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Abstract: It is well known that in battery-powered control applications, the continuous drop in battery’s 
output-power progressively degrades the dynamic performance of the system. The battery depletion 
phenomenon deteriorates the reliability of correctional effort if the controller gains are not adaptively 
adjusted as function of the available power level. Hence, this paper presents an adaptive neuro-fuzzy 
inference system (ANFIS) that dynamically adjusts the controller gains of a close-loop dynamic system 
as function of battery power-level in order to maintain desired performance while the battery is depleting. 
The proposed methodology is verified on an inherently unstable two-wheeled self-balancing-robot. The 
Proporional-Integral-Derivative (PID) controller is used for robot’s posture-stabilization. İnitially, trivial 
sets of PID gains are selected via genetic algorithm to yield best control effort at various battery power-
levels, using hardware-in-the-loop strategy. The acquired data is then used to train a power-level 
dependedent ANFIS that dynamically adjusts the PID gains in real-time. The performance of a fixed gain 
PID controller is compared with that of the proposed self-tuning PID controller for two different power-
depletion scenarios that emulate real-world situations. The corresponding experimental results validate 
the robustness of the proposed control scheme to maintain the robot’s postural stability under discharging 
battery condition. 
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1. INTRODUCTION 

The Direct-Current (DC) batteries are used to supply electric 
power at places where conventional alternating-current (AC) 
sources are not available or viable. They provide a reliable 
source of electrical energy when they are fully, or 
reasonably, charged. However, as the battery discharges, the 
available power supply capacity reduces which adversely 
affects the performance of the device being powered. The 
power depletion phenomenon is extremely detrimental to the 
battery-powered devices such as hybrid electric vehicles, 
drones, wheeled mobile robots, medical assistive devices, 
etc. Therefore, the knowledge of battery power depletion-
rate, and its effect on the performance of the system being 
powered must be considered as an integral component of 
remedial actions in order to ensure that the system maintains 
the desired performance. A preliminary study performed by 
the authors clearly demonstrated that the available power 
level for control purposes affects the performance of the 
system. The experiments were performed on a Two-
Wheeled-Self-Balancing-Robot (TWSBR) with fixed 
Proportional-Integral-Derivative (PID) controller gains 
defined for full power availability of the battery. The

 responses corresponding to the variations in body-angle of 
TWSBR for three different battery power-levels (15 W, 30 
W, 50 W) are presented in Fig. 1. The responses clearly 
show that for certain power levels (in this case, 30 W) the 
system could be controlled but not within desired 
performance specifications. Furthermore, there exists a 
threshold power level (in this case, 15 W) below which the 
system cannot maintain the desired performance and 
becomes unstable. 

 

Fig. 1. Response of TWSBR with drop in motor input power 
with fixed PID gains. 
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1.1.  Related work 

Extensive research has been performed related to battery 
power management and relevant control strategies in 
dynamic systems. The research literature addresses topics 
such as development of mathematical models for battery 
behavior, energy management in hybrid vehicles, energy 
management in wind turbines, optimization of battery - 
super capacitor storage system, optimal energy management 
for an aging battery, and risk management strategies for a 
depleting battery. An empirical model of battery behavior 
during discharge cycles was developed in (Saha and Goebel, 
2009; Dalal et al., 2011). A review article discussed optimal 
energy management strategies considering fuel 
consumption, emissions and economy (Panday and Bansal, 
2014). A particle swarm based optimal energy management 
for hybrid wind-micro-turbines with multiple constraints is 
discussed in (Pourmousaviv et al., 2010). Control strategies 
for plug-in hybrid vehicles are discussed in (Wirasingha and 
Emadi, 2011). Reduction of investment and operating cost in 
hybrid energy storage station is discussed in (Zhou and Sun, 
2014). Improved annealing particle swarm optimization is 
used to optimize the problem with constraints. Optimal 
energy storage control strategy for grid connected micro-
grids is discussed in (Malysz et al., 2014). Power 
management for an aging battery used Pontryagin’s 
minimum principle to find a solution with a compromise 
between aging and performance (Serrao et al., 2011). Energy 
management for plug-in hybrid electric vehicle using a 
combined “rule based and particle swarm optimization 
algorithm” showed improvements in energy savings 
compared to traditional blended strategy (Chen et al., 2015). 
Risk-gain based energy management for self-docking mobile 
robots where the battery depletion is considered as a risk and 
accomplishment of task as a gain and an arbitrator makes the 
final decision based on the assessment of risk and the level 
of associated accomplishment (Berenz and Suzuki, 2011). 

The performance of the conventional model-based 
controllers is prone to be deteriorated by modelling and 
identification errors associated with the system. Hence, in 
this research, a ubiquitous PID controller is used as 
TWSBR’s primary stabilization controller. Tuning the PID 
gains, Kp, Ki and Kd, is essential to maintain the desired 
system performance. Recently, the Genetic Algorithms 
(GAs) have gained a lot of momentum in optimally selecting 
the PID gains (Gurban et al., 2014; Vijayakumar and 
Manigandan, 2016). The GA is preferred over classical 
tuning methods, such as Ziegler-Nichols or Cohen-Coon, 
because it stochastically evolves and minimizes the 
objective function to quickly converge to optimum values of 
Kp, Ki and Kd (Jaen-Cuellar et al., 2013). The GA neither 
relies on the system model nor on the derivative of the 
objective function. The genetic optimization of PID 
controllers for various industrial processes and its 
comparison with classical tuning techniques has been 
rigorously discussed in the literature (Yusoff et al., 2015; 
Hussain et al., 2014). Extensive research has been done to 
validate the usage of genetic algorithms for the optimization 
of robot motions controllers and mechatronic systems (Halal 
and Dumitrache, 2006; Stan et al., 2007; Elbori el al., 2018).  

Owing to its attributes, the GA is used in this research to 
optimally estimate the PID controller gains for discrete 
levels of available battery power. The acquired data is then 
used to train an online power-dependent gain adjustment 
system that modifies the controller gains to maintain the 
desired system performance, even if battery is continuously 
discharging. The intelligent online gain adaptation systems 
are widely used to compensate intrinsic and un-modeled 
nonlinearities associated with complex dynamical systems 
(Chopra et al., 2014). The conventional Fuzzy-Inference-
System (FIS) utilizes qualitative logical rules to infer correct 
control decisions. However, the finite number of rules is not 
sufficient to address the parametric uncertainties. The 
Artificial-Neural-Networks (ANNs) can derive accurate 
nonlinear input-output relationship due to their inherent 
learning capability (Mossad and Salem, 2014). However, 
their synthesis requires large sets of training data. The 
Adaptive-Neuro-Fuzzy-Inference-System (ANFIS) 
synergistically combines the learning capability of ANNs 
with reasoning-based inference of FIS to deliver robust 
adaptive control effort (Ioanaş, 2012; Cărbureanu, 2014). 
Wherein, the ANNs serve to automatically update the 
parameters of the rule-based FIS to enhance the system’s 
robustness against exogenous disturbances (Szymak, 2016). 
The ANFIS quickly develops an accurate numerical model 
to effectively control nonlinear dynamical systems with 
minimal training data (Kumar et al., 2015). 

The available literature mainly discusses energy 
management strategies for either overall improved 
performance or a favourable compromise between risk and 
gain while the battery is depleting. In open literature, the 
dynamic adjustment of PID gains as function of available 
power level, as the battery is discharging, is not discussed. 
The aforementioned idea is the main focus of this research 
article. 

1.2.  Proposed approach 

This research presents a platform to examine and adaptively 
compensate the effects of power depletion and remaining 
power on the performance of a dynamical system. Hence, 
the main contribution of this article is to synthesize a 
suitable online gain adjustment law that effectively rejects 
the detrimental effects rendered by battery depletion on 
posture stability of TWSBR, apart from other exogenous 
disturbances. The proposed technique utilizes a well-
postulated GA to generate reference-data in order to train a 
dedicated ANFIS model. The derived data-model is then 
used to dynamically update the PID gains of TWSBR’s 
stabilization controller, with respect to the variations in 
battery power conditions, after every sampling interval. This 
augmentation improves the controller’s robustness by 
maintaining the robot’s postural stability while rejecting the 
influence of continuously reducing battery power. The 
proposed adaptation scheme recursively computes the error 
and minimizes the difference between the actual and desired 
system outputs. The ANFIS is trained off-line using the 
optimized reference data set generated by the GA. Once the 
ANFIS is completely trained and incorporated with the 
stabilization controller, it serves to dynamically adjust the 
gains (Kp, Ki, Kd) and applies them to the PID controller. To 
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conduct the hardware-in-the-loop experiments, the power 
variations observed during battery depletion are emulated 
via a DC-DC buck converter. The proposed adaptive 
controller can only effectively stabilize the posture of the 
TWSBR for a range of available battery power. The lower 
bound of this range, for this research, is 15.0 W. 

The organization of the remaining paper is as follows. The 
dynamical model of the overall system is presented in 
Section 2. The primary feedback control scheme is discussed 
in Section 3. The training-data acquisition methodology is 
discussed in Section 4. Detailed synthesis of ANFIS model 
is presented in Section 5. The experimental setup is 
explained in Section 6. The experimental evaluation is 
conducted in Section 7. The paper is concluded in Section 8. 

2. SYSTEM MODELING 

The TWSBR is modeled as a rigid pole that is fastened to a 
rigid cart via a frictionless joint. The cart moves along the 
longitudinal axis via two coaxial motorized wheels.  

2.1.  Actuator dynamics 

The state-space model of a linear dynamical system is 
generally given by (1). 

ሶݔ ൌ ݔܣ  ,ݑܤ ݕ ൌ ݔܥ   ሺ1ሻ																																																			ݑܦ

where, x is the state-vector, y is the output-vector, u is the 
control input signal, A is the system matrix, B is the input 
matrix, C is the output matrix, and D is the feed-forward 
matrix. The state-vector of a DC motor is given by (2).  

ݔ ൌ ሾ߮ ߱ሿ்																																																																															ሺ2ሻ 

where, φ and ω is the angular position and velocity of the 
wheel, respectively. Correspondingly, the matrices A, B, C, 
and D in the motor’s state-space model are identified in (3).  
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The motor voltage, Vm, is taken as the control input signal. 
The motor parameters are identified in Table 1.  

2.2.  Body dynamics 

All the forces acting on the robot body must be considered 
while deriving TWSBR’s dynamic model. The free-body 
diagram of the right-wheel is shown in Fig. 2(a). Both 
wheels have similar dynamic properties. The wheel structure 
is assumed to be uniform and homogenous, allowing it to 
roll over the horizontal surface without slippage. The 
combined effect of both motors in moving the body is given 
in (4). 

2 ൬݉௪ 
௪ܬ
ଶݎ
൰ ሷݔ ൌ 2 ൬

ܭ
ݎܴ
൰ ܸ െ 2ቆ

ܭ
ଶ

ଶݎܴ
ቇ ሶݔ െ ሺܪோ   ሺ4ሻ		ሻܪ

where, mw is the mass of the right-wheel, ݔሷ  is the 
longitudinal acceleration of the right-wheel, HR,L is the z-

axis force of the right- or left-wheel with the robot’s body, 
Jw is the Moment-of-Inertia (MoI) of the wheel, ߬ோ  is the 
wheel torque, HfR is the frictional force, and r is the radius of 
the right-wheel.  

The robot’s upper body is modelled as the arm of an 
inverted pendulum. Its free-body diagram is shown in Fig. 
2(b). The sum of horizontal forces acting on the body is 
given by (5). 

ܨ௫ ൌ ݉ݔሷ ൌ ோܪ  ܪ െ ݈݉ߠሷ cos ߠ ݈݉ߠଶሶ sin ߠ 		ሺ5ሻ 

where, mp is the mass of the robot chassis, θ is the angle 
subtended between the robot and the vertical-axis (also 
known as the pitch-angle), and l is the length of the Centre-
of-Mass (CoM) of body from the ground. The continuous-
time state-space representation of the TWSBR system is 
given by (6) and (7), respectively. 
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The system parameters are identified in Table 1. 

  

                       (a)                                                   (b) 

Fig. 2. Free body diagram of (a) the right wheel, (b) the 
robot body. 
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Table 1. System parameters of TWSBR. 

Parameter Symbol Value 
Motor MoI Jm 2.18 × 10-4 kgm2 

Motor torque constant Kb 0.073 Nm/A 
Motor Armature resistance R 3.3 Ω 
Gravitational Acceleration g 9.81 m/s2 

Wheel radius r 0.121 m 
Wheel mass (with motor) mw 0.258 kg 

Wheel MoI Jw 1.87×10-3 kgm2

Body CoM height l 0.158 m 
Body mass mp 1.85 kg 
Body MoI Jp 0.0247 kgm2 

2.3.  LiPo battery discharge dynamics 

In this research, the TWSBR is powered by a Lithium 
Polymer (LiPo) battery. The circuit diagram of the LiPo 
battery cell is shown in Fig. 3. The piecewise nonlinear 
equations presented in (8) demonstrates the discharging 
behavior of a LiPo battery (Kim et al., 2013). 
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where, I is the current provided by the cell, SOC is the state-
of-charge, and m is the initial SOC of the battery before 
discharge, Cb is the capacity of battery cell, Rd is the 
resistance of self-discharge, Voc is the open-circuit voltage of 
the battery cell, Rdc is the equivalent DC-resistance of the 
cell, Rs and Cs is the resistance and capacitance of the short 
time-constant RC circuit in the model, respectively, Rl and Cl 

is the resistance and capacitance of the short time-constant 
RC circuit in the model, respectively. When the discharging 
initiates at t = T, the voltage across the battery terminals 
(Vterminal) is lesser than the Voc due to the voltage-drop across 
Rdc and the exponential voltage-drop across the short time-
constant RC circuit, for t ≤ T. The voltage continues to drop 
for the duration of ߬௦. Afterwards, the long time-constant RC 
circuit contributes in the exponential voltage-drop for 
ݐ  ܶ െ ߬௦. It keeps dropping for the duration of ߬. Finally, 
the voltage drop becomes purely resistive and is 
significantly larger than the previous cases (Kim et al., 
2013). 

 
Fig. 3. LiPo battery cell circuit model. 

3. FEEDBACK CONTROL SYSTEM 

This section discusses the feedback control architecture of 
the system. A PID control scheme is employed for posture 
stabilization of TWSBR (Li et al., 2013). The posture of 

TWSBR is stabilized by continuously monitoring and 
comparing the variations in the robot’s body-angle with the 
reference-angle using an Inertial-Measurement-Unit (IMU). 
The resulting errors are fed to a digitally implemented PID 
controller that appropriately drives the motors and keeps the 
robot vertically balanced. Owing to its simplicity and 
reliability, the PID scheme is widely used as the primary 
robot motion controller (Astrom and Hagglund, 2016). In 
this research, it is used to regulate the pitch-angle, ߶,  of 
TWSBR’s body within desired performance characteristics 
(Bhatti et al., 2015). The horizontal motion (or position) of 
TWSBR is not controlled in this research. PID controller is 
simply the weighted sum of error-dynamics occurring in the 
state-variable being controlled; namely, error, error-integral, 
and error-derivative (Bhatti et al., 2018). The error, ݁ఏሺ݊ሻ, at 
sample time n is defined as the difference between the 
desired set-point, ߠሺ݀݁ݏ, ݊ሻ,	 and actual, ߶ሺ݊ሻ,	 states as 
shown in (9). The mathematical expression of the PID 
control law for hardware implementation is given by (10).  
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where u(n) is the control signal at sample time n, and Ts is 
the sampling period. The diagram of the closed loop control 
scheme is shown in Fig. 4. Initially, the gains of the PID 
controller are tuned using GA assuming a fully charged 
battery and available maximum motor power level. As the 
system operates, the battery power level is reduced and the 
PID gains are optimally tuned via GA for a set of discrete 
levels of actuator or motor power to generate a reference 
data-set of gain values as function of available power level. 
In this research, 100 discrete power levels were selected. 
However, one could select a different number depending on 
the application and desired granularity for available power 
level. After setting the motor power at a certain level, the 
GA is initiated to identify the PID gains such that the system 
operates satisfactorily and remains within acceptable 
performance specifications, i.e. close to the desired vertical 
posture.  

 

Fig. 4. Closed-loop feedback control scheme. 

Once the algorithm converges, the optimized PID gains for 
the given power level are recorded. The process of tuning 
the PID gains is repeated for each discrete power level. The 
PID gains recorded for each power level are then used to 
synthesize mathematical models for each gain as function of 
available power. The recorded data is used to train the 
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ANFIS model that dynamically updates the PID gains to 
deliver appropriate control actions, u(n), as function of 
available power level to maintain desired system 
performance. 

4. TRAINING-DATA ACQUISITION USING GA 

The optimal sets of PID gains must be identified at discrete 
levels of battery power to derive an accurate numerical 
model for training the ANFIS-based online gain adjustment 
law as function of available power level using the GA. The 
GA is a population-based stochastic search and optimization 
algorithm based on natural evolution (Petcut and Dragomir, 
2010; Mohammed at al., 2014). It probabilistically explores 
a randomly selected population (or search-space) of 
candidate solutions to find the global-best solution (Tam et 
al., 2018). After the initialization of the search space, the 
algorithm encodes all potential solutions into strings of 
binary numbers, also referred to as “chromosomes”, and 
evaluates their performance using an objective function that 
assigns a performance based fitness value to all the strings in 
a population. The highly fit strings are selected, paired and 
mutated to form a new population of candidate solutions. 
The parent strings mate with each other, via the process of 
“cross-over”, to generate off-springs with relatively higher 
fitness. A few strings in the population are mutated to ensure 
a uniformity of fitness in the entire population and avoid the 
possibility of new stagnant or unsuitable populations (stuck 
in local minima regions). After every iteration of 
reproduction, the succeeding generations tend to evolve the 
search space with strings having improved fitness values. 
Thus, populating the space with high-ranking solutions 
enables the algorithm to converge quickly to the global-best 
solution. The process is repeated iteratively and is 
terminated only if either the desired performance criterion is 
achieved or the pre-defined maximum number of iterations 
is reached. The workflow of GA is shown in Fig. 5. 

 

Fig. 5. Work-flow of GA procedure. 

In this research, the GA generates an initial random 
population by encoding the PID gains into binary strings (or 
chromosomes). For a given power level, each trivial set of 

gain is fed to the PID controller and the corresponding body-
angle response of the robot is recorded for 10 seconds (1000 
samples). The resulting fitness of each population member is 
evaluated after decoding the binary string into real-valued 
PID gains and applying them to the actual hardware. In this 
work, considering the objective of keeping the robot 
vertically balanced, the cost function is defined as the sum 
of squared-error within the defined time-span for every 
individual experiment. This process is repeated until the 
defined number of generations is reached in an effort to 
reach near-optimal values of the PID gains meeting the 
desired performance specification of balancing the robot at a 
given power-level while minimizing the fitness function. 

The details and steps followed to tune the PID controller 
gains for each motor-power level are discussed as follows. 

Initialization: An initial population of 50 strings is selected 
to represent the three PID gains. The gains in the population 
are bounded within the interval 0 to 30, considering the 
convergence point in repeated trial. Each string is composed 
of 30 bits. The length of string is divided in three sections; 
each containing a sub-string of 10 bits with each distinctly 
corresponding to one of the three PID gains.  

Fitness evaluation: In this research, the objective function, 
J, to be minimized is defined as the sum-of-squared-error. Its 
mathematical expression is given by (11).  

J ൌ ∑ ሺ݁ఏሺ݊ሻሻଶ
ே
ୀଵ 																																																																				ሺ11ሻ

                                             
where, n is the sample number and N is defined as 1000 for 
all cases irrespective of how quickly the parameters 
converge. This objective function is selected as the criterion 
to evaluate the fitness of each PID gain string in the 
population. Every time a string is subjected to the objective 
function, the string is divided to extract three PID gains 
which are directly applied to the robot’s PID control law. 
The corresponding control commands are serially 
transmitted to the motor driver circuit of the robot. The 
variations in the error of the robot’s body-angle are recorded 
to evaluate the fitness of the particular string.  

Selection: The number of strings selected to form the 
subspace must be decided carefully; a large subspace may 
deliver a “better” solution but it would lead to a slower 
convergence rate, where, a smaller subspace would speed up 
the evolution process, but it may lead to premature 
convergence and possibly deliver bad solutions. In this 
work, 12 best (highly fit) strings are selected from the 
existing population and another 20 strings are randomly 
selected from the remaining 38 strings, thus generating a 
subspace of 32 strings as parents.  

Crossover: The selected parent strings are then combined 
via the multi-point crossover operator, wherein the 
alternating segments of the corresponding subsections of 
parent strings are swapped to generate new off-springs. The 
crossover operator is applied with a probability of 0.7. Each 
new offspring is compared with the existing worst-string and 
if the off-spring has better fitness, then it is retained; 
otherwise, it is discarded.  
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Mutation: The evolved population is slightly mutated in 
order to prevent the algorithm from falling and possibly 
remaining in local minima regions and to improve the 
performance of the strings. The mutation operator is applied 
with a low probability of 0.063. One or more randomly 
selected bits of the chosen strings are flipped.  

Termination: Once the new population is formed, it is 
analyzed for the termination criterion. The algorithm is only 
terminated when the difference between the fitness values of 
highest-ranked and the lowest-ranked strings in a population 
is less than or equal to the fitness limit (ߚ), as shown in (12). 

หJ,௦௧ െ J,௪௦௧ห  ሺ12ሻ																																																														ߚ
                                                
where, i is the current iteration (or generation) and J is the 
fitness value of a given string in a given population. In this 
research, the value of ߚ  is empirically selected as 0.1 to 
ensure convergence and to guarantee that all the candidate 
solutions are closely spaced. Once the proposed criterion is 
satisfied, the algorithm is terminated and the best string is 
selected as the output. Otherwise, the process is repeated 
until a maximum number of iterations are reached to avoid 
the possibility of non-convergence or an infinity loop of 
execution. The process of iterative genetic optimization of 
the PID gains (Kp, Ki, Kd) at a power level of 50.0 W is 
shown in Fig. 6. The training data of the Kp, Ki, and Kd 
generated by the GA at 100 discrete power levels is 
diagrammatically illustrated in Fig. 7, 8, and 9, respectively. 

 

Fig. 6. Genetic optimization of PID gains at 50.0 W level. 

 

Fig. 7. Genetically optimized training data of Kp. 

 

Fig. 8. Genetically optimized training data of Ki. 

 

Fig. 9. Genetically optimized training data of Kd. 

5.  PROPOSED ONLINE GAIN-ADJUSTMENT SCHEME 

Initially, the PID controller gains are tuned assuming a fully 
charged battery. However, as the battery discharges, the DC 
input power to the motors drops. Without adaptive control, 
this reduction in the available power reduces the motor’s 
ability to deliver the required dynamic actuation effort. The 
body angle of the robot, as function of time, for different 
power levels is already shown in Fig. 1. At reduced power, 
the robot begins to vibrate vigorously about its reference 
position. At ~15.0 W, these vibrations increase and the 
system eventually collapses, as shown in Fig. 1.  

The performance degradation rendered by reduced available 
power can be compensated by dynamically scheduling the 
PID gains as a function of available battery power using the 
ANFIS, which is an adaptive realization of FIS that utilizes a 
multi-layered feed-forward network (Toufouti et al., 2009). 
First of all, a two-dimensional table of heuristically 
developed fuzzy rules is identified. The hypothesis of the 
parameterized rule-base serves to relate the fuzzified inputs 
to input Membership-Functions (MFs) to rules to outputs to 
output MFs. In the next phase, the optimized data set 
acquired by GA is applied to train the ANFIS. The trained 
ANFIS is then used to formulate the fuzzy inference 
mechanism by optimally adjusting its MFs such that they 
fulfill the desired control objective(s). The ANFIS imitates a 
feed-forward back-propagation network. In this research, the 
neural part of the ANFIS is trained using the Hybrid-
Learning-Algorithm (HLA). In the first phase of training, the 
HLA identifies the consequent parameters in the forward 
pass with the aid of Least-Squares method. In the second 
phase of training, the HLA it uses the error between the 
actual and desired system output as well as the gradient 
descent method to update the premise parameters in the 
backward pass. The training process terminates only when 
the maximum number of iterations is reached or the desired 
control objective is achieved. The fuzzy system is developed 
using the first-order Takagi-Sugeno inference model due to 
its high interpretability and computational efficiency.  

The conventional five-layered architecture of ANFIS is 
shown in Fig. 10. The layers are denoted as the fuzzy layer, 
product layer, normalization layer, defuzzification layer, and 
total output layer. In this structure, the error in battery power 
(Pe) and the change in power-error (ΔPe) are the inputs. The 
inputs are given by (13) and (14). 

ܲሺ݊ሻ ൌ ܲ௫ െ ܲሺ݊ሻ																																																														ሺ13ሻ 

∆ ܲሺ݊ሻ ൌ ܲሺ݊ሻ െ ܲሺ݊ െ 1ሻ																																																	ሺ14ሻ 
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where, ܲ௫ is equal to 50.0 W in this research, The vector 
containing PID gain updates, denoted as Kz, is the output of 
the proposed ANFIS model. The training values and the 
estimated values are represented by the input and output 
nodes, respectively. The nodes in the hidden layers operate 
as the MFs and rules. The nodes represented by a circle are 
fixed-nodes while the ones represented by a square shape are 
adaptive in nature. For a first-order Sugeno inference 
system, the governing rules are as follows: 

Rule 1: If g=Pe is A1 and h=ΔPe is B1, then Kz1  = p1g + q1h + r1 

Rule 2: If g=Pe is A2 and h=ΔPe is B2, then Kz2  = p2g + q2h + r2 

where, Aj and Bj are the linguistic variables of the fuzzy rule-
base, pj, qj, rj are the consequent parameters, and j is the 
number of rule being considered (j = 1 or 2). The function of 
each layer is as follows (Saleem et al., 2018). The output of 
node i in layer l is denoted as ܱ

. 

Layer 1 is the fuzzification layer. It fuzzifies the inputs g 
and h using the bell-shaped MFs due to their smoothness. 
The mathematical expression of MF is given by (15).  

ܱ
ଵ ൌ

1

1  ቚ
௫ି

ቚ
ଶ
																																																																			ሺ15ሻ 

where, ai, and ci are the width and the center of the MF, 
respectively, and bi is used to control the slopes of the cross-
over points. These premise parameters are dynamically 
adjusted via the ANN to yield optimum postural stability 
with minimum tracking deviations, even under depleting 
battery conditions. Every node in this layer is adaptive.  

 

Fig. 10. The ANFIS structure. 

The layer evaluates the degree (μ) of input variables in the 
fuzzy set. The output of this layer is µAj(g) or µBj(h) and are 
given by (16) and (17). 

ܱ
ଵ ൌ ,ሺ݃ሻߤ ݅	ݐ݄ܽݐ	݄ܿݑݏ ൌ 1, 2																																		ሺ16ሻ 

ܱ
ଵ ൌ ,ሺ݄ሻߤ ݅	ݐ݄ܽݐ	݄ܿݑݏ ൌ 3, 4																																		ሺ17ሻ 

The output of this layer forms the antecedents of 2nd layer. 
Once the consequent parameters are selected (see Layer 4), 
the approximate error is propagated back to every layer and 
the gradient-descent method is used to update the premise 
parameters.  

Layer 2 is denoted as the product layer. It mathematically 
infers the updates required in the PID gains. Every node in 
this layer is fixed and corresponds to a fuzzy antecedent rule 

(the “IF” part). A total of 25 rules are used in this layer. The 
product T-norm aggregation operator is used with each 
fuzzy neuron. Hence, the output of this layer is the product 
of the input signals as shown in (18).  

ܱ
ଶ ൌ wi = μAi

ሺgሻ × μBi
ሺhሻ                                                (18)	

The resulting weightage, w, represents the firing-strength of 
each rule. The fuzzy MFs of the input-variables, Pe and ΔPe, 
and output-variables, Kp, Ki, Kd, are linguistically defined 
as: Zero (Z), Small (S), Medium (M), Big (B), and Very Big 
(V). The two-dimensional rule-base is shown in Table 2. 

Layer 3 is the normalization layer. Every node in this layer 
is fixed. This layer serves to normalize the firing strengths 
by evaluating the ratio of the ith fuzzy-rule’s firing strength 
to sum of all firing strengths of all the rules. The normalized 
firing strength is given by (19). 

ܱ
ଷ ൌ wෝi = 

∑wi

∑ wii
																																																																							ሺ19ሻ 

Layer 4 is defined as the consequent layer. It is responsible 
for defuzzifying the consequent rules. The nodes in this 
layer are adaptive and they compute the values of ith rule 
towards the overall output (the “THEN” part) using the 
linear combination shown in (20). 

ܱ
ସ ൌ si = wෝi (pig + qih + ri)                          										          (20) 

Table 2. Fuzzy rule base of PID controller gains. 

Kp,Ki,Kd 
ΔPe 

Z S M B V 

Pe 

Z Z,Z,Z Z,S,S S,S,M S,Z,B S,Z,V 

S S,M,S S,M,M S,S,B S,Z,V M,Z,V 

M M,M,M M,B,M M,B,B M,S,V M,Z,V 

B B,S,M B,S,M B,M,B B,S,V B,Z,V 

V V,S,M V,S,M V,M,B V,S,V V,Z,V 

The consequent parameters are adaptively adjusted to yield 
best control effort, even under battery discharge conditions. 
Since ܱ

ସ  is the linear combination of the consequent 
parameters, therefore, their optimal values are estimated via 
Least Squares method in the backward pass of training 
phase. 

Layer 5 is summation layer. The single node in this layer 
computes the crisp output value by aggregating all the 
incoming signals from Layer 4. The finalized output is given 
by (21). 

ܱ
ହ = si

i

= 
∑ wii (pig+qih+ri)

∑ wii
																																												ሺ21ሻ 

The ANFIS is digitally implemented using a 64-bit, 2.6 
GHz, and 6GB RAM computer. Owing to the processing 
power of computer, the scheme does not put excessive 
computational burden on the digital computer. The 
practicability of the proposed adaptation scheme is validated 
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in Section 7, where it is applied to adaptively tune the PID 
controller of an actual TWSBR system. The robotic system 
is subjected to hardware-in-the-loop experiments in real-
time. 

6. EXPERIMENTAL SETUP 

The experimental setup used to verify the proposed 
methodology of considering power depletion and dynamic 
PID gain definition, while maintaining the desired 
performance, is described in this section. 

6.1 Hardware setup 

The TWSBR platform used for real-time experimentation is 
shown in Fig. 11. The physical dimensions of the robot body 
are 0.2 m × 0.2 m × 0.33 m. The robot uses an 8-bit, 5.0 V 
embedded microcontroller for monitoring and control tasks. 
The IMU contains an accelerometer and a gyroscope that 
provides the body-angle and its rate-of-change, respectively. 

 

Fig. 11. Two-wheeled self-balancing robot. 

Two permanent magnet DC metal-geared motors are 
attached beneath the base of the robot structure to drive the 
wheels. Each motor has a 19:1 gear box. It is capable of 
delivering a torque of 0.588 Nm and a non-load speed of 500 
rpm. The motors are driven by MC33926 dual H-bridge 
motor driver. 

For experimentally emulating fast battery power depletion, 
the input power to the motors is varied by controlling a 100 
W programmable DC-DC step-down buck converter. The 
buck converter effectively alters the magnitude of the input 
power to the motors. Buck converters are energy-efficient 
switch-mode power supplies (Rashid, 2011). The block 
diagram of the power variation setup is shown in Fig. 12. 
The MOSFET in the circuit chops down the DC supply 
voltage to the desired level. The inductor-capacitor filter 
removes the harmonics from the output-voltage. An analog 
voltage-divider, constructed with a 2.0 MΩ and a 1.0 MΩ, 
0.5W resistors, is used to measure the voltage drop across 

each motors. The motor current consumption is measured 
using ACS712 current sensor (Jamaluddin et al., 2013).  

The ANFIS model uses the instantaneous input power 
available to the motors which is evaluated as the product of 
the analog current, Is, and voltage, Vs, readings provided to 
the microcontroller. The variation in the input power 
available to the motors as well as the TWSBR’s pitch-angle 
is visualized using a graphical user interface (GUI) 
developed in LabVIEW software, running on a remote 
computer. In this research, the buck converter is remotely 
controlled over a wireless link. These commands are serially 
transmitted at 9600 bps to the on-board microcontroller over 
a wireless communication link established by a 2.4 GHz 
transceiver. Based on the commanded input, the 
microcontroller compares the reference voltage with the 
instantaneous voltage supplied to the motors, via the H-
bridge motor driver, and generates appropriate pulse-width-
modulated commands to the switching transistor in the 
circuit. The electronic hardware setup is shown in Fig. 13.  

A 12.0V, 3300 mAh LiPo battery is used to supply DC 
power to all the modules of the robot via dedicated linear 
voltage-regulator circuits. When fully charged, the battery 
reads 12.6V across its terminals. The maximum power 
drawn by the motors is 50.0 W. Preliminary experiments 
indicate that below 15.0 W, the motors cannot provide the 
appropriate control torque to keep the robot upright (see Fig. 
1).  

 

Fig. 12. Block diagram of power variation setup 

 

Fig. 13. Electronic hardware setup. 

6.2 Control software architecture 

The control software is responsible for vertically balancing 
the robot. Upon initialization, a Kalman Filter fuses the raw 
gyroscope and accelerometer readings to estimate the robot 



30                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

body-angle (Gui et al., 2015). The error between the actual 
and the desired body-angles is provided as input to the PID 
controller which controls the speed and direction of motor 
rotation. The sampling-time (Ts) for data acquisition and 
control updates is set at 10.0 ms. The PID control routine is 
programmed in the 8-bit microcontroller. The 
microcontroller acts as an intermittent communication relay 
between the TWSBR hardware and the remote computer. 
During the training-data acquisition phase, the GA is run on 
a 64-bit, 2.6 GHz computer. For a given power level, 
initially the GA serially transmits the optimized set of PID 
gains to the 8-bit embedded microcontroller and acquires 
corresponding measurements regarding the TWSBR's body-
angle to generate the reference data. The ANFIS model is 
trained off-line using the recorded dataset of the tuned PID 
gains. Once synthesized and connected to the PID balancing 
controller, the ANFIS dynamically adjusts and issues the 
updated PID gains to the microcontroller, after every 
sampling interval. The corresponding voltage control 
commands are applied to the DC motors via the H-bridge 
circuit. The resulting raw analog sensor readings regarding 
the pitch-angle as well as the available battery power-level 
are acquired by the microcontroller. The microcontroller 
filters the sensor readings and feeds them to the ANFIS 
running in the computer for online gain adjustment. The 
proposed strategy does not put excessive computational 
burden on the digital computer during real-time control 
application. 

7. EXPERIMENTAL EVALUATION 

The self-balancing control of two-wheeled robot is posed as 
a regulator problem to keep the controlled state (pitch-angle) 
at the pre-defined reference value. Hence, the battery 
depletion phenomenon is considered as a source of 
exogenous disturbance to the system. The proposed control 
strategy is devised to reject this disturbance. Two power 
depletion test scenarios are considered, continuous and step 
depletion, to study and compare the performance of the 
ANFIS-based PID controller with that of a fixed-gain PID 
controlle to vertically balance the robot with minimum 
deviations. The gains of the fixed PID controller are defined 
at the maximum motor power level. According to Fig. 7, 8, 
and 9, the gains at 50.0 W are Kp = 17.3, Ki = 3.7, Kd = 13.0. 
The gains of ANFIS-based PID controller are adaptively 
varied as functions of the available battery power. The real-
time variations in the TWSBR’s pitch-angle are visualized 
using a LabVIEW based GUI. The robot’s body-angle 
response are compared in terms of root-mean-square-error 
(RMSE) and maximum-absolute-error (MAE) in the body-
angle.  

7.1 Continuous power change 

In this test, the motor input power is varied exponentially, as 
shown in Fig. 14, to emulate the actual discharging pattern 
of a DC battery. The error in the robot’s body-angle from the 
vertical reference for the fixed and adaptive controllers are 
shown in Fig. 15 and 16, respectively. The corresponding

variations in adaptively adjusted PID controller gains are 
depicted in Fig. 17.  

As the power level decreases, the error of the fixed PID 
controlled system significantly increases, reaching an MAE 
of 14.8o and an RMSE of 6.8o. The adaptive controller 
effectively maintains the robot’s postural stability, despite 
the continuous power decay. The adaptively controlled 
system exhibits an overall RMSE of only 1.5o and an MAE 
of 4.7o, which is well within the desired angular deviation of 
±5.0o in the robot body. The results clearly validate the 
efficacy of the proposed adaptive controller in maintaining 
the robot’s postural stability under continuous battery 
discharge conditions.  

 

Fig. 14. Motor nput power pattern for continuous power 
change. 

 

Fig. 15. Error in body-angle using generic PID controller for 
continuous power change. 

 

Fig. 16. Error in body-angle using the gain-scheduled PID 
controller for continuous power change. 
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Fig. 17. Dynamic variation in PID gains using the gain-
scheduled PID controller for continuous power change. 

7.2 Step power change 

In this test, the motor input power is varied in a step fashion 
as shown in Fig. 18, which is again accomplished by using 
the wirelessly operated programmable buck converter 
circuit. The power level is decreased in steps of 7.5 W at 
regular intervals of 10 sec. It is to be noted that this power 
change is arbitrarily selected. The error in the robot’s body-
angle from the vertical reference position, when controlled 
without and with the ANFIS-based gain scheduler is shown 
in Fig. 19 and 20, respectively. The variation pattern of 
dynamically adjusted PID gains, responsible for improving 
the TWSBR’s pitch-angle response, is shown in Fig. 21. 
İnitially, the fixed-gain PID controller maintains the robot’s 
vertical stability since full power is available. However, as 
the power level drops after fixed time intervals, the body-
angle exhibits abrupt bounded variations. It is observed that 
the body-angle response does not converge within ±5.0o of 
the reference position after each step-change in power level. 
Instead, the magnitude of the error increases reaching an 
MAE of 14.8o and an overall RMSE of 9.1o. The 
performance of the proposed ANFIS model to dynamically 
define the PID gains as function of the available power level 
is also evaluated. The PID gains are defined when a power 
change occurs and remains fixed during that particular time 
interval. This system exhbibits small overshoots and 
undershoots at the instance of step-change with an MAE of 
6.8o and an RMSE of 2.7o. It is observed that after each 
power step change, the response initially has relatively a 
‘large error’. However, this error settles to within ±1.0o of 
the desired performance within 2.0 to 3.0 seconds indicating 
that the proposed methodology can effectively compensate 
power transients as well. It is also observed that as the 
available power tends towards the limiting power level for 
sucessful control action (15.0 W for this system), the system 
exhibits a small increase in the magnitude of error compared 
to higher power levels, but, still remains within closer 
proximity of desired posture compared to the fixed gain 
system. This reinforces the premise of dynamically varying 
the gains as function of available power. 

7.3 Discussion 

The performances of the two PID controllers (fixed and 
adaptive) for the two testing scenarios of varying power

level (uniform exponential decay and step) is summarized in 
Table 3. The time taken by the robot to settle within ±2.0o of 
the reference position, after each step change in power-level, 
is denoted as Tset. 

 

Fig. 18. Motor input power pattern for step power change. 

 

Fig. 19. Error in body-angle using generic PID controller for 
step power change. 

 

Fig. 20. Error in body-angle using the gain-scheduled PID 
controller for step power change. 

 

Fig. 21. Dynamic variation in PID gains using the gain-
scheduled PID controller for step power change. 
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Table 3. Summary of performance comparison. 

Power 
Change 

PID 
Controller 

MAE 
(o) 

RMSE 
(o) 

Tset  

(s) 

Continuous 
Fixed 14.8 6.8 - 

Adaptive 4.7 1.5 - 

Step  
Fixed 14.8 9.1 

Does not 
settle 

Adaptive 6.8 2.7 1.3 

The proposed adaptive PID controller achieves considerably 
smaller MAE and RMSE values as compared to the fixed-
gain PID controller. The adaptive PID controller exhibits a 
faster error convergence rate and the response settles quickly 
within ±2.0o of the reference after the introduction of step-
change in power. The results demonstrate that the ANFIS is 
effective in adaptively updating the PID controller gains and 
maintaining desired performance under the influence of both 
battery depletion scenarios which could be experienced in 
real-life. The comparative assessment justifies the superior 
robustness of the proposed control strategy in rejecting the 
exogenous disturbances in the form of battery depletion. 

8. CONCLUSION 

This manuscript presents a methodology to adaptively 
modify PID controller gains of a TWSBR, as function of 
available power level, to maintain its upright posture within 
desired performance specifications. The need for such a 
methodology emanates from the proliferation of battery 
powered devices and the possible detrimental effects that 
power drainage might have on system performance. An 
online gain adjustment mechanism that dynamically adjusts 
the PID controller gains was proposed, developed and 
evaluated on an inherently unstable dynamic system. The 
proposed technique utilizes GA to acquire reference data 
from real-time experiments to train the ANFIS that 
adaptively adjusts the PID gains of the actual closed-loop 
system. The performance of the adaptive PID controller was 
compared with a fixed-gain PID controller in terms of 
maintaining the vertical stability of a TWSBR under two 
unique power-depletion scenarios. The proposed adaptive 
controller was able to successfully maintain the desired 
system performance under both power depletion scenarios, 
where as the fixed-gain controller exhibited a degraded 
posture stabilization performance. The experimental 
comparison validates the enhanced immunity of the 
adaptively controlled robotic system against the influences 
of uniformly or abruptly depleting battery power levels. The 
digital implementation of proposed controller requires single 
time usage of GA to evaluate the suitable gains for various 
power levels. The ANFIS is then used online to schedule the 
gains of the system which is not computationally exhaustive. 
In future, the proposed technique can be further investigated 
by applying it to other mechatronic systems. Other analytical 
and numerical inverse-problem approaches can also be 
investigated to develop similar online gain adapters. 
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