ∈ Rp×n and a Jordan matrix J(α) ∈ Rn×n verifying
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M(α)

[
X(α)
Y (α)

]
=

[
X(α)
Y (α)

]
J(α). (8)

Moreover, if X(α) is invertible, then the set V (α) is a graph
invariant subspace of the matrix M(α) of dimension n and
K(α) =Y (α)X−1(α) is a solution to the PNARE. This solution
is independent of the choice of the basis matrices X(α) and
Y (α) and depends only on the spectrum Λ(J(α)). �

Proof: For each value of α ∈U , the proofs of Theorem 1
and Theorem 2 are known in the literature. See (Abou-Kandil
et al., 2003) and (Bini et al., 2012).

It should be emphasized that Theorem 1 and 2 stand for a given
value of the parameter α . It is interesting to notice that the
regularity of the function K(α) is induced by the one of the
characteristic matrix M(α) with respect to the parameter α . The
behavior of the parameterized solutions in a neighborhood of a
given value is related to Theorem 3.
Theorem 3. (Lemma 2.3 in (Karow and Kressner, 2014)).
Consider a fixed value of the admissible parameter α0 ∈
U . Suppose that there exists K0 ∈ Rp×n a solution of the
PNARE (1) for α = α0. If the condition

Λ(M11(α0)+M12(α0)K0)

∩Λ(M22(α0)−K0M12(α0)) = /0 (9)
is verified, then there exist an open neighborhood E ⊂
C(n+p)×(n+p) of 0 and an open neighborhood K ⊂ Rp×n of K0
such that for each E ∈ E the PNARE (1) with M = M(α0)+E
has a unique solution KE ∈K . Moreover KE depends holomor-
phically on E and admits the first-order expansion

KE = K0 +T−1
K (E21)+O(‖E‖2),

with the Sylvester operator

TK : ∆K 7→ ∆K(M11(α0)+M12(α0)K0)

− (M22(α0)−K0M12(α0))∆K.

�

The continuity property of each solution when the separation
condition (9) is verified motivates results dealing with analyti-
cal solutions of PNARE (1) instead of numerical ones.

Notice that Λ(J(α)) is always included in Λ(M(α)) and ac-
tually differentiates among various solutions of the PNARE.
To define specifically several important solutions assume the
eigenvalues of the matrix M are ordered such that their real parts
form a nondecreasing sequence,

Re(λ1(M(α)))≤ Re(λ2(M(α)))≤
≤ ·· · ≤ Re(λn+p(M(α))) . (10)

Definition 4. Following the definitions in (Medanic, 1982; En-
gwerda, 2005):

• If Re(λp(M(α))) < Re(λp+1(M(α))), then the solution
K(α) related to {λp+1(M(α)), . . . ,λn+p(M(α))} is called
dichotomic;
• If Re(λn(M(α))) < Re(λn+1(M(α))), then the solution

K(α) related to {λ1(M(α)), . . . ,λn(M(α))} is called re-
verse dichotomic;
• A solution K(α) is called stabilizing if

Λ(M11(α)+M12(α)K(α))⊂ C−,
and strongly stabilizing if, in addition,

Λ(M22(α)−K(α)M12(α))⊂ C+.

The strongly stabilizing solution is also referred as (n, p)–
splitting solution.

By the latter definitions and Theorem 2, a strongly stabilizing
solution exists only if

Re(λn(M))< 0 < Re(λn+1(M)) ,

and M(α) admits a graph invariant subspace related to the
eigenvalues {λ1(M(α)), . . . ,λn(M(α))}, see (Abou-Kandil et al.,
2003). When a strongly stabilizing solution exists it is unique.

In order to illustrate the context of continuity properties of
PNARE (1) we provide an academic illustration, with n = 2
and p = 1:

M(α) =

 1 α max(α,0)
α 1 0
0 0 2

 .
The eigenvalues of M(α) are {2,1−α,1 + α} and M(α) is
continuous with respect to the parameter and such Theorem 3
applies.

For α ∈]−∞,−1[∪]− 1,0[, the solution is unique and trivial
Ka(α) = [ 0 0 ] by selecting {1− α,1 + α}. It is reverse di-
chotomic only when α ∈]−1,0[.

For α = −1, the eigenvalues are as follows: 2 is double and
0 is simple. The solutions are of infinite number and given by
selecting {0,2}, Kb(α,β ) = [−β +β ], for any β ∈ R.

For α = 0, the eigenvalues are as follows: 2 is simple and 1 is
double. The solutions are

• by selecting {1,1}, Ka(α) = [ 0 0 ], which is reverse
dichotomic,

• by selecting {1,2}, Kc(α,β ) = [ 1 β ], for any β ∈ R.

For α ∈]0,1[∪]1,+∞[, the solutions are

• by selecting {1 + α,1− α}, Kd(α) = [ 0 0 ], which is
reverse dichotomic when α ∈]0,1[,

• by selecting {2,1−α}, Ke(α) = [−1+1/α −1+1/α ],
• by selecting {2,1+α}, K f (α) = [ 1+1/α −1−1/α ],

which is dichotomic.

For α = 1, the eigenvalues are as follows: 2 is double and 0 is
simple. The solutions are

• by selecting {0,2}, Ka(α) = [ 0 0 ],
• by selecting {2,2}, Kg(α)= [ 2 −2 ], which is dichotomic.

On this numerical illustration, we can see that when the sep-
aration condition (9) is not verified, it seems very difficult to
formalize the number of solutions, which depends not only on
the eigenvalues but on the eigenstructure of the matrix M(α).
For α = −1 the number of solutions is infinite but for α = 1,
there are only two solutions. For α = 1, we face to a bifurcation
of the solutions.

Invariant subspaces are closely associated with the solution of
a NARE. The matrix sign function conserving the invariant
subspaces will be useful to solve the NARE. The following
section details this operator.

3. MATRIX SIGN FUNCTION

The sign function for a scalar z ∈ C is given by

sign(z) =

{
+1 if Re(z)> 0,
−1 if Re(z)< 0,
undefined otherwise.

(11)

The matrix sign function is an extension of the sign function
defined for matrices that do not feature eigenvalues on the
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imaginary axis (for more details see (Kenney and Laub, 1995)).
Let A ∈ R(n+p)×(n+p),

A =V (D+ J)V−1 (12)
be its Jordan canonical form, where D = diag(d1, · · · ,dn+p), J
is nilpotent, J and D are commutative with respect to multipli-
cation, and n and p are the number of eigenvalues with negative
and positive real parts, respectively. Then

sign(A) :=V diag(sign(d1) , · · · ,sign(dn+p))V−1. (13)

The properties of the matrix sign function are detailed in
(Roberts, 1980; Kenney and Laub, 1995). Here we will only
recall the main ones that will be used in the sequel of the paper.
Let A ∈ R(n+p)×(n+p):

• sign(A) is diagonalizable;
• sign(A) is a square root of the identity matrix;
• sign(A) and A are commutative;
• rank(sign(A)− In+p) equals the number of anti–stable

eigenvalues (multiplicity counted) of A and rank(sign(A)+
In+p) equals the number of stable eigenvalues of A;
• If A is Hurwitz, sign(A) =−In+p;
• For any real scalar α 6= 0, sign(αA) = sign(α)sign(A),

(the scaling property);
• The matrices A and sign(A) share the same invariant

subspaces, i.e.,
AV =V S⇒ sign(A)V =V sign(S) , (14)

where V and S are two matrices of appropriate dimensions
(for more details see (Bini et al., 2012, Lemma 1.7))

These properties are crucial to compute invariant subspaces of
matrices and to solve NAREs by transforming the quadratic
equation into an over–determined linear system of equations
(see for example (Barraud, 1979; Byers, 1987)). The matrix
sign function of a parameterized matrix M(α) is well defined
only when M(α) does not admit imaginary eigenvalues. Hence,
the set of parameters U should exclude these values.

Several methods are available to obtain matrix sign function
of a given matrix besides the definition (13). An analytical
way to compute the matrix sign function has been introduced
in (Roberts, 1980) and is given by

sign(M(α)) =
2
π

M(α)
∫ +∞

0
(y2In+p +M2(α))−1dy,

=
2M(α)

π

∫ +∞

0

adj(y2In+p +M2(α))dy
det(y2In+p +M2(α))

, (15)

where the adjugate adj(·) is the transpose of the cofactor matrix
of the argument. Computing sign(M(α)) leads to calculate the
integral of a rational fraction in the unknown y2. Computing
the integral of such a rational fraction can be done thanks to
the factorization of the denominator det(y2In+p +M2(α)) and
integral of simple elements or, alternatively, by considering a
residual approach. The formula (15) is of interest in the param-
eterized case because it allows to keep an explicit dependency
with respect to the parameter α . Notice that contrary to (Guerra
et al., 2012), we make no assumption on the dependency of
M(α) on the parameter α .

When the value of the parameter α is fixed, a large collection
of advanced algorithms are available for the computation of the
matrix sign function of a matrix featuring no eigenvalues on
the imaginary axis. A widespread source of iterative algorithm
is based on the observation that (sign(M))2 = In+p and on

Newton–Kantorovich procedure with additional refinements.
The current paper being focused on parameterized NARE, the
numerical algorithms for a specific parameter are not recalled,
see (Kenney and Laub, 1995) or (Benner and Byers, 2006) for
details.

4. COMPUTATION OF SOLUTIONS OF (P)NARES: A
MATRIX SIGN FUNCTION APPROACH

The strongly stabilizing solution of a PNARE will be consid-
ered first in Subsection 4.1 as a keystone for all other types of
solutions in continuous-time domain, investigated further into
Subsection 4.2. The main guidelines to allow to treat parameter
non-symmetric discrete-time algebraic Riccati equations will
be provided in Subsection 4.3.

4.1 Computation of the strongly stabilizing solution to the
PNARE

When considering the particular case of strongly stabilizing
solution to the PNARE, thanks to the use of the matrix sign
function, we can refine Theorems 1 and 2 as follows.
Theorem 5. If the PNARE (1) has a strongly stabilizing solu-
tion K(α) over α ∈ U , then the characteristic matrix M(α)
admits a matrix sign function, denoted

sign(M(α)) =

[
W11(α) W12(α)
W21(α) W22(α)

]
, ∀α ∈U , (16)

with W11(α) ∈ Rn×n, W12(α) ∈ Rn×p, W21(α) ∈ Rp×n and
W22(α) ∈ Rp×p, and that verifies

Trace(sign(M(α))) = p−n. (17)

In addition, K(α) is the unique solution of the over–determined
system [

W12(α)
W22(α)+ Ip

]
K(α) =−

[
W11(α)+ In

W21(α)

]
. (18)

�

Proof: The proof follows the lines of Theorem 3.9 in (Bini
et al., 2012) by considering the parameterized NARE. When
a strongly stabilizing solution exists over U , the spectrum
of the characteristic matrix M(α) contains exactly n stable
eigenvalues and p antistable eigenvalues (multiplicity counted).
By continuity of M(α) with respect to the parameter α , this
splitting is verified over U . M(α) has no purely imaginary
eigenvalues and admits a matrix sign function over U . The
PNARE reads

M(α)

[
In

K(α)

]
=

[
In

K(α)

]
(M11(α)+M12(α)K(α)), (19)

with (M11(α)+M12(α)K(α)) stable because K(α) is a strongly
stabilizing solution. M(α) admitting a matrix sign function, we
apply a matrix sign function to the latter equation. Thanks to
the property (14), that yields:[

W11(α) W12(α)
W21(α) W22(α)

][
In

K(α)

]
=−

[
In

K(α)

]
. (20)

A simple rewriting leads to the over-determined system (18).
The uniqueness of the solution is a straightforward consequence
of the uniqueness of the strongly stabilizing solution and ends
the proof.
Theorem 6. Let consider the admissible set of parameters U
for which the characteristic matrix M(α) admits a matrix sign
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function sign(M(α)), denoted by (16). Consider the restric-
tion U1 ⊂ U for which Trace(sign(M(α))) = p− n. Denote
also the subset U2 ⊂ U1 related to parameters α such that

rank
([

W12(α)
W22(α)+ Ip

])
= p. Over U2, the over-determined

system [
W12(α)

W22(α)+ Ip

]
K(α) =−

[
W11(α)+ In

W21(α)

]
(21)

admits one and only one solution K(α). This parameter depen-
dent matrix is the strongly stabilizing solution to PNARE (1).

�

Proof: The trace condition implies that the characteristic
matrix M(α) and sign(M(α)) have exactly n stable eigenval-
ues and p antistable eigenvalues. The over-determined sys-
tem (21) admits a solution if and only if all the columns

of
[

W11(α)+ In
W21(α)

]
depend linearly on the columns of matrix[

W12(α)
W22(α)+ Ip

]
, or in other words

rank
([

W12(α)
W22(α)+ Ip

])
= rank

([
W11(α)+ In W12(α)

W21(α) W22(α)+ Ip

])
= rank(sign(M(α))+ In+p)

= p.

The latter equality holds because the spectrum is (n, p)-

splited. Moreover the matrix
[

W12(α)
W22(α)+ Ip

]
is thus full col-

umn ranked, which concludes the uniqueness of the solution.

Theorem 5 emphasizes the fact that the strongly stabilizing
solution over any set of admissible parameters can be obtained
thanks to Theorem 6. Based on Theorem 6, it is easy to build
a numerical algorithm to solve the strongly stabilizing solution
to a PNARE (1).

The following subsection will be dedicated to use this material
in order to obtain solutions of NAREs of other types than the
strongly stabilizing one.

4.2 Computation of other solutions

A specific application of Theorem 6 allows to use the same
approach for computing other solutions of a NARE as well:

• Let M̃ be a dichotomically separable matrix and consider
the PNARE defined by the characteristic matrix M(α) =
−M̃+αIn+p, with

U = {α ∈ R, Re
(
λp(M̃)

)
< α < Re

(
λp+1(M̃)

)
}.

The strongly stabilizing solution of the PNARE (1)
exists and it is precisely the dichotomic solution related
to M̃.
• Let M̃ be a reverse dichotomically separable matrix and

consider the PNARE defined by the characteristic matrix
M(α) = M̃−αIn+p, with

U = {α ∈ R, Re
(
λn(M̃)

)
< α < Re

(
λn+1(M̃)

)
}.

The strongly stabilizing solution of the PNARE (1)
exists and it is the reverse dichotomic solution related to

M̃. An alternative point of view is provided in (Jungers,
2014) by rewriting the NARE

M̃21 +(M̃22−αIp)K−K(M̃11−αIn)−KM̃12K
= M̃21 + M̃22K−KM̃11−KM̃12K. (22)

4.3 Discrete-time PNAREs

The discrete-time parameterized NARE can be defined as the
algebraic quadratic equation over α ∈U , (n, p ∈ N∗)

K(α) = N22(α)

+N12(α)K(α)(In +N11(α)K(α))−1N21(α), (23)

in the unknown K(α)∈Rp×n, where N11(α)∈Rn×p, N21(α)∈
Rn×n, N12(α) ∈ Rp×p and N22(α) ∈ Rp×n.

Equation (23) is associated with the characteristic matrix pen-
cil, or first degree polynomial in z ∈ C,

N2(α)− zN1(α) =

[
N21(α) 0n×p
N22(α) −Ip

]
− z
[

In N11(α)
0p×n −N12(α)

]
∈ R(n+p)×(n+p),

(24)

and can be equivalently rewritten as

N2(α)

[
In

K(α)

]
= N1(α)

[
In

K(α)

]
(In +N11(α)K(α))−1N21(α). (25)

Under the assumption stating that the square pencil N2(α)−
zN1(α) in (24) is regular (square and non vanishing deter-
minant) and has no infinite eigenvalues, the matrices N1(α)
and N12(α) are both invertible, while the eigenvalue problem
for the pencil N2(α)− zN1(α) reduces to that for the matrix
N−1

1 (α)N2(α).

In discrete-time domain, a strongly stabilizing solution of Equa-
tion (23) is defined as a solution K(α) such that

Λ((In +N11(α)K(α))−1N21(α))⊂ D, (26)

Λ(−(N−1
12 (α)+K(α)N11(α)N−1

12 (α)))⊂ C\D. (27)

A strongly stabilizing solution exists if and only if

|λn(N2(α),N1(α))|< 1 < |λn+1(N2(α),N1(α))|, (28)

where λi(N2(α),N1(α)), i ∈ {1, · · · ,n+ p} denotes the (finite)
eigenvalues of the pencil N2(α)−zN1(α), that are ordered such
that their modulus form a nondecreasing sequence,

|λ1(N2(α),N1(α))| ≤ |λ2(N2(α),N1(α))|
≤ · · · ≤ |λn+p(N2(α),N1(α))|. (29)

By applying the Cayley transform (see (Bini et al., 2012)),
the discrete-time strongly stabilizing solution of Equation (23)
associated with the parameterized pencil N2(α)− zN1(α) coin-
cides with the strongly stabilizing solution to the continuous-
time PNARE (1) associated with the characteristic matrix

M(α) = (N2(α)−N1(α))−1(N2(α)+N1(α)).

This property allows to use the method presented above.
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5. NUMERICAL EXAMPLES

We give here several numerical examples to demonstrate the
efficiency of our matrix sign function approach.

Example 1: Let in continuous-time domain with n = 1, p = 2

M(α) =

 1+α +α2 0 α

cos(α)−1−α−α2 cos(α) −α

−α2(1+α) 0 1−α2

 , α ∈ R.

We solve, with the Matrix Sign Approach, the parametric Non-
symmetric Algebraic Riccati Equation:[

cos(α)−1−α−α2

−α2(1+α)

]
+

[
cos(α) −α

0 1−α2

]
K(α)

−K(α)
[

1+α +α2
]
−K(α) [ 0 α ]K(α) = 02×1, ∀α ∈R.

(30)

The matrix sign(M(α)) is well posed for α ∈U , where U =
R/({−1}∪{πk, k ∈ N}), and is given by[m1(α) 0 sign(1+α)−1

m2(α) sign(cos(α)) 1− sign(1+α)
m3(α) 0 1−α(sign(1+α)−1)

]
,

with

m1(α) = (1+α)sign(1+α)−α,

m2(α) =−(1+α)sign(1+α)+ sign(cos(α))+α,

m3(α) =−α(1+α)(sign(1+α)−1).

Then we have Trace(sign(M(α)))=sign(1+α)+sign(cos(α))+
1=1=n× (−1)+ p× (+1) for α > −1 and cos(α) < 0, or for
α <−1 and cos(α)> 0.

In the case where α >−1 and cos(α)< 0, we have

sign(M(α)) =

[ 1 0 0
−2 −1 0
0 0 1

]
,

which is independent of α and does not admit a graph invariant
subspace related to the value−1. Therefore, there is no solution
to the NARE for these parameters.

In the case where α <−1 and cos(α)> 0, we have

sign(M(α)) =

[ −1−2α 0 −2
2(1+α) 1 2

2α(1+α) 0 1+2α

]
.

The overdetermined system verified by K(α) is thus[ 0 −2
2 2
0 2+2α

]
K(α) =−

[ −2α

2(1+α)
2α(1+α)

]

yielding K(α) =

[
−1
−α

]
the unique strongly stabilizing solu-

tion of the PNARE (30), for which M11(α)+M12(α)K(α) =
1+α < 0.

Example 2: Consider now the example in (Lin, 1998) to solve
the parameterized ARE

−K(α)A−A′K(α)+K(α)BB′K(α)−Q(α) = 02,

with

A =

[
−1 1
−1 1

]
; B =

[
0
1

]
; Q = αI2, ∀α ∈ (0,1].

The induced matrix M(α) is defined by

M(α) =

 −1 1 0 0
−1 1 0 −1
−α 0 1 1

0 −α −1 −1

 , ∀α ∈ (0,1].

The characteristic polynomial of M(α) is det(xI4−M(α)) =
x4 − αx2 + 2α = 0 and has exactly two stable roots for any
α ∈ (0,1]. After a simple calculus, we obtain

det(y2I4 +M2(α))

= (y4 +αy2 +2α)2,

=

(
y2− y

√
2
√

2α−α +
√

2α

)2

×
(

y2 + y
√

2
√

2α−α +
√

2α

)2

,

and

M(α)
(
y2I4 +M2(α)

)−1
=

1
y4 +αy2 +2α

×
−y2−α y2 −1 −1
−y2 +α y2 −1 −y2−1

−α(y2 +α +2) 2α y2 +α y2−α

2α −α(y2 +2) −y2 −y2

 .
Moreover, denoting for sake of clarity χ =

√
α +2

√
2α and

ξ =
1√
2α

, and thanks to polynomial factorization one gets

2
π

∫ +∞

0

ay2 +b
y4 +αy2 +2α

dy =
a+bξ

χ
, ∀α ∈ (0,1],

implying that sign(M(α)) is given by

1
χ

 −1−αξ 1 −ξ −ξ

−1+αξ 1 −ξ −1−ξ

−α− (2α +α2)ξ 2αξ 1+αξ 1−αξ

2αξ −α−2αξ −1 −1

 .
We can verify that Trace(sign(M(α))) = 0 which is in accor-
dance with M(α) having exactly two stable eigenvalues for α ∈
(0,1]. We would like to choose the solution K(α) to stabilize
M11(α) + M12(α)K(α) = A− BB′K(α). The overdetermined
linear system (18) becomes: −ξ −ξ

−ξ −1−ξ

1+αξ +χ 1−αξ

−1 −1+χ

K(α)

=−

 −1−αξ +χ 1
−1+αξ 1+χ

−α− (2α +α2)ξ 2αξ

2αξ −α−2αξ

 ,
resulting into the symmetric and positive definite matrix

K(α) =

[
χ(1+

√
2α−χ)

√
2α−χ√

2α−χ χ

]
, ∀α ∈ (0,1].

We recognize the analytical solution provided in (Lin, 1998).

Example 3: Let us consider n = 2, p = 1 and

M̃ =

−1 −2 6
6 7 −18
3 2 −4

 ,
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for which the eigenvalues are {−1,1,2}. For α ∈ (−1,1), we
have

sign
(
−M̃+αI3

)
=

 2s1−3s2 +2s3 s1− s2 2s3−2s1
12s2−6s1−6s3 4s2−3s1 6s1−6s3

3s2−2s1− s3 s2− s1 2s1− s3


=

 3 2 −4
−12 −7 12
−4 −2 3

 ,
with

s1 = sign(1+α) = 1,

s2 = sign(−1+α) =−1,

s3 = sign(−2+α) =−1.

The overdetermined linear system leads to K(α) =

[
1

1
2

]
,

which is the dichotomic solution related to M̃ because the
eigenvalues of M̃11 + M̃12K(α) are {1,2}.
To compute the dichotomic solution, let us select α ∈ (1,2) and
get

sign
(
M̃−αI3

)
=

 2s4−3s5 +2s6 s4− s5 2s6−2s4
12s5−6s4−6s6 4s5−3s4 6s4−6s6

3s5−2s4− s6 s5− s4 2s4− s6


=

 3 0 4
−12 −1 −12
−2 0 −3

 ,
with

s4 = sign(−1−α) =−1,

s5 = sign(1−α) =−1,

s6 = sign(2−α) = 1.

The overdetermined linear system leads to K(α) = [−1 0 ],
which is the reverse dichotomic solution related to M̃ because
the eigenvalues of M̃11 + M̃12K(α) are {−1,1}.
Example 4: We illustrate the computation of the reverse di-
chotomic and dichotomic solutions to the NARE. Let n = 2,
p = 4 and the characteristic matrix

M̃ =


1 3 1 0 1 4
2 1 3 2 −1 −3
1 0 −2 0 0 0
2 1 0 −2 0 0
0 −2 0 0 −3 0
3 1 0 0 0 −3

 ,
with the eigenvalues

Λ(M̃) =



4.5535
0

−1.9991+0.2001i
−1.9991−0.2001i

−3.1037
−5.4516


.

The matrix M̃ is singular (and therefore sign
(
M̃
)

does not
exist), dichotomic separable, and reverse dichotomic separable.

To compute the reverse dichotomic solution, choose α =
1
2
(Re

(
λ2(M̃)+λ3(M̃)

)
= −2.5514 and apply the method de-

scribed in subsection 4.2, which leads to the reverse dichotomic
solution

K =

−0.2332 0.0974
−0.8568 −0.7678
11.7004 20.9855
−4.5335 −6.1135

 .
As a verification, we have

Λ(M̃11 + M̃12K) = {−5.4516;−3.1037} ,
which are the expected values λ1(M̃) and λ2(M̃).

To compute the dichotomic solution, choose the shift α =
1
2

Re
(
λ4(M̃)+λ5(M̃)

)
and apply the method to get the di-

chotomic solution

K =

 0.2464 −0.1690
0.3521 0.0681
0.1628 −0.5581
0.4786 −0.0143

 .
We verify that

Λ(M̃11 + M̃12K) = {0.0000;4.5535}= {λ5(M̃);λ6(M̃)}.

6. CONCLUSION

The parameterized continuous–time non-symmetric algebraic
Riccati equation has been investigated and a method to obtain
the parameterized strongly stabilizing solution has been pro-
vided by means of computing the matrix sign function approach
via its integral formulation. The approach exhibits the advan-
tages to determine explicitly the parameter dependent solution
which leads to the possibility of computing as well various
specific solutions of the NARE. These techniques may be also
applied to the discrete–time framework.
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