Event-triggered based H_∞ Consensus Control for Multi-agent Systems under Time-varying Delay

Irfan Qaisar, Muhammad Shamrooz Aslam, Chuan Zhou

School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China. (e-mail: shamroz_aslam@yahoo.com)

Technical Department, Wuxi Johnnywell Railway Equipment Technology Co., Ltd. (e-mail: irfanqaisar92@outlook.com)

School of Automation, Nanjing University of Science and Technology, 210094, Jiangsu, P.R. China. (e-mail: njjust_zc@126.com)

Abstract: This article addresses the event triggered based H_∞ consensus control problem for Multi-Agent Systems (MASs) with a directed graph under time-varying delay. The event-triggered communication scheme is utilized to overcome the unnecessary utilization of communication bandwidth. Based on this event-trigger scheme a consensus control protocol is presented. The consensus control problem of MAS is transferred into the stability problem of a closed-loop system under time-varying delay. Furthermore, a new version of Lyapunov function (LF) is presented to establish H_∞ performance index in the form of linear matrix inequalities (LMIs), which is different from the tradition (Liu et al., 2014) and attained less conservative results. Finally, a simulation illustration is provided to exhibit the design method.

Keywords: H_∞, Multi-agent Systems, Event-trigger scheme, Consensus, Time-varying delay.

1. INTRODUCTION

In the past two decades, there is a significant development in control techniques as well as signal processing and communication techniques, it became simpler for various dynamical systems to interface with each other. Such a system is called a multi-agent system (MAS), in which every agent has its independent dynamical system. In the network MAS, the agent and the other neighboring agents transmit their information through the network and accomplish the large and complex multi-objective task in the form of group collaboration (Zhang et al., 2014). With the rapid development of modern technology and distributed ideas, there is a rising recognition of the importance of MAS cooperation in accomplishing complex tasks, distinguishing that MASs can play a richer sense of perception, stronger stability, high efficiency, higher reliability and low cost rather than individual agents (Fink et al., 2014).

In cooperative control of MASs, the consensus is a vital and fundamental problem. The term consensus originates from Latin word consentire which implies a general agreement made by all or majority. Consensus means is an agreement protocol which required to be designed appropriately, during which all agents converge to some common variables of interest (such as voltage, position, and velocity) by communicating with their neighboring agents (Ren et al., 2007). In recent decades, the consensus control problem in MASs has gained considerable concern due to a wide range of applications. For example, the formation of UAV (unmanned air vehicles), spacecraft formation flying, cooperative surveillance and autonomous configuration of the mobile sensor network (Stamatescu et al., 2017), (Qin et al., 2011), (Beard et al., 2002), Peng et al., (2015), and (Liu et al., 2014). The concept of consensus was first proposed in (Olfati-Saber and Murray, 2004). Subsequently, the topic of consensus of MASs has rapidly grown and greatly motivated the researcher’s interest (Hu and Feng, 2010), (Ren and Beard, 2005), (Cao and Ren, 2014), and (Zhang et al., 2011). For example in (Ren and Beard, 2005), the consensus problem solved for MASs under dynamically changing interaction topologies while unreliable and limited information exchanged among agents. The average consensus control problem of MASs with various communication delays is presented in (Zhang et al., 2011).

In efforts for accomplishing the consensus for MASs, the agents essential to exchange shared information with their neighboring agents through communication networks. In conventional control consensus problems for MASs, it is supposed to get continuous access to measurements and control signals. Such presumption support by an ideal communication network and appropriate computation resources for MAS. Unlike in practical application, it should be noted that every agent has restricted communication and computing resources, excessive calculation and information exchange could also be unnecessary utilized the network resources (Xing and Deng, 2018). Moreover, packet dropout, network-induced delay, packet disordering, and sensor/actuator fault are primarily caused by
(Song et al., 2013), (Tan et al., 2015), (Liu et al., 2015), and (Liu et al., 2019). To cope with these issues, the distributed event-triggered scheme is presented, during which information can solely transfer to neighboring agents once it reaches a threshold value. It is an effective way to reduce unnecessary utilization of bandwidth (Wang and Tian, 2016). During this effort, many results have been reported by using the event-triggered mechanism, for example, the consensus control problem in (You et al., 2017), and (Liu et al., 2017), and control problem of output tracking for T–S fuzzy systems have been observed in (Zhang et al., 2015). The concept of the event-based control scheme in MASs is presented in (Tabuada, 2007). The problem of average consensus control for MASs with a decentralized event-triggered mechanism is mentioned in (Dimarogonas et al., 2012) and substantiated that the presented event-triggered mechanism is successful in (Xu et al., 2017), to attain leader following consensus a centralized clustered event triggering condition is presented. It is the primary motivation for our research. In (Aslam et al., 2020), authors have been investigated the properties of Extended dissipative filter with novel Lyapunov-Krasovskii function, while in (Aslam et al., 2020), researchers explore the impact of Multiagent system for a Markov jump system. In recent studies, the performance of MASs is influenced by numerous disturbances, such as model uncertainties, external disturbance and time delay (Lin et al., 2008). They are typically inevitable in particle networked system. The presence of disturbances may extinguish the convergence performance of MASs. Therefore, it is significant to analyze their impacts on the performance of MASs. Some associated problems regarding external disturbance have been conducted by several researchers (Li et al., 2012), (Zhang et al., 2016), (Li et al., 2011), and (Lin and Jia, 2010). As described in (Li et al., 2012), for the class of nonlinear MASs global H_{∞} consensus problem is presented while considering the Lipschitz non-linear condition and directed communication graph. Robust H_{∞} based consensus analysis for the class of second-order dynamical MASs with uncertainty is proposed in (Lin and Jia, 2010). Furthermore, time delay problem also investigate by some researchers (Chen et al., 2011), (Mu et al., 2015), (Xiao et al., 2016), and (Chen et al., 2017). For instance, In (Chen et al., 2011) for a class of time-varying delayed MASs under noisy environment, a robust control law is presented.

The consensus control problem of MASs under time-varying delays while communication topology is fixed and undirected investigated in (Chen et al., 2017). In the above-mentioned, there is no work which considers the external disturbance and the time-varying delay in the same problem of MASs, so in this aspect, researchers do not investigate fully. It is the secondary motivation for this research work.

A real-time system is a system whose correctness depends not only on the logical result of the computation. In this regard, many researchers has been investigated for the different applications e.g. Communication systems (Peng et al., 2016), inverted pendulum (Shi et al., 2016), (Liu et al., 2016) and smart robots (Zhang et al., 2015). Because of the above discussion, it can be stated that the problem of MASs for an event-triggered scheme will not fully be investigated with the appearance of time-varying delays. The main contribution to this article is concise as:

(i) A general kind of model for MASs is established with the network-induced delay, event-triggering communication scheme, in practical application it is more applications such as for embedded system design.

(ii) Given the proposed method, a new sampled-data based consensus control protocol will be designed, by which the consensus control problem of MAS can be transferred into the stability problem of the closed-loop system under time-varying delay.

(iii) On the account of LMIs, a Lyapunov functional is presented to achieve appropriate conditions and makes the system asymptotically stable, which gives the delay-dependent conditions. Our proposed methodology provides effective utilization of bandwidth along with the event-triggered mechanism among the others. It is verified in the simulation example.

1.1 Notations

The notation will be used all through this article are following.

| $A > B$ | positive definite/semi-definite |
| I | identity matrix with proper dimension/vector of ones |
| $\| \|_2$ | Euclidean norm |
| A^{-1} | inverse/tranpose of the matrix A |
| $\text{diag}(A_1, \ldots, A_n)$ | block-diagonal matrix with diagonal values A_i, $i = 1, \ldots, n$ |
| $L_2(0, \infty)$ | vector functions over $(0, \infty)$ |

1.2 Graph Theory

A communication topology among the agents is represented by a graph G. The directed graph G of order N is a set of $(\mathcal{V}, \mathcal{E})$, with set of vertices $\mathcal{V} = \{v_1, \cdots, v_N\}$ and subset of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ in which an edge is defined by the ordered pair of different vertices. For an edge (v_i, v_j), v_i and v_j are so-called parent and child vertices, respectively, and v_j is a neighboring of v_i. A graph is said to be undirected if the property $(v_i, v_j) \in \mathcal{E}$ implies $(v_j, v_i) \in \mathcal{E}$ hold. A directed route from vertex v_{i_1} to v_{i_l} is ordered edges/sequence of the form $(v_{i_k}, v_{i_{(k+1)}}), k = 1, \cdots, l - 1$. A directed graph comprises a spanning tree if it has a vertex known as the root, which has no parent vertex and there exists a directed path from it to every other vertex in the graph. A directed graph is strongly connected if every vertex is connected with all other vertices. If a directed graph is strongly connected its mean it has a directed spanning tree.

Let there are N vertices in the communication graph G. The adjacency matrix represented by $A = [a_{ij}] \in \mathbb{R}^{N \times N}$ related to the directed communication graph is state as $a_{ii} = 0$, $a_{ij} = 1$ if $(v_i, v_j) \in \mathcal{E}$ otherwise $a_{ij} = 0$. The Laplacian matrix is represented by $L = [L_{ij}] \in \mathbb{R}$ is state as $L_{ii} = \sum_{j \neq i} a_{ij}$ and $L_{ij} = -a_{ij}, i \neq j$. For undirected communication graph, the matrices A and L are considered as symmetric.

The rest of the article is structured as the next section is about problem formulation. Section 3 presents the
2. PROBLEM FORMULATION

The event-triggering system in the continuous-time domain for the conventional MAS comprises a plant, its configuration includes sensors, samplers, an event generator, and a network environment as illustrated in Fig. 1. A class of wireless sensor systems can be illustrated by the aforementioned configuration, where the sampler receives the measurements from the sensor.

Assume a MAS of N identical linear agents which are subject to external disturbances, defined as

\[
\begin{align*}
\dot{x}_i(t) &= A x_i(t) + A_d x_i(t - d(t)) + B u_i(t) + D \omega(t), \quad i = 1, \ldots, N, \\
y_i(t) &= C x_i(t),
\end{align*}
\]

where $x_i(t) = [x_{i1}, \ldots, x_{in}]^T \in \mathbb{R}^n$ is the state of the ith agent, $u_i(t) \in \mathbb{R}^p$ is the control input, $A, A_d, B, C, D \omega$ are constant matrices with compatible dimensions, $\omega(t) \in L^2_{\text{di}}[0, \infty)$ is the external disturbance. It is supposed that the communication topology graph G is strongly connected and also balanced, the every agent has approaches to the relative states with concerning its neighbors. Due to the limitation of communication and computing resources, excessive calculation and information exchange may be unnecessary utilized the network resources. Therefore, we adopted the distributed event-triggered scheme for the MASs, whose structure is explained in Fig. 1. In this system, sample information of agent i is only transmit at the sampling instant kh ($k \in \mathbb{N}$) when it reaches the threshold value. The sampler sampled the agent i state at a constant period of sample $h > 0$. The agent i sampled data $x_i(kh)(k \in \mathbb{N})$ can be well transferred to its event-distributed processor (EDP) when it fulfill the event-triggered condition. Here, the EDP’s perform three responsibilities for each agent i:

(a) Form agent i getting sampled data and store it at every single sampling instant.
(b) Handling the received sampled data according to event-triggered scheme condition.
(c) When threshold value reached, producing a trigger signal and sending it to the event-trigger generator.

Once the trigger signal received by event trigger, the sample data information of agent i is allowed to be transferred to the store of itself and its neighboring agents.

3. CONSENSUS ANALYSIS AND SYNTHESIS

At the kth sampling time the sample data measurement error can be characterized as

\[
e_i(kh) = x_i(kh) - x_i(t_i h), \quad t_i \leq k < t_{i+1}
\]

It can be notice that the release time interval $(t_i h, t_{i+1} h) = \bigcup_{k=t_i}^{t_i+1} [kh, (k+1)h)$, hence, by dividing $(t_i h, t_{i+1} h)$ into $t_{i+1} - t_i$ sampling interval and from equations (1), (3) and (4), the closed loop MAS dynamics for $t \in [kh, (k+1)h)$ can be attained as
\[\dot{x}(t) = \begin{bmatrix} x_1(t) + A_{12}x_2(t - d(t)) - k_B \sum_{i=1}^{N} w_{ij} |x_i(t_i h)| \\
- x_2(t_i h) \end{bmatrix} + D_\omega \omega(t) \]

Under the zero-initial state, the performance variable also on the event triggered and as well as on sampling varying delay, if

\[y_i(t) = Cx_i(t) \]

Let \(x(t) = [x_1(t), \cdots, x_N(t)]^T, \) \(\dot{z}(t) = [\dot{x}_1(t), \cdots, \dot{x}_N(t)]^T, \)

\[e(k) = [e_1(k), \cdots, e_N(k)]^T, \]

with \(\dot{z}(t) = x_1(t) - x_i(t), \) and \(\mathcal{E}(k) = \mathcal{E}(k)_{11} + \cdots + \mathcal{E}(k)_{N1} \) with \(\mathcal{E}(k)_{ij} = e_i(k) - e_j(k). \) In relation to (Sun and Wang, 2019) it can be written as:

\[
\begin{bmatrix}
\dot{z}(t) \\
x(t) \\
\mathcal{E}(k(t)) \\
e(k(t))
\end{bmatrix} =
\begin{bmatrix}
(E_1 \otimes I_n)x(t) \\
(E_2 \otimes I_n)\dot{z}(t) + (I_n \otimes I_n)x_1 \\
(E_2 \otimes I_n)\mathcal{E}(k(t)) + (I_n \otimes I_n)e(k(t))
\end{bmatrix}
\]

Then we have:

\[
\dot{z} = (I_{N-1} \otimes A)\dot{z}(t) + (I_{N-1} \otimes A_d)\dot{z}(t - d(t)) - (\mathcal{L} \otimes B K) \mathcal{E}(k(t)) + (\mathcal{L} \otimes B K)\mathcal{E}(k(t - \tau(t))) \]

\[
+ (I_{N-1} \otimes D_\omega)\omega(t), \quad k \leq t < (k + 1)h \tag{6}
\]

where \(\mathcal{L} = E_2 L E_2 \in \mathbb{R}^{(N-1) \times (N-1)}. \) Consider a "communication delay" \(\tau = t - kh, \) \(k \leq t < (k + 1)h. \) Obviously, \(\tau \) is piecewise linear with the derivative \(\dot{\tau} = 1 \) at \(t \neq kh \) and is discontinuous at \(t = kh. \) It is straightforward notable that \(0 \leq \tau(t) < h. \) Therefore, the system (6) can be composed as:

\[
\dot{z} = (I_{N-1} \otimes A)\dot{z}(t) + (I_{N-1} \otimes A_d)\dot{z}(t - d(t)) - (\mathcal{L} \otimes B K) \mathcal{E}(k(t - \tau(t))) \]

\[
+ (I_{N-1} \otimes D_\omega)\omega(t), \quad k \leq t < (k + 1)h \tag{7}
\]

The initial state of the \(z \) is enhanced as \(\dot{z}(\theta) = \phi(\theta), \theta \in [-h, 0] \) with \(\phi(\theta) = \dot{z}(0) = [\dot{z}_1(0), \cdots, \dot{z}_N(0)]^T \) and \(\phi \in W, \) where \(W \) indicates the Banach space of categorically continuous functions \([-h, 0] \to \mathbb{R}^{(N-1)n} \) with square-integrable derivatives and also the norm

\[
\|\phi\|_W = \max_{\theta \in [-h, 0]} \|\phi(\theta)\| + \int_{-h}^{0} \|\dot{\phi}(s)\|^2 ds^{1/2}
\]

Remark 1. Noticed that as compare to traditional time varying delay, \(\tau \) not only depends on release times, but also on the event triggered and as well as on sampling period \(h. \)

Definition 1. Given a positive scalar \(\eta, \) the control protocol (3) is supposed to reach global consensus with an assured \(H_\infty \) performance \(\eta \) for the agents in (1), if the subsequent two conditions hold:

(1) The system (3) with \(\omega = 0 \) can achieve global consensus, if \(\lim_{t \to \infty} \|x_i - x_j\| = 0, \forall i, j = 1, \cdots, N. \)

(2) Under the zero-initial state, the performance variable \(z \) fulfills

\[
\int_0^\infty \left| y_i^T(t) y_i(t) - y_i^2 \omega(t) \right| dt < 0 \tag{8}
\]

where \(y_i = \gamma_i^T \), \(\omega = \omega_1^T, \cdots, \omega_N^T \)

Assumption 1. Time varying delays \(d(t), \) satisfy:

\[
0 \leq d(t) \leq d, \quad \dot{d}(t) \leq \ddot{d}
\]

where \(\dot{d} > 0 \) and \(\ddot{d} \) are prescribed constant scalars.

Theorem 1. Given \(\dot{d}, \dot{\tau}, \) and \(\gamma, \) for any time-varying delays \(d(t) \) fulfilling Assumption (1) under the event-triggered scheme (2), the system (7) is globally asymptotically stable, if the communication topology graph \(G \) has a directed spanning tree as well as there exist real matrices \(P > 0, Q_x > 0, R_1 > 0, M_1, \) \(\ell = 1, 2, 3 \) with suitable dimensions such that:

\[
Y = \begin{bmatrix} \Delta_{11} & \Gamma^T P \end{bmatrix} < 0 \tag{9}
\]

where \(\Delta_{11} = (I_{N-1} \otimes A P) + (I_{N-1} \otimes A P)^T + k_1 Q_1 + k_2 Q_2 - R_2 + CTC, \)

\[
\begin{align*}
(1, 2) & = P(I_{N-1} - A_d), \\
(1, 3) & = M_1, \\
(1, 4) & = P(\mathcal{L} \otimes B K), \\
(1, 5) & = P(\mathcal{L} \otimes B K) + R_1 - M_1, \\
(1, 7) & = P(I_{N-1} - D_\omega), \\
(2, 2) & = (1 - d) Q_1, \\
(2, 3) & = -k_2 Q_2 - R_2, \\
(2, 5) & = -R_2 + M_1 + M_1^T, \\
(5, 5) & = -R_2 + M_1 + M_1^T, \\
(6, 6) & = (\sigma - 1) \Phi, \\
(7, 7) & = -\dot{\eta}^2 I + \begin{bmatrix} I_{N-1} \otimes A \\ I_{N-1} \otimes A_d \\ 0 \\ -\mathcal{L} \otimes B K \\ -\mathcal{L} \otimes B K \\ I_{N-1} \otimes D_\omega \end{bmatrix}
\end{align*}
\]

Proof. Let consider a Lyapunov function for (2):

\[
V(t) = z^T(t)Pz(t) + \sum_{i=1}^{2} V_i(t) \tag{10}
\]

where

\[
V_1 = k_1 \int_{t-d(t)}^t z_1^T(s) Q_1 z_1^T(s) ds + k_2 \int_{t-d(t)}^T z_2^T(s) Q_2 z_2^T(s) ds
\]

\[
V_2 = k_1 \int_{t-d(t)}^t z_1^T(s) Q_3 z_1^T(s) ds + \frac{d}{\ell} \int_{t-d(t)}^T z_1^T(s) R_1 z_1^T(s) ds
\]

By taking derivative of \(V(t) \)

\[
\dot{V}(z(t), t) = 2z_1^T(t)P A z_1(t) + z_1^T(t)Q_1 \dot{z}_1(t) + z_1^T(t)P A_d z_1(t) - z_1^T(t-d(t))(1 - d_1) k_1 Q_1 z_1(t-d(t)) - \int_{t-d(t)}^t \frac{d}{\ell} \int_{t-d(t)}^T \dot{z}_1^T(s) R_1 z_1^T(s) ds \]

where

\[
A = (I_{N-1} \otimes A)\dot{z}(t) + (I_{N-1} \otimes A_d)\dot{z}(t - d(t)) - (\mathcal{L} \otimes B K) \mathcal{E}(k(t - \tau(t))) + (\mathcal{L} \otimes B K) \mathcal{E}(k(t - \tau(t))) + (I_{N-1} \otimes D_\omega)\omega(t)
\]

Recalling Lemma 3 of (Aslam et al., 2020)

\[
-\frac{d}{\ell} \int_{t-d(t)}^t \dot{z}_1^T(s) R_1 z_1^T(s) ds \leq \omega_1^T(t) \mathcal{M} \omega_1^T(t) \tag{13}
\]
where

\[\omega(t) = \left[z^T \mathcal{E}(t - \tau(t))^T z(t - d)^T \right]^T \]

\[\mathcal{M} = \begin{bmatrix} -R_1 & R_1 - M_1 \\ -2R_1 + M_1 & M_1^T R_1 - M_1 \\ * & -R_1 \end{bmatrix} \]

In view of event-triggered condition (2), \(t \epsilon [i_k h + \tau_k, i_{k+1} h + \tau_{k+1}) \) then authors have:

\[e^c_k(t) = \frac{\sqrt{\sigma_2 y(i_k h)}}{\sqrt{\sigma_2} y(i_k h)} \]

above equation is equivalent to

\[\begin{bmatrix} z^T(t - \tau(t)) & e^c_k(t) \end{bmatrix} \begin{bmatrix} \kappa C^T \Phi C - \sqrt{\sigma_2} C^T \Phi \\ * \end{bmatrix} \begin{bmatrix} z(t - \tau(t)) \\ e^c_k(t) \end{bmatrix} \leq 0 \] (14)

Define an augmented vector as

\[\eta(t) = [\dot{z}(t), \dot{z}(t - d(t)), \dot{z}(t - d), \dot{z}(t - \tau(t)), \dot{E}(t - \tau(t), e^c_k(t), w(t))] \]

Then, it is obtained that

\[\dot{V}(\dot{z}, t) - [y^T(t) y(t) - \eta^T(t) \omega(t)] \leq \eta^T(t) \mathcal{A}(t) \eta(t) \] (15)

Consequently, it can be seen that the MAS (7) is asymptotically stable. Hence, the proof of this theorem can be promptly completed. □

Corollary 1. Given \(d, \tau, \) and \(\gamma, \) the system (7), for any time-varying delays \(d(t) \) satisfying Assumption (1) under the event-triggered transmission strategy (2) is globally asymptotically stable if the graph \(G \) has a directed spanning tree and there exist real matrices \(\mathcal{P} > 0, \mathcal{X} > 0, \mathcal{Q}_t > 0, \mathcal{R}_1 > 0, \mathcal{M}_1, \ell = 1, 2, 3 \) with suitable dimensions such that:

\[\begin{bmatrix} -\tilde{R}_1 & \mathcal{M}_1 \\ * & -\mathcal{R}_1 \end{bmatrix} < 0 \] (16)

\[\Psi = \begin{bmatrix} \Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} & \Psi_{15} & \Psi_{16} & \Psi_{17} & \Psi_{18} & \Psi_{19} \\ * & \Psi_{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & * & \Psi_{31} & 0 & \Psi_{35} & 0 & 0 & 0 & 0 \\ * & * & * & \Psi_{41} & 0 & \Psi_{45} & 0 & 0 & 0 \\ * & * & * & * & \Psi_{51} & 0 & \Psi_{55} & 0 & 0 \\ * & * & * & * & * & \Psi_{61} & 0 & \Psi_{65} & 0 \\ * & * & * & * & * & * & \Psi_{71} & \Psi_{75} & 0 \\ * & * & * & * & * & * & * & \Psi_{81} & 0 \\ * & * & * & * & * & * & * & * & \Psi_{91} \end{bmatrix} < 0 \] (17)

where

\[\Psi_{11} = \mathcal{X}(I \mathcal{N}_{-1} \otimes A) + (I \mathcal{N}_{-1} \otimes A)^T \mathcal{X} + k_1 \tilde{Q}_1 + k_2 \tilde{Q}_2 - \tilde{R}_1, \]

\[\Psi_{12} = (I \mathcal{N}_{-1} \otimes A_d) \mathcal{X}, \]

\[\Psi_{13} = \tilde{M}_1, \]

\[\Psi_{14} = -(\mathcal{L} \otimes B \tilde{K}), \]

\[\Psi_{15} = (\mathcal{L} \otimes B \tilde{K}) + \tilde{R}_1 - \tilde{M}_1, \]

\[\Psi_{16} = (I \mathcal{M}_{-1} \otimes D) \mathcal{X}, \]

\[\Psi_{17} = \mathcal{X}(I \mathcal{N}_{-1} \otimes A)^T \mathcal{X}, \]

\[\Psi_{18} = \mathcal{X} \mathcal{C}^T, \]

\[\Psi_{19} = \mathcal{X} \mathcal{C}, \]

\[\tilde{Q}_1 = \begin{bmatrix} 1 & -1 \\ 0 & -0.4 \end{bmatrix} \]

\[\tilde{Q}_2 = \begin{bmatrix} 0.8 & 0.5 \end{bmatrix} \]

\[\Psi_{33} = \tilde{Q}_2 - \tilde{R}_1, \]

\[\Psi_{35} = \tilde{R}_1^T - \tilde{M}_1, \]

\[\Psi_{44} = -\tilde{Q}_3 + \mathcal{X} \mathcal{C}^T, \]

\[\Psi_{46} = -\sqrt{\sigma_2} \mathcal{C}^T \Phi, \]

\[\Psi_{48} = -(\mathcal{X} \mathcal{C} \otimes B \tilde{K}), \]

\[\Psi_{55} = -2\tilde{R}_1 + \tilde{M}_1 + \tilde{M}_1^T, \]

\[\Psi_{58} = (\mathcal{L} \otimes B \tilde{K}), \]

\[\Psi_{66} = (\sqrt{\sigma_2} - 1) \Phi, \]

\[\Psi_{77} = -\eta^2 I, \]

\[\Psi_{78} = (I \mathcal{M}_{-1} \otimes D) \mathcal{X}, \]

\[\Psi_{88} = \mu \tilde{R}_1 - 2 \mu \mathcal{X}, \]

\[\Psi_{99} = -I \]

Moreover, the consensus controller gain is given by

\[\tilde{K} = K \mathcal{P}^{-1} \] (18)

Proof. Define \(\mathcal{X} = \mathcal{P}^{-1}, \) \(\tilde{Q}_t = \mathcal{X} \mathcal{Q}_t \mathcal{X}, \) \(\tilde{R}_1 = \mathcal{X} \mathcal{R}_1 \mathcal{X}, \)
\(\tilde{M}_1 = \mathcal{X} \mathcal{M}_1 \mathcal{X}, \)
\(\tilde{M}_1 = \mathcal{X}\mathcal{M}_1 \mathcal{X}, \)

Pre and post multiplying \(\{\mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X}, \mathcal{X} \} \) both the sides of (9), which yields to (17). The term \(\mathcal{X} \mathcal{R}_1^{-1} \mathcal{X} \) is resolved by the inequality \(\mathcal{X} \mathcal{R}_1^{-1} \mathcal{X} \leq \mu^2 \mathcal{R}_1 - 2 \mu \mathcal{X}. \)

Detail proof of inequalities define in Corollary 1 from (17) are given below:

\[\mathcal{P}(\mathcal{L} \otimes B \tilde{K}) \leq 0 \]

\[= \mathcal{X} \mathcal{P}(\mathcal{L} \otimes B \tilde{K}) \mathcal{X}, \]

\[= \mathcal{P}^{-1} \]

\[= (\mathcal{L} \otimes B \tilde{K}), \]

This implies that all the conditions in Corollary 1 is fulfilled. Accordingly, by Corollary 1, the MAS (7) is extended dissipative for any time-varying delays \(d(t) \) fulfilling Assumption 1. The proof is done. □

Remark 2. It can be noticed that the network communication topology of the MAS is reached out to an increasingly general directed graph with a spanning tree instead of an undirected connected graph which is different from (Dimarogonas et al., 2012).

4. SIMULATION EXAMPLE

In this section, to represent the viability of the presented results a numerical illustration is given. It is assumed that the MAS consist of four linear agents defined by:

\[\dot{x}_i(t) = \begin{bmatrix} 0.1 & 0.4 \\ 0 & -0.4 \end{bmatrix} x_i(t) + \begin{bmatrix} 0.8 \\ 0.5 \end{bmatrix} u_i(t) \quad i = (1, 2, 3, 4) \]

The relationship amongst the agents is represented by a directed graph with a spanning tree as presented in Fig. 2. and its Laplacian matrix is

\[\mathcal{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \]

Let \((d, \tau) = (0.5, 0.35), (k_1, k_2) = (0.58, 0.0001) \) and \(\gamma = 2.5. \) Then, it is found that the LMIs (16)–(17) are feasible with corresponding event-triggered parameter \(\Phi = 0.6190, \) and the feasible results to those LMIs are acquired as \(K = [3.0765 - 4.4663]. \)

The initial state of MAS are set as \(x_1(0) = [0; 5], \)
\(x_2(0) = [0; 10], x_3(0) = [0; 15], \) and \(x_4(0) = [0; 18]. \) Apply the Algorithm (see Table 1), then simulation results are
Fig. 2. A directed network topology with spanning tree.

Table 1.

<table>
<thead>
<tr>
<th>Algorithm for design procedure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the scalar constants for Multi-agent System</td>
</tr>
<tr>
<td>Choose (d(t)), which has given in explicit form and got upper bound delay</td>
</tr>
<tr>
<td>Check the feasibility of LMIs in Corollary 1 (16)-(17)</td>
</tr>
<tr>
<td>According to equation (18), authors can constraint the filter parameter using feasible solution to LMIs of Corollary 1 and authors get the simulation results</td>
</tr>
</tbody>
</table>

Fig. 3. State response of MASs with time varying delay.

Fig. 4. Response of the control input.

Table 2.

<table>
<thead>
<tr>
<th>(d)</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Liu et al., 2014)</td>
<td>0.72</td>
<td>infeasible</td>
<td>infeasible</td>
<td></td>
</tr>
<tr>
<td>Corollary 1</td>
<td>0.17</td>
<td>0.19</td>
<td>0.25</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Fig. 5 show the transmitting and release interval of MASs. Which demonstrate that the number of transmitting sampled-data is considerably minimized by using the event-triggered scheme. The finding from Fig. 3-5 shows that the proposed delayed multi-agent system is effective, which is especially important for wireless communication and industrial control.

Remark 3.: It is noticed that work is done in (Liu et al., 2014) deals with the random delays. To make the system dynamics the same we only considered event 1 for traditional time-varying delay in (Liu et al., 2014).

5. CONCLUSION

In this article, the problem of event-triggered based \(H_\infty \) consensus control for MASs with the directed graph under time-varying delay is considered. The introduced event-triggered scheme has enhanced system performance and also reduced the unnecessary utilization of network resources. A new Lyapunov function has been utilized to derive sufficient conditions to promise the system stability and to attain a defined performance with LMI techniques,
under which all the systems’ states asymptotically achieve consensus. The proposed method has shown promising results that have been verified by a simulation example. Therefore, it has been recommended to increase the efficiency of the system.

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Science Foundation of Guangxi Province of China under Grant No. 2017GXNSFAA198179 and National Natural Science Foundation of China under Grant No. 61863004 & 61663003. The work is also supported by starting PhD fund of Guangxi University of Science and Technology No. 20z14.

REFERENCES

Li, Z., Liu, X., Fu, M., and Xie, L. (2012). Global H_∞ consensus of multi-agent systems with Lipschitz non-
linear dynamics. *IET Control Theory & Applications*, 6(13), 2041–2048.