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Abstract: This article addresses the event triggered based H∞ consensus control problem
for Multi-Agent Systems (MASs) with a directed graph under time-varying delay. The event-
triggered communication scheme is utilized to overcome the unnecessary utilization of communi-
cation bandwidth. Based on this event-trigger scheme a consensus control protocol is presented.
The consensus control problem of MAS is transferred into the stability problem of a closed-loop
system under time-varying delay. Furthermore, a new version of Lyapunov function (LF) is
presented to establish H∞ performance index in the form of linear matrix inequalities (LMIs),
which is different from the tradition (Liu et al., 2014) and attained less conservative results.
Finally, a simulation illustration is provided to exhibit the design method.
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1. INTRODUCTION

In the past two decades, there is a significant development
in control techniques as well as signal processing and
communication techniques, it became simpler for various
dynamical systems to interface with each other. Such a
system is called a multi-agent system (MAS), in which
every agent has its independent dynamical system. In
the network MAS, the agent and the other neighboring
agents transmit their information through the network
and accomplish the large and complex multi-objective
task in the form of group collaboration (Zhang et al.,
2014). With the rapid development of modern technology
and distributed ideas, there is a rising recognition of the
importance of MAS cooperation in accomplishing complex
tasks, distinguishing that MASs can play a richer sense
of perception, stronger stability, high efficiency, higher
reliability and low cost rather than individual agents (Fink
et al., 2014).

In cooperative control of MASs, the consensus is a vi-
tal and fundamental problem. The term consensus orig-
inates from Latin word consentire which implies a general
agreement made by all or majority. Consensus means
is an agreement protocol which required to be designed
appropriately, during which all agents converge to some
common variables of interest (such as voltage, position,
and velocity) by communicating with their neighboring
agents (Ren et al., 2007). In recent decades, the consensus
control problem in MASs has gained considerable concern
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due to a wide range of applications. For example, the
formation of UAV (unmanned air vehicles), spacecraft
formation flying, cooperative surveillance and autonomous
configuration of the mobile sensor network (Stamatescu
et al., 2017), (Qin et al., 2011), (Beard et al., 2002), Peng
et al., (2015), and (Liu et al., 2014). The concept of
consensus was first proposed in (Olfati-Saber and Murray,
2004). Subsequently, the topic of consensus of MASs has
rapidly grown and greatly motivated the researcher’s in-
terest (Hu and Feng, 2010), (Ren and Beard, 2005), (Cao
and Ren, 2014),and (Zhang et al., 2011). For example in
(Ren and Beard, 2005), the consensus problem solved for
MASs under dynamically changing interaction topologies
while unreliable and limited information exchanged among
agents. The average consensus control problem of MASs
with various communication delays is presented in (Zhang
et al., 2011).

In efforts for accomplishing the consensus for MASs, the
agents essential to exchange shared information with their
neighboring agents through communication networks. In
conventional control consensus problems for MASs, it is
supposed to get continuous access to measurements and
control signals. Such presumption support by an ideal
communication network and appropriate computation re-
sources for MAS. Unlikely in practical application, it
should be noted that every agent has restricted communi-
cation and computing resources, excessive calculation and
information exchange could also be unnecessary utilized
the network resources (Xing and Deng, 2018). Moreover,
packet dropout, network-induced delay, packet disorder-
ing, and sensor/actuator fault are primarily caused by
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(Song et al., 2013), (Tan et al., 2015), (Liu et al., 2015),and
(Liu et al., 2019). To cope with these issues, the distributed
event-triggered scheme is presented, during which infor-
mation can solely transfer to neighboring agents once it
reaches to a threshold value. It is an effective way to reduce
unnecessary utilization of bandwidth (Wang and Tian,
2016). During this effort, many results have been reported
by using the event-triggered mechanism, for example, the
consensus control problem in (You et al., 2017), and (Liu
et al., 2017), and control problem of output tracking for
T–S fuzzy systems have been observed in (Zhang et al.,
2015). The concept of the event-based control scheme in
MASs is presented in (Tabuada, 2007). The problem of
average consensus control for MASs with a decentralized
event-triggered mechanism is mentioned in (Dimarogonas
et al., 2012) and substantiated that the presented event-
triggered mechanism is successful. In (Xu et al., 2017), to
attain leader following consensus a centralized clustered
event triggering condition is presented. It is the primary
motivation for our research. In (Aslam et al., 2020),
authors have been investigated the properties of Extended
dissipative filter with novel Lyapunov-Krasovskii function,
while in (Aslam et al., 2020), researchers explore the
impact of Multiagent system for a Markov jump system.
In recent studies, the performance of MASs is influenced
by numerous disturbances, such as model uncertainties,
external disturbance and time delay (Lin et al., 2008).
They are typically inevitable in particle networked system.
The presence of disturbances may extinguish the conver-
gence performance of MASs. Therefore, it is significant
to analyze their impacts on the performance of MASs.
Some associated problems regarding external disturbance
have been conducted by several researchers (Li et al.,
2012), (Zhang et al., 2016), (Li et al., 2011), and (Lin
and Jia, 2010). As described in (Li et al., 2012), for the
class of nonlinear MASs global H∞ consensus problem is
presented while considering the Lipschitz non-linear condi-
tion and directed communication graph. Robust H∞ based
consensus analysis for the class of second-order dynamical
MASs with uncertainty is proposed in (Lin and Jia, 2010).
furthermore, time delay problem also investigate by some
researchers (Chen et al., 2011), (Mu et al., 2015), (Xiao
et al., 2016), and (Chen et al., 2017). For instance, In
(Chen et al., 2011) for a class of time-varying delayed
MASs under noisy environment, a robust control law is
presented.

The consensus control problem of MASs under time-
varying delays while communication topology is fixed and
undirected investigated in (Chen et al., 2017). In the
above-mentioned, there is no work which considers the
external disturbance and the time-varying delay in the
same problem of MASs, so in this aspect, researchers do
not investigate fully. It is the secondary motivation for this
research work.

A real-time system is a system whose correctness depends
not only on the logical result of the computation. In this
regard, many researchers has been investigated for the
different applications e.g. Communication systems (Peng
et al., 2016), inverted pendulum (Shi et al., 2016), (Liu
et al., 2016) and smart robots (Zhang et al., 2015).
Because of the above discussion, it can be stated that the
problem of MASs for an event-triggered scheme will not

fully be investigated with the appearance of time-varying
delays. The main contribution to this article is concise as:

(i) A general kind of model for MASs is established with
the network-induced delay, event-triggering commu-
nication scheme, in practical application it is more
applications such as for embedded system design.

(ii) Given the proposed method, a new sampled-data
based consensus control protocol will be designed, by
which the consensus control problem of MAS can be
transferred into the stability problem of the closed-
loop system under time-varying delay.

(iii) On the account of LMIs, a Lyapunov functional
is presented to achieve appropriate conditions and
makes the system asymptotically stable, which gives
the delay-dependent conditions. Our proposed method-
ology provides effective utilization of bandwidth
along with the event-triggered mechanism among the
others. It is verified in the simulation example.

1.1 Notations

The notation will be used all through this article are
following.

A > B / A ≥ B positive definite/semi-definite

I/1n identity matrix with proper dimension/vector of ones

⊗ Operator of Kronecker product

‖ · ‖ Euclidean norm

A−1/AT inverse/transpose of the matrix A

diag(A1, · · · , An) block-diagonal matrix with diagonal values Ai, i = 1, · · · , n

L2[0,∞) vector functions over [0,∞)

∗ donates symmetry

1.2 Graph Theory

A communication topology among the agents is repre-
sented by a graph G. The directed graph G of order N is
a set of (V, E), with set of vertices V = {v1, · · · , vN} and
subset of edges E ⊆ V,V in which an edge is defined by
the ordered pair of different vertices. For an edge (vi, vj),vi
and vj are so-called parent and child vertices, respectively,
and vi is a neighboring of vj . A graph is said to be
undirected if the property (vi, vj) ∈ E implies (vj , vi) ∈ E
hold. A directed route from vertex vi1 to vil is ordered
edges?sequence of the form (vik, vi(k+1)), k = 1, · · · , l− 1.
A directed graph comprises a spanning tree if it has a
vertex known as the root, which has no parent vertex and
there exists a directed path from it to every other vertex in
the graph. A directed graph is strongly connected if every
vertex is connected with all other vertices. If a directed
graph is strongly connected its mean it has a directed
spanning tree.
Let there are N vertices in the communication graph G.
The adjacency matrix represented by A = [aij ] ∈ RN×N

related to the directed communication graph is state as
aii = 0, aij = 1 if (vj , vi) ∈ E otherwise aij = 0.
The Laplacian matrix is represented by L = [Lij ] ∈ R
is state as Lii =

∑
j 6=i aij and Lij = −aij ,i 6= j. For

undirected communication graph, the matrices A and L
are considered as symmetric.

The rest of the article is structured as the next section
is about problem formulation. Section 3 presents the
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consensus analysis and synthesis of the MAS. In section
4 simulation illustration is provided which validates the
usefulness of the suggested design. Section 5 concludes and
summarized the article.

2. PROBLEM FORMULATION

The event-triggering system in the continuous-time do-
main for the conventional MAS comprises a plant, its
configuration includes sensors, samplers, an event genera-
tor, and a network environment as illustrated in Fig. 1. A
class of wireless sensor systems can be illustrated by the
aforementioned configuration, where the sampler receives
the measurements from the sensor.{

ẋi(t) = g1(xi(t)) + gd1(xi(t− d(t))) + gu(ui(t))
+f1(ωi(t)), i = 1, · · ·,N,

yi(t) = g2(xi(t)),

Assume a MAS of N identical linear agents which are
subject to external disturbances, defined as{

ẋi(t) = Axi(t) +Adxi(t− d(t)) +Bui(t)
+Dωωi(t), i = 1, · · ·,N,

yi(t) = Cxi(t),
(1)

where xi(t) = [xi1, · · · , xin]T ∈ Rn is state of the ith

agent, ui(t) ∈ Rp is the control input, A,Ad, B,C,Dω

are constant matrices with compatible dimensions, ωi(t) ∈
Lm2

2 [0,∞) is the external disturbance. It is supposed that
the communication topology graph G is strongly connected
and also balanced, the every agent has approaches to
the relative states with concerning its neighbors. Due to

Event-Trigger Sampler i

Agent i

Actuator iZOHController i

Memory i EDP i

To other agents

From

neighboring

agent j

Fig. 1. A distributed event-triggered scheme for MASs

the limitation of communication and computing resources,
excessive calculation and information exchange may be
unnecessary utilized the network resources. Therefore, we
adopted the distributed event-triggered scheme for the
MASs, whose structure is explained in Fig. 1. In this
system, sample information of agent i will only transmit
at the sampling instant kh(k ∈ N) when it reaches the
threshold value. The sampler sampled the agent i state
at a constant period of sample h > 0. The agent i
sampled data xi(kh)(k ∈ N) can be well transferred to
its event-distributed processor (EDP) when it fulfil the
event-triggered condition. Here, the EDP’s perform three
responsibilities for each agent i:

(a) Form agent i getting sampled data and store it at every
single sampling instant.

(b) Handling the received sampled data according to
event-triggered scheme condition.

(c) When threshold value reached, producing a trigger
signal and sending it to the event-trigger generator.

Once the trigger signal received by event trigger, the
sampled data information of agent i is allowed to be
transferred to the store of itself and its neighboring agents.
Here, the store is hired to collect the sample data of agent i
as well as its neighboring agents and to instantly update its
data information at the moment assessing newly sampled
data from agent i and also its neighboring agents. At that
point, the controller of agent i brings up to date its input
value by utilizing the received sampled data information
from the store, which infers that the controller update of
agent i is driven at its own and also neighboring agents’
event instants. Then, the agent i controller output is
transferred to the actuator by ZOH. Here, ZOH is utilized
to hold the agent i control input unless most current
sampled data from the agent i controller reaches.

It notices that the agent i sampled data should only
be transferred among neighboring agents depends on an
event-triggered condition instead of elapse of fixed time.
The sth transmitted instant of the agent i sampled data
indicates by tish. Thus, the next transmitting instant tis+1h
of agent i is consequently defined by.

tis+1h = tish+min{Ωih|XT
i (tish+ Ωih)ΦXi(t

i
sh+ Ωih)

≥ √σiY Ti (tish+ Ωih)ΦYi(t
i
sh+ Ωih)} (2)

where Ωi ∈ N , σi > 0 is represent threshold factor, Φ > 0
is represent weighting matrix and h is a sampling period,
Xi(t

i
sh+Ωih) = xi(t

i
sh+Ωih)−xi(tish) and Yi(t

i
sh+Ωih) =∑N

j=1 w[xi(t
i
sh)−xj(tiśjh)] with śj = arg minq{tis+Ωi−

tjq|tis + Ωi > tjq, q ∈ N}. Obviously, from (2) one can
perceive that, for agent i event triggered condition at the
kth sampling instant is closely related to sample data error
Xi(t

i
sh) and the sampled data Yi(t

i
sh) as well as the latest

transmitted sampled data xi(t
i
sh) of agent i and the most

recent transmitted sampled data (xjt
i
śh) of its neighboring

agents. At that point, we assume the following sample data
consensus protocol.

ui = −K
∑N
j=i wij [xi(t

i
sh)− xj(tiśh)] (3)

where t ∈ [tish, t
i
s+1h), ś(t)arg minq{t − tjq|tis + l + i >

tjq, q ∈ N} and K indicates the controller gain consensus
protocol which will be determined later.

3. CONSENSUS ANALYSIS AND SYNTHESIS

At the kth sampling time the sample data measurement
error can be characterized as

ei(kh) = xi(kh)− xi(tish), tis ≤ k < tis+1 (4)

It can be notice that the release time interval (tish, t
i
s+1h) =⋃tis+1−1

k=tis [kh, (k + 1)h), hence, by dividing (tish, t
i
s+1h) into

tis+1− tis sampling interval and from equations (1),(3) and
(4), the closed loop MAS dynamics for t ∈ [kh, (k + 1)h)
can be attained as
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ẋi(t) = Axi(t) +Adxi(t− d(t))− kB
∑N
j=i wij [xi(t

i
sh)

− xj(t
i
śh)] +Dωωi(t)

= Axi(t) +Adxi(t− d(t))− kB
∑N
j=i wij [xi(kh)

− xj(kh)− ei(kh) + ej(kh)] +Dωωi(t)
yi(t) = Cxi(t)

(5)

Let x(t) = [xT1 (t), · · · , xTN (t)]T , ž(t) = [žT2 , · · · , žTN ]T ,
e(kh) = [eT1 (kh), · · · , eTN (kh)]T , with ži(t) = x1(t) −
xi(t), and E(kh) = E(kh)T2 (kh), · · · , E(kh)TN (kh)]T with
E(kh) = e1(kh) − ei(kh). In relation to (Sun and Wang,
2009) it can be write as: ž(t)

x(t)
E(kh)
e(kh)

 =

 (E1 ⊗ In)x(t)
(E2 ⊗ In)ž(t) + (1⊗ In)x1

(E1 ⊗ In)e(kh)
(E2 ⊗ In)E(kh) + (1⊗ In)e1(kh)


Then we have

˙̌z = (IN−1 ⊗A)ž(t) + (IN−1 ⊗Ad)ž(t− d(t))
− (L ⊗BK)ž(kh) + (L ⊗BK)E(kh)
+ (IM−1 ⊗Dω)ωi(t), kh ≤ t < (k + 1)h

(6)

where L = E1LE2 ∈ R(N−1)×(N−1). Consider an ”com-
munication delay” τ = t − kh , kh ≤ t < (k + 1)h.
Obviously, τ is piecewise linear with the derivative τ̇ = 1 at
t 6= kh and is discontinuous at t = kh. It is straightforward
notable that 0 ≤ τ(t) < h. therefore, the system (6) can
be composed as

˙̌z = (IN−1 ⊗A)ž(t) + (IN−1 ⊗Ad)ž(t− d(t))
− (L ⊗BK)ž(t− τ(t)) + (L ⊗BK)E(t− τ(t))
+ (IM−1 ⊗Dω)ωi(t), kh ≤ t < (k + 1)h

(7)

The initial state of the ž is enhanced as ž(θ) = φ(θ),θ ∈
[−h, 0] with φ(0) = ž(0) = [žT2 , · · · , žTN ]T and φ ∈
W , where W indicates the banch space of categorically
continuous functions [−h, 0] → R(N−1)n with square-
integrable derivatives and also the norm

‖φ‖w = max︸︷︷︸
θ∈[−h,0]

‖φ(θ)‖+ [

∫ 0

−h
‖φ̇(s)‖2ds]1/2

Remark 1. Noticed that as compare to traditional time
varying delay, τ not only depends on release times, but
also on the event triggered and as well as on sampling
period h.

Definition 1. Given a positive scalar η, the control pro-
tocol (3) is supposed to reach global consensus with an
assured H∞ performance η for the agents in (1), if the
subsequent two conditions hold:
(1) The system (3) with ωi = 0 can achieve global consen-
sus, if Limt→∞‖xi − xj‖ = 0,∀i, j = 1, · · ·, N .
(2) Under the zero-initial state, the performance variable
z fulfills

J =

∫ ∞
0

[yTi (t)yi(t)− η2ωT (t)ω(t)]dt < 0, (8)

where z = [zT1 , · · ·, zTN ], ω = [ωT1 , · · ·, ωTN ]

Assumption 1. Time varying delays d(t), satisfy:

0 ≤ d(t) ≤ d̄, ḋ(t) ≤ d̄
where d̄ > 0 and ḋ are prescribed constant scalars.

Theorem 1. Given d̄, τ̄ , and γ, for any time-varying delays
d(t) fulfilling Assumption (1) under the event-triggered

scheme (2), the system (7) is globally asymptotically
stable, if the communication topology graph G has a
directed spanning tree as well as there exist real matrices
P > 0, Q` > 0, R1 > 0, M1 , ` = 1, 2, 3 with suitable
dimensions such that:

Υ =

[
∆11 ΓTP
∗ −R−1

1

]
< 0 (9)

where

∆11 = (1, 1) = (IN−1 ⊗AP) + (IN−1 ⊗AP)T + k1Q1

+k2Q2 −R1 + CTC,
(1, 2) = P(IN−1 ⊗Ad),
(1, 3) = M1,
(1, 4) = P(L ⊗BK),
(1, 5) = P(L ⊗BK) +R1 −M1,
(1, 7) = P(IM−1 ⊗Dω),

(2, 2) = (1− ḋ)k1Q1,
(3, 3) = −k2Q2 −R1,
(3, 5) = RT1 −MT

1 ,
(4, 4) = −Q3 + κCTΦC,
(4, 6) = −√σiCTΦ,
(5, 5) = −2R1 +M1 +MT

1 ,
(6, 6) = (σi − 1)Φ
(7, 7) = −η2I,

Γ(h) =


IN−1 ⊗A
IN−1 ⊗Ad

0
−L⊗BK
L ⊗BK

IM−1 ⊗Dω


T

Proof. Let consider a Lyapunov function for (2):

V (t) = žT (t)P ž(t) +
∑2
i=1 Vi(t) (10)

where

V1 = k1

∫ t
t−d(t)

žT (s)Q1ž
T (s)ds

+ k2

∫ t
t−d̄ ž

T (s)Q2ž
T ds

V2 =
∫ t
t−τ(t)

žT (s)Q3ž
T (s)ds

+ d̄
∫ t
t−d̄
∫ t
s

˙̌zT (s)R1 ˙̌z(v)dvds

(11)

By taking derivative of V (t)

V̇ (ž(t), t) = 2žT (t)PA + žT (k1Q1 + k2Q2)ž(t)

− ž(t− d(t))T (1− ḋ1)k1Q1ž(t− d(t))
− žT (t− d̄1)k2Q2ž(t− d̄1)
+ d̄1 ˙̌zT (t)R1 ˙̌z(t)

−
∫ t
t−d̄1

˙̌zT (t)R1 ˙̌z(t)ds

(12)

where

A = (IN−1 ⊗A)ž(t) + (IN−1 ⊗Ad)ž(t− d(t))
− (L ⊗BK)ž(t− τ(t)) + (L ⊗BK)E(t− τ(t))
+ (IM−1 ⊗Dω)ωi(t)

Recalling Lemma 3 of (Aslam et al., 2020)

−d̄
∫ t

t−d̄
˙̌z(α)TR1 ˙̌z(α)dα ≤ $l(t)

TM$l(t) (13)

where
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$l(t) =
[
žT E(t− τ(t))T ž(t− d̄)T

]T
M=

−R1 R1 −M1 M1

∗ −2R1 +M1 +MT
1 R1 −M1

∗ ∗ −R1


In view of event-triggered condition (2), tε[ikh+τik , ik+1h+
τik+1

) then authors have:

eTk (t)αek(t) ≤
√
σiy(ikh)TΦy(ikh)

above equation is equivalent to

[žT (t− τ(t)) eTk (t)]

[
κCTΦC −√σiCTΦ
∗ √

σiΦ

]
[
ž(t− τ(t))
ek(t)

]
≤ 0 (14)

Define an augmented vector as

η(t) = {ž(t), ž(t− d(t), ž(t− d̄), ž(t− τ(t),

E(t− τ̄(t), ek(t), w(t)}
Then, it is obtained that

V̇ (žt, t)− [yTi (t)yi(t)− η2ωT (t)ω(t] ≤ η(t)TΥη(t) (15)

Consequently, it can seen that the MAS (7) is asymp-
totically stable. Hence, the proof of this theorem can be
promptly completed. 2

Corollary 1. Given d̄, τ̄ , and γ, the system (7), for any
time-varying delays d(t) satisfying Assumption (1) under
the event-triggered transmission strategy (2) is globally
asymptotically stable if the graph G has a directed span-
ning tree and there exist real matrices P̃ > 0, X > 0,
Q̃` > 0, R̃1 > 0, M̃1 , ` = 1, 2, 3 with suitable dimensions
such that: [

−R̃1 M̃1

∗ −R̃1

]
< 0 (16)

Ψ =



Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 0 Ψ17 Ψ18 Ψ19

∗ Ψ22 0 0 0 0 0 Ψ28 0
∗ ∗ Ψ33 0 Ψ35 0 0 0 0
∗ ∗ ∗ Ψ44 0 Ψ46 0 Ψ48 0
∗ ∗ ∗ ∗ Ψ55 0 0 Ψ58 0
∗ ∗ ∗ ∗ ∗ Ψ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ77 Ψ78 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ99


< 0 (17)

where
Ψ11 = X (IN−1⊗A) +(IN−1⊗A)TX +k1Q̃1 +k2Q̃2−R̃1,
Ψ12 = (IN−1 ⊗Ad)X ,

Ψ13 = M̃1,
Ψ14 = −(L ⊗BK̃),

Ψ15 = (L ⊗BK̃) + R̃1 − M̃1,
Ψ17 = (IM−1 ⊗Dω)X ,
Ψ18 = (IN−1 ⊗A)TX ,
Ψ19 = XCT ,
Ψ22 = (1− ḋ)Q̃1,
Ψ28 = (IN−1 ⊗Ad)TX ,

Ψ33 = −Q̃2 − R̃1,
Ψ35 = R̃T1 − M̃T

1 ,

Ψ44 = −Q̃3 + κCT Φ̃C,

Ψ46 = −√σiC
T

Φ,

Ψ48 = −(L ⊗BK̃),

Ψ55 = −2R̃1 + M̃1 + M̃T
1 ,

Ψ58 = (L ⊗BK̃),
Ψ66 = (

√
σi − 1)Φ,

Ψ77 = −η2I,
Ψ78 = (IM−1 ⊗Dω)X ,
Ψ88 = µ2R1 − 2µX ,
Ψ99 = −I

Moreover, the consensus controller gain is given by

K̃ = KP−1 (18)

Proof. Define X = P−1, Q̃` = XQ`X , R̃1 = XR1X ,
M̃1 = XM1X .
Pre and post multiplying {X ,X ,X ,X ,X ,X , I,X} both
the sides of (9), which yields to (17). The term XR−1

1 X is
resolved by the inequality XR−1

1 X ≤ µ2R1 − 2µX .
Detail proof of inequalities define in Corollary 1 from (17)
are given below:

P(L ⊗BK)< 0

=XP(L ⊗BK)X , X = P−1

= (L ⊗BK̃),

This implies that all the conditions in Corollary 1 is
fulfilled. Accordingly, by Corollary 1, the MAS (7) is
extended dissipative for any time-varying delays d1(t)
fulfilling Assumption 1. The proof is done. 2

Remark 2. It can be noticed that the network communica-
tion topology of the MAS is reached out to an increasingly
general directed graph with a spanning tree instead of
an undirected connected graph which is different from
(Dimarogonas et al., 2012).

4. SIMULATION EXAMPLE

In this section, to represent the viability of the presented
results a numerical illustration is given. It is assumed that
the MAS consist of four linear agents defined by:

ẋi(t) =

[
0 1
0 −0.4

]
xi(t) +

[
0.8
0.5

]
ui(t) i = (1, 2, 3, 4)

The relationship amongst the agents is represented by a
directed graph with a spanning tree as presented in Fig.
2. and its Laplacian matrix is

L =

 1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2


Let (ḋ, τ̄) = (0.5, 0.35), (k1, k2) = (0.58, 0.0001) and γ =
2.5. Then, it is found that the LMIs (16)–(17) are feasible

with corresponding event-triggered parameter Φ̃ = 0.6190,
and the feasible results to those LMIs are acquired as
K = [3.0765 − 4.4663].

The initial state of MAS are set as x1(0) = [0; 5],
x2(0) = [0; 10], x3(0) = [0; 15], and x4(0) = [0; 18]. Apply
the Algorithm (see Table 1), then simulation results are
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Fig. 2. A directed network topology with spanning tree.

Table 1.

Select the scalor constants

for Multi-agent System

Choose d(t), 

which has given in explicit

form and got upper 

bound delay

Check the

feasibility of LMIs

in Corollary 1

(16)-(17)

According to equation (18),

authors can constraint the filter

parameter using feasible solution

to LMIs of Corollary 1 and

authors get the simulation

results 

U
pdate the param

eters

Yes

No

Step 1

Step 2

Step 3

Step 4

                                 Algorithm for design procedure.

demonstrated in Fig. 3-5. The state trajectories of MASs
depict in Fig. 3. From which one can observe that all
systems’ states can definitely achieve consensus, which
approves the viability of the proposed structure. Fig. 4
exhibited the response of the control protocol law, which
shows that our close loop system becomes stable from the
calculated controller gain of Corollary 1. It is noted that
the H∞ Consensus of MASs with Random Time-delay has
been studied in (Liu et al., 2014). Now, to compare the
minimum permissible value of γ acquired by utilizing the
techniques proposed in (Liu et al., 2014) and our paper.
The comparison is given in Table 2.
One can see from Table 2 that, for various values of the

delay upper bounds, the minimum permissible values of γ
gotten by utilizing our method are less than those acquired
by utilizing the method in (Liu et al., 2014). This implies,
for this illustration, the presented method in this article is
less conservative than (Liu et al., 2014).
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Fig. 3. State response of MASs with time varying delay.
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Fig. 4. Response of the control input.

Table 2.

d 0.05 0.10 0.20 0.30

(Liu et al., 2014) 0.72 0.75 infeasible infeasible

Corollary 1 0.17 0.19 0.25 0.29

Fig. 5 show the transmitting and release interval of
MASs. Which demonstrate that the number of transmit-
ting sampled-data is considerably minimized by using the
event-triggered scheme. The finding from Fig. 3-5 shows
that the proposed delayed multi-agent system is effective,
which is especially important for wireless communication
and industrial control.

Remark 3. : It is noticed that work is done in (Liu
et al., 2014) deals with the random delays. To make the
system dynamics the same we only considered event 1 for
traditional time-varying delay in (Liu et al., 2014).

5. CONCLUSION

In this article, the problem of event-triggered based H∞
consensus control for MASs with the directed graph under
time-varying delay is considered. The introduced event-
triggered scheme has enhanced system performance and
also reduced the unnecessary utilization of network re-
sources. A new Lyapunov function has been utilized to
derive sufficient conditions to promise the system stability
and to attain a defined performance with LMI techniques,
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(a) Release instants and release interval by ETM for agent 1
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(b) Release instants and release interval by ETM for agent 2
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(c) Release instants and release interval by ETM for agent 3
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(d) Release instants and release interval by ETM for agent 4

Fig. 5. Release instants and release interval by ETM.

under which all the systems’ states asymptotically achieve
consensus. The proposed method has shown promising
results that have been verified by a simulation example.

Therefore, it has been recommended to increase the effi-
ciency of the system.
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