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Abstract: In this paper, a problem of rationally treating industrial wastewater is considered. The 
treatment is conditioned with that a one or more plants should execute this job along a river but a 
schedule of treating the polluted water is not correlated with the schedule of manufacturing. So, river 
water is treated separately, without considering manufacturing processes. Another condition is that they 
deal with scattered and dependent-on-location measurements of water pollution. Thus, it is hard to 
determine exactly for each plant a volume of water that should be necessarily treated for ensuring the 
water renewal for the whole river. Because of multiple, weakly correlated measurements, industrial water 
treatment should be controlled both for dealing with water pollution and prevention of detrimental 
effects. A robust approach is proposed to industrial wastewater treatment control with using a minimax 
principle, which fits long, deep, and wide rivers. Pollution at a shallow river can be analyzed as well only 
if its contaminations are registered in wide ranges. The control realized by a minimax model and 
algorithm is meant by effectively assigning treatment jobs for wastewater treatment plants. In three 
special cases, the model gives hints at plausible inaccurate measurements or overestimations. 

Keywords: uncertainty, inaccurate measurements, water pollution, interval estimates, wastewater 
treatment control, minimax principle. 



1. INTRODUCTION 

1.1 Industrial wastewater treatment control 

It is impossible to overestimate the importance of controlling 
non-polluted waters for both aquatic life and humans. 
Obviously, it is hard to be numerically sure of how much of 
Europe is polluted and what kind of threat that poses. 
However, the tempo of pollution has not been decreasing. 
Researchers from Poland, Romania, Germany, Latvia, 
France, Spain and other countries of European Union report 
about strong evidence that chemicals threaten the ecological 
integrity (Skuras and Tyllianakis, 2018; Gitis and Hankins, 
2018) and consequently the biodiversity of almost half of the 
water bodies on a continental scale. After sorting through 
government data from 4,001 monitoring sites, they found 
pollution levels high enough to kill aquatic species at 14 % of 
the sites (see an article “Almost half of Europe’s water is 
threatened by pollution” at riverlink.server299.com). 
Meanwhile, chemicals swirling in the water were prevalent 
enough to cause chronic health effects at 42 % of the sites. At 
that, the risks of the true pollution are underestimated due to 
limitations in measuring the pollution. 

The main cause of pollution of surface waters is the 
uncontrolled discharge of untreated municipal and industrial 
wastewater directly into water bodies and through urban 
sewerage systems. Industrial wastewater treatment is fulfilled 

with a series of strategies to remove the water contamination 
and thus decrease the pollution. Mainly, they consist in 
removing dissolved salt ions from waste stream (Kim and 
Logan, 2013; Krstić et al., 2018), removing solids using 
sedimentation techniques (Cancino-Madariaga and Aguirre, 
2011), oils and grease removal by separators (Alther, 2008; 
Jafarinejad, 2017), removal of biodegradable organics by 
activated sludge and trickling filter processes (Kornaros and 
Lyberatos, 2006; Zieliński et al., 2013; Ogidan, 2017). The 
wastewater treatment with trickling filters is one of the most 
well characterized treatment technologies. However, 
problems may arise if the wastewater is excessively diluted 
with washing water (Gitis and Hankins, 2018; Jafarinejad, 
2017). Eventually, the presence of cleaning agents, 
disinfectants, pesticides, or antibiotics impacts detrimentally 
on the wastewater treatment process. Therefore, the industrial 
wastewater treatment has its own restrictions. On the one 
hand, its costs are not small. Not all industrial enterprises 
(factories, plants, mills) can fulfil the treatment without 
government subsidies (Gikas, 2017; Abraham, 2017; Fung 
and Wibowo, 2013). On the other hand, despite the treatment 
produces effluents reused to a sanitary sewer or to surface 
water in the environment, the wastewater treatment process is 
not innocuous itself. Continuous wastewater treatment may 
inversely affect the environment of a terrain where an 
industrial wastewater treatment plant is mounted. This 
concerns especially those plants that are located near rivers 
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and natural reservoirs and pour out the treated water back 
into them. 

1.2 Motivation 

An industrial wastewater treatment plant is a complex 
technological object, wherein the technique of treating 
polluted water depends on manufacturing processes and 
production of the respective industry (Abraham, 2017; 
Jafarinejad, 2017). When river water is directly recycled, 
locations of water drawoff and discharge may be located 
close to each other (Jafarinejad, 2017; Alther, 2008). Then a 
schedule of treating the polluted water is easily correlated 
with the schedule of manufacturing (Kornaros and Lyberatos, 
2006). Otherwise, if river water is treated separately, without 
considering manufacturing processes, it is hard to determine 
exactly a volume of water that should be necessarily treated 
for ensuring the water renewal for the whole river (Fung and 
Wibowo, 2013; Leonzio, 2017; Abraham, 2017). Moreover, 
when a few plants work along the same river (for instance, 
along Danube, Tisza, Rhine, Elbe), it is impossible to 
accurately distribute treatment assignments for those plants 
because the sites where they work are usually polluted non-
uniformly (Krstić et al., 2018). Besides, accurate 
measurements of water pollution, if any, are always tied to 
localities and depths where concentration of contaminants in 
water is registered (Abraham, 2017; Vlad et al., 2012). This 
fact is a main cause of why a problem of distributing 
treatment assignments is an open question. Because of 
multiple, weakly correlated measurements, industrial water 
treatment should be controlled both for dealing with water 
pollution and prevention of detrimental effects. 

1.3 Goal of the paper 

The goal is to derive formulae and compose an algorithm for 
industrial water treatment control, while dealing with 
scattered and dependent-on-location measurements of water 
pollution. The control is meant by effectively assigning 
treatment jobs for wastewater treatment plants. The goal will 
be achieved by plotting a model of treatment control with 
considering any number of the plants. The algorithm will be 
based on this model. Additionally, it will be shown how to 
apply the algorithm and list issues of its application. 

2. MODEL OF TREATMENT CONTROL 

2.1. Variables and Constraints 

Denote a maximum allowable concentration of contaminants 
in water of a river by 0c  (in mg/m3). Then a volume of 

allowable contamination is  

 0 0v c   (in m3), 

where   is a function that maps the concentration into cubic 
meters of untreated water. If c  is a current average 
concentration (in mg/m3) of contaminants in water of the 
given river, then  

 v c   (in m3) (1) 

is a current average volume of untreated water. Hence, an 
average volume of contamination to be treated is 0v v . A 

period of time (in hours) during which a plant should work 
for drawing the water pollution back to rate 0c  (or, it can be 

expressed via 0v ) is 

 0 0 ,h g v v  (in hours), (2) 

where g  is a function that maps the average volume of 

contamination to be treated into a grand total of hours. Note 
that period (2) is not constrained to 24 hours. This is just a 
period of the pending treatment work. For example, if 

0 48h   then it implies that the treatment work can be done 

with at least two sources (at a plant, considering a single 
plant) of water treatment. Besides, these treatment hours can 
be transferred into water volumes (in cubic meters), if such 
units are convenient. 

However, for the k -th plant, such a period is 

 0 , ,k k kh g v v S  (in hours), (3) 

where kS  is a set of geographic peculiarities of the plant site 

(e. g., atmospheric pressure, a rate of atmospheric 
precipitates, land erosion, subsurface erosion, liquid impact 
erosion, proximity of highway areas, etc.), which additionally 
affect the treatment process and values 0v  and kv  are 

corrected thereof (in m3). Let us call time period (3) the 
treatment load. 

Nevertheless, the average concentration of contaminants (1) 
may differ from site to site due to non-uniform pollution and 
specific geographic characteristics. So, at the site where the 
k -th plant works, an average volume to be treated is 0kv v  

by an average concentration of contaminants kc  (in mg/m3). 

A real concentration registered at different seasons, weather, 
periods of a day, is a varying value. So, let the concentration 

at the k -th plant site be registered from min
kc   to max

kc  , i. e. 

min max
k k kc c c     ,  1,k P , (4) 

where P  is a total number of plants along the given river. 

According to this and general mapping (1), the volume of the 

to-be-treated contamination changes from value min
0kv v    to 

value max
0kv v   : 

min max
0 0 0k k kv v v v v v       . (5) 

Moreover, according to mapping (3), a grand total of the 
water treatment hours for plants is constrained: 

0

1

P

k

k

h h

  . (6) 

So, a case 0

1

P

k

k

h h


  is possible when, except for the 

considered industrial water pollution, additional pollution 
exists. From the other side, inequality (6) is introduced due to 
the surplus water treatment causes detrimental effects. 
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Mapping (3) along with inequality (5) imply that there are 
lower and upper values of those water treatment hours for the 
k -th plant, respectively: 

 min
0 , ,k k ka g v v S  ,   max

0 , ,k k kb g v v S  . (7) 

Thus, duration of water treatment can be reliably presented 
only as interval estimates 

 ;k k kh a b   for  1,k P . (8) 

Here, let us remember that overestimating the treatment loads 
may cause undesirable effects, and underestimating the loads 
will not draw the water pollution back to rate 0c . In both 

cases, an impact of the water treatment weakens. For 
controlling the wastewater treatment in order to ensure its 

best impact, treatment loads   1

P

k k
h


 should be handled as 

interval estimates (8) without supplementary statistical data. 
This is possible by using the minimax principle, which 
guarantees the best result under worst conditions (Romanuke, 
2011). 

2.2 Load for One Aggregate (Plant) of Water Treatment 

Suppose that water of a river is served with just a single plant 
(or an aggregate of water treatment). Note that, even in this 
case, there may be a few sources of the treatment. Instead of 
(8), there is an interval 

 1 1 1;h a b  (9) 

for that plant. It is obvious that 1 0a h  here, but both cases of 

equalities 1 0b h  and 0 1h b  are possible. It does not violate 

constraint (6) because here this constraint is 

1 0h h , (10) 

and constraint (10) holds on average. 

For case 1 0b h , there is just interval uncertainty (9). First of 

all, the load is standardized by dividing by 0h . Denote the 

standardized load formally assigned to the plant by u . The 
standardized load that is factually required is denoted by w . 
For removing uncertainty between the assigned load and the 
fairly effective load, an antagonistic game model is applied 
with a resulting (payoff) function 

      , max , 1 1w u w u w u    . (11) 

By the definition, maximum of function (11) should be 
minimized across 

   1 0 1 0; 0; 1u a h b h   (12) 

by 

   1 0 1 0; 0; 1w a h b h  . 

The solution of the game model with payoff function (11) is 
an optimal pure strategy (Romanuke, 2011) 

 *
1 0 1 1u b h b a   , (13) 

which shows a part of total load 0h  that should be executed 

by the plant (here and further, the strategies are 
dimensionless quantities). The rest part, which is 

   *
0 1 0 1 11 u h a h b a     , 

should be executed additionally as a treatment load 

   0 0 1 0 1 1h h a h b a     

does not concern the plant (there is another origin of water 
contamination). Note that strategy (13) always satisfies 
condition (12), without the left and right endpoints (neither 
the minimal registered pollution rate is included, nor the 
maximal one is): 

 *
1 0 1 0;u a h b h . 

This means that, in the case 1 0b h , it is * 1u  , i. e. the plant 

will not be entirely responsible for the pollution. 

For the case 

1 0 1a h b   (14) 

the load is standardized by dividing by 1b . Then maximum of 

function (11) is minimized across 

   1 1 ; 1 0; 1u a b   

by 

   1 1 ; 1 0; 1w a b  . 

The optimal strategy in this case is deduced based on 
(Romanuke, 2017): 

 *
1 1 12u b b a  . (15) 

It is obvious that strategy (15) satisfies the following 
condition: 

 * 1 2; 1u  . (16) 

Condition (16) implies that, in the case of (14), the plant will 
be always responsible for no less than 50 % of the pollution. 
Generally, strategy (15) shows a part of load 1b  (according 

with minimal registered pollution rate) that should be 

executed by the plant. In fact, this load is *
1u b . But what 

happens if *
1 0u b h  is obtained? Strictly speaking, if  

 1 1 1 0 12b b a h b   

then the plant should treat the pollution wholly because it is 
entirely responsible for the pollutants in water of the given 
river. Otherwise, if  

 1 1 1 0 12b b a h b   (17) 

then the plant should treat only for 

* 2
1 1 1 12u b b b a   (18) 

hours. With condition (17), however, it may happen 
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occasionally that *
1 0u b h , and then the plant will be entirely 

responsible again. 

2.3 Regular Load Strategies for Multiple Aggregates (Plants) 

When water of a river is served with two or more plants (or 
aggregates of water treatment), similar standardizations are 
done depending on whether 

0

1

P

k

k

b h

                            (19) 

or 

0

1 1

P P

k k

k k

a h b
 

   . (20) 

Like it was previously, inequality  

0

1

P

k

k

b h


  

as a partial case of inequality (19) means that water in the 
given river is polluted additionally, apart from the pollution 
related to those P  plants.  

Denote the standardized load formally assigned to the k -th 
plant by ku . The standardized load that is factually required 

for this plant is denoted by kw . For case (19) the load is 

standardized by dividing by 0h . The uncertainties, generated 

by interval estimates (8), between the assigned loads and the 
fairly effective loads are removed via minimaxing a payoff 
function 

    1 1
,

P P

P k kk k
w u

 
   

 
1

1 1

max , 1 1
P P

P

j j i ij
i i

w u w u


 

                   
   (21) 

across every 

   0 0; 0; 1k k ku a h b h   

by every 

   0 0; 0; 1k k kw a h b h  . 

Note that here 

0 1kb h    1,k P   

and that is why function (21) is defined on an open unit  
2P -dimensional hyperparallelepiped (Romanuke, 2011; 
Romanuke, 2017).  

The solution of the game model with payoff function (21) are 
optimal pure strategies for those P  plants (Romanuke, 
2011). For the k -th plant, the optimal strategy is 

*
0

1 1

P P

k k i i

i i

u b h b a
 

 
    

 
  ,  1,k P , (22) 

although strategies  *

1

P

k k
u


 by (22) are valid if only 

(Romanuke, 2011) 

 
01 1

P P

k
k k i i

i i

a
b a b a

h
 

 
   

 
    1,k P  . (23) 

So if inequalities (23) all are true, then strategy (22) shows a 

part *
0ku h  of total load 0h  that should be executed by the k -

th plant. The part remained beyond the parts by strategies 

 *

1

P

k k
u


, which is 

*
0

1 1 1 1

1 1
P P P P

k k i i

k k i i

u b h b a
   

 
      

 
    , 

should be executed additionally as a treatment load 

0 0 0

1 1 1

P P P

k i i

k i i

h h b h b a
  

 
    

 
    

does not concern those P  plants (another origin or origins of 
water contamination).  

Nonetheless, some of inequalities (23) can be false. Strictly 
speaking, if a subset of inequalities (23) turns to be false, then 

the optimal strategies  *

1

P

k k
u


 are different. According to this, 

strategies (22), for which all inequalities (23) are true, are 
called regular, otherwise they are called them irregular 
(Romanuke, 2011). 

2.4 Irregular Load Strategies for Multiple Aggregates 
(Plants) 

Continuing with case (19), let  1,J P  be a subset of 

indices such that inequalities 

 
01 1

P P
j

j j i i

i i

a
b a b a

h
 

 
    

 
    

 1,j J P    (24) 

hold along with inequalities (Romanuke, 2011)  

 
01 1

P P
q

q q i i

i i

a
b a b a

h
 

 
   

 
     

 1, \q P J  . (25) 

Then the irregular optimal strategies are found by the 
following formulae: 

*
0j ju a h    1,j J P   , (26) 

0

*

0

1 1

1q j

j J

q P P

k j k

k j J k

b a h

u

h b b a



  

 
 
 
 

  



  
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 1, \q P J  . (27) 

Strategy (26) implies that the j -th plant should execute its 

minimal load ja . However, strategies    
*

1, \q q P J
u


 by (27) 

are valid if only (Romanuke, 2011) 

0

0
0

1 1

1q j

j J q

P P

k j k

k j J k

b a h
a

h
h b b a



  

 
 
 
 

  



  
  

 1, \q P J  . (28) 

So if inequalities (28) all are true, then strategy (27) shows a 

part *
0qu h  of total load 0h  that should be executed by the q -

th plant. The part remained beyond the parts by strategies 

   
*

1, \q q P J
u


 by (27) and    

*

1,j j J P
u

 
 by (26), which is 

 

*
0

1, \

1 q j

j Jq P J

u a h


   , 

should be executed additionally. 

2.5 Total Load in the Middle 

For case (20) the load is standardized by dividing by 
1

P

k

k

b

 . 

By doing so, the right endpoints of the standardized intervals 
are increased by the factor  

0

1

P

k

k

b h

 . (29) 

Subsequently, if inequalities 

 
1 1 1

P P P

k k i i k i

i i i

b a b a a b
  

 
   

 
    (30) 

hold 1,k P  , then the optimal strategy for the k -th plant 

is 

*

1 1

2
P P

k k i i

i i

u b b a
 

 
   

 
  ,  1,k P . (31) 

However, the right endpoints should be divided by factor 
(29). Thus, strategy (31) is valid if inequality (Romanuke, 
2017) 

0

1 1

1 1

2
P P

k
k i i P P

i i
i i

i i

b h
b b a

b b 

 

 
   

 
 

 
 , 

re-written simpler as 

2

0

1 1 1

2
P P P

i i i

i i i

b h b a
  

   
       

   
   , (32) 

holds. Note that inequality (32) does not contain an index of 
the plant. So, if (32) holds and inequalities (30) are true 

1,k P  , then strategies  *

1

P

k k
u


 are determined by (31), 

and the k -th plant is assigned its water treatment load 

1 1 1

2
P P P

k i i i

i i i

b b b a
  

 
  

 
   ,  1,k P . (33) 

Otherwise, if (32) does not hold, the optimal strategy for the 
k -th plant is 

2

*
0

1

P

k k i

i

u b h b


 
   

 
 ,  1,k P , (34) 

if only 

0

1

P

k i k

i

b h b a

    1,k P  , (35) 

which is deduced from 

2

0

1 1

P P

k i k i

i i

b h b a b
 

 
  
 
    1,k P  . 

Strategy (34) implies that the k -th plant is assigned its water 
treatment load 

0

1

P

k i

i

b h b

 ,  1,k P , (36) 

i. e. the k -th plant should execute a part equal to 
1

P

k i

i

b b

  

of the total load. Thus, strategies (34) could be called 
proportional strategies. 

Continuing with case (20), let  1,J P  be a subset of 

indices such that inequalities 

 
1 1 1

P P P

j j i i j i

i i i

b a b a a b
  

 
    

 
      

 1,j J P    (37) 

hold along with inequalities (Romanuke, 2011)  

 
1 1 1

P P P

q q i i q i

i i i

b a b a a b
  

 
   

 
     1, \q P J  . (38) 

Then the irregular optimal strategies are found by the 
following formulae: 
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*

1

P

j j i

i

u a b


     1,j J P   , (39) 

1*

1 1

1

2

P

q j i

j J i

q P P

k j k

k j J k

b a b

u

b b a

 

  

 
 
 
 

 

 

  
  1, \q P J  . (40) 

Strategy (39) implies that the j -th plant should execute its 

minimal load ja . However, strategies    
*

1, \q q P J
u


 by (40) 

are valid if only (Romanuke, 2011) 

1

1

1 1

1

2

P

q j i P
j J i

q iP P

i
k j k

k j J k

b a b

a b

b b a

 



  

 
 
 
 

 

 


  
   

 1, \q P J   (41) 

and inequality (32) holds. Then strategy (40) shows a part 

*

1

P

q i

i

u b

  of the summed maximal load estimations 

1

P

i

i

b

  

that should be executed by the q -th plant. The part remained 

beyond the parts by strategies    
*

1, \q q P J
u


 by (40) and 

   
*

1,j j J P
u

 
 by (39), which is 

 

*

11, \

1
P

q j i

j J iq P J

u a b
 

    , 

should be executed additionally. 

3. ALGORITHM OF DISTRIBUTING WATER VOLUMES 
TO BE TREATED 

In fact, whichever strategies  *

1

P

k k
u


 are, only load hours (or 

water volumes in cubic meters) matter. Owing to the model 
stated above, there are eight possibilities (cases), in which 
treatment loads are determined. There also are three 
possibilities where determining the treatment hours or 
volumes is unfeasible. Two of them are issued from cases 
when at least either an inequality of (28) or an inequality of 
(41) does not hold. Such cases hint that the measurements of 
concentrations (4) were conducted inaccurately or improperly 
(or both). The third possibility of unfeasible load 
determination is when at least an inequality of (35) does not 
hold. This is an evidence of a plausible overestimation of 
either the maximal or minimal load (Gitis and Hankins, 
2018). 

An algorithm of distributing water treatment loads based on 
the model is completely presented in Figure 1. The branch for 
a one plant is much shorter than that for a few plants. The one 

plant branch has three versions of the plant’s load 
determination and none of unfeasible load determination. 

Obtain measurements and interval estimates   1
,

P

k k k
a b


 

Yes No One plant? 

Yes No 

The plant’s 
load is *

0u h  
by (13) 

Yes No Ineq. (17) 
holds? 

The plant’s 
load is (18) 

The plant’s 
load is 0h  

Yes No Ineq. (19) 
holds? 

Yes No 
Ineq. 

(23) all 
hold? 

The k -th 
plant’s load is 

*
0ku h  by (22) 

No 
Ineq. (25) 
and (28) 

all hold by 
ineq.(24)? 

Yes 

The q-th 
plant’s load is 

*
0qu h  by (27), 

and the j -th 
plant’s load is 

ja  by (24) 

Re-measure 
pollutions 

Yes No Ineq. (32) 
holds? 

Yes No 
Ineq. 

(30) all 
hold? 

The k -th 
plant’s load 

is (33) 

Yes No 
Ineq. (38) 

and (41) all 
hold by 

ineq.(37)? 

The q-th plant’s 

load is *

1

P

q i

i

u b

  

by (40), and the 
j-th plant’s load 
is ja  by (37) 

Re-measure 
pollutions 

Yes No 
Ineq. 

(35) all 
hold? 

The k -th 
plant’s load 

is (36) 

Maximal or 
minimal loads 
are plausibly 

overestimated 

Ineq.
1 0b h

 holds? 

 

Fig. 1. Algorithm of distributing treatment loads. 
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4. APPLICATION AND ISSUES 

This section is inserted for better understanding how to apply 
the algorithm. The application consists of four main steps: 

1. Measuring concentrations of contaminants and associate 
them with plants. 

2. Registering minimal and maximal concentrations for each 
plant, i. e. determining concentrations’ range (4). 

3. Transferring the range into treatment hours (volumes) by 
using mappings (1) and (3) with corrections due to influence 
of geographic peculiarities of the plant site. 

4. Running the algorithm in accordance with Figure 1. 

A generalized example for one of three plants is shown in 
Figure 2. Interval estimates for this plant are such that 

2k kb a  , and relative widths of two other estimates are 1.5 

and 1.7333. It is seen that the pending treatment work 
increases quasi-linearly with a little curvilinearity. At greater 
values of maximal load estimations, strategies by (31) are 
more likely, where the total load does not influence. 
Additionally to that, overestimations of either maximal or 
minimal loads may occur when the total load decreases.  

 

Fig. 2. The plant’s load as a function of total load and 
maximal load estimation: circled dots stand for regular 
strategies by (22), squared dots stand for regular strategies by 
(31), and starred dots correspond to proportional strategies 
(34). 

An issue is, in the case of overestimation, it is hard to say 
how bad either maximal or minimal loads go beyond. 
Another issue is independence of strategies by (31) from the 
total load. However, effects of applying the algorithm are 
positive if to compare the optimal strategies to 0.5-strategies 
(0.5’s) when factually required loads are pretty close to 
minimal or maximal load estimations (Figure 3a). The effects 
are weaker when factual required loads are random (Figure 
3b). 

For the first real-world example, let us consider how a single 
plant can be loaded. Suppose that function g  in (3) is 

quasilinear: 

 1.054
1 1 02.4 10h v v    , (42) 

 

 

Fig. 3. Effects of applying the algorithm with values (21) best 
to be close to 1: bold lines stand for the optimal strategies, 
circled dots stand for 0.5’s 
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where coefficient 42.4 10  relates to a speed of treating the 
polluted water. If the volumes are given in cubic meters, this 
coefficient would be hours per m3 by a condition that the 
power was set at 1. However, as the volume of water to be 
treated increases, the capacity of the treatment plant may 
decrease. For instance, according to formula (2), 105 m3 are 
treated in 42.68 hours, whereas 2∙105 m3 will be treated in 
88.37 hours. 

Suppose that we have to treat between 1.2∙105 m3 and 
1.4∙105 m3 of the polluted water by 0 96h   hours. Then, 

according to formulae (7), the water treatment should be 
executed for 1 51.6835a   (minimal estimation) to 

1 60.7639b   hours (maximal estimation). As here 1 0b h , 

then we use optimal strategy (13). According to this strategy, 

the plant should execute * 0.5783u   of those 96 hours (total 
load), i. e.,  

*
0 0.5783 96 55.5168u h     hours 

is a treatment job for the plant. If the total load is between 
minimal and maximal estimations, e. g., 0 54h  , then we 

have case (14). In this case, the optimal strategy is found by 

(15): * 0.87u  , and the plant should execute 

*
1 0.87 60.7639 52.8646u b     hours, 

which constitute 97.9 % of the total load. Here, due to bad 
uncertainty in the estimation of water treatment, the minimax 
principle allows to reveal another possible source (or sources) 
of pollution, whose part is that 2.1 %. Besides, it is obvious 
that if the total load drops lower than those 52.8646 hours, 
then the plant will be entirely responsible for the pollution. 

Cases with two plants are not much that difficult. For a slight 
simplification, nominal capacities of the plants will be 
considered roughly equal. Suppose, one plant has to treat 
between 1.2∙105 m3 and 1.4∙105 m3, and the other one – 
between 1.3∙105 m3 and 1.5∙105 m3 of the polluted water by 

0 192h   hours. Although the absolute uncertainty in the 

estimation of water treatment is the same, the pollution is 
worse in the neighborhood of the second plant. Here, 
according to formulae (7), minimal and maximal estimations 
remain the same for the first plant, and  

2 56.2149a  ,  2 65.3292b  .  

So, condition 1 2 0b b h   holds and, subsequently,  

*
1 0.2891u  ,  *

2 0.3108u  .  

These strategies are valid owing to both inequalities in (23) 
hold. According to these strategies, the plants’ will be obliged 
to execute 

*
1 0 0.2891 192 55.5072u h     

and 

*
2 0 0.3108 192 59.6736u h     hours 

of water treatment, respectively. Note that despite the second 
plant’s maximal estimation is 7.14 % greater than the 
maximal estimation for the first plant, the second plant’s job 
is 7.51 % longer than the job for the first plant. This is so due 
to that power of 1.05 in function (42): the second plant 
should execute that 0.37 % more by the reason of the worse 
pollution. 

When an interval estimate for the first plant comes too 
narrow, e. g., with just 1.32∙105 m3 to 1.4∙105 m3 of the 
polluted water to be treated, the algorithm catches the 
irregularity of the corresponding decision for this plant: 
inequality (24) becomes true for 1j  , whereas inequality 

(25) holds for 2q  . Eventually, the first plant is obliged to 

execute its minimal estimation job, i. e. 1 57.1234a   hours. 

At the same time, despite the interval estimate for the second 
plant is the same as in the previous example, its job becomes 
longer:  

*
2 0 0.3187 192 61.1904u h     hours. 

There is an interesting case with three plants, where the 
second one has to treat between 1.27∙105 m3 and 1.5∙105 m3, 
whereas the first and third ones have to treat between 
1.32∙105 m3 and 1.4∙105 m3. Here, we obtain two irregular 
strategies – obviously, for those identical interval estimates. 
So,  

* *
1 3 0.2975u u  , *

2 0.2999u  , 

and the treatment jobs for the plants with the identical 
interval estimates are equal to the minimal estimation job, 
i. e. 1 3 57.1234a a   hours again. Meanwhile, the second 

plant is obliged to execute  

*
2 0 0.2999 192 57.5808u h     hours 

of the treatment job. However, the fact of that we obtain two 
irregular strategies is a manifestation of overestimation of 
minimal loads (1.32∙105 m3). If they are decreased to 
1.25∙105 m3, then all the three inequalities in (23) hold, and 
the treatment jobs for the plants appear to be just between 
their minimal and maximal estimations. 

The case with the total load in the middle is solved much the 
same. The plant’s load depends on the maximal estimation 
due to (33) if only inequalities (30) and inequality (32) hold. 
If inequality (32) does not hold, we may reveal 
overestimations. For instance, having the same estimations 
for the second plant, and 1.22∙105 m3 and 1.4∙105 m3 for the 
first and third plants, by 0 160h   we get: 

1 3 52.5883a a  , 2 54.8536a  ,  

1 3 60.7639b b  , 2 65.3292b  , 

and loads (36) would come into force by proportional 
strategies (34). Then, however, the jobs for the first and 
second plants would be 52.0303 hours, which is less than the 
minimal estimation (52.5883 hours). Therefore, there is an 
overestimation either in minimal or maximal loads. In this 
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case, the pollution measurements are recommended to be 
repeated. 

5. DISCUSSION AND CONCLUSIONS 

Obviously, the minimax principle is applicable only when 
statistical data are just partially available. This is a case of 
long rivers, at which measuring pollution is a very hard task, 
especially if the riverbed is large and the bottom is deep 
(Abraham, 2017). Therefore, the model and algorithm in 
Figure 1 is not applicable for shallow waters, unless their 
pollution is scattered (non-uniform). It is a plain demerit of 
this too pessimistic model not working with narrow intervals. 
However, a merit is its robustness. Besides, it gives a hint at 
plausible inaccurate measurements or overestimations when 
two or more irregular strategies are obtained. A special 
attention to the place where a single irregular strategy is 
obtained should be paid also. 

So, a novel approach has been proposed to industrial 
wastewater treatment control with using a minimax principle 
for cases when measurements of water pollution are scattered 
and dependent on locations. This approach fits long, deep, 
and wide rivers. Pollution at a shallow river can be analyzed 
as well only if its contaminations are registered in a wide 

range, i. e. max min 1.5k kc c      or about that for most indices. 

The proposed approach allows as calculating water treatment 
jobs under weakly measured pollution, as well as spotting 
non-listed sources of pollution, controlling thus the pollution 
origination. Moreover, it allows to estimate reliability of the 
interval estimates themselves, wherein the pollution 
measurements should be repeated more accurately or 
intensively. A promising advance of the approach is 
connected with including Bayesian decisions.  
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