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Abstract: This article deals with the global stabilization of a class of switched nonlinear systems where 
each mode represents non-minimum phase. We design, in this research work, nonlinear feedback 
controllers and switching law for this class of systems by considering both common and multiple 
Lyapunov functions. Sufficient conditions under which the globally asymptotically stabilization problem 
is solvable are also given. The global stability of the resulting switched system can be guaranteed by 
using the designed approach. In order to solve the global robust stabilization problem, the proposed 
method is extended to the uncertain switched nonlinear systems where each mode represents non-
minimum phase. Two examples are given to show the effectiveness of the developed techniques. 
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1. INTRODUCTION 

A switched system is an important class of hybrid systems 
that comprises a finite number of continuous or discrete sub-
systems by applying a switching law rule between these sub-
systems (Decarlo et al., 2000; Jouili el al., 2016; Long et al., 
2017; Xiang et al., 2008; Liu et al., 2017; Yao et al., 2017; 
Zheng et al., 2017; Liu et al., 2016). In recent years, switched 
systems, such as networked control systems (Zhao et al., 
2009), near space vehicle control systems (Wang et al., 
2013), circuit and power systems (Hamee et al., 2014), have 
increasingly attracted the attention of the scientific 
community since they can be used to describe a large number 
of physical and engineering applications. In fact, stability 
analysis and control synthesis, the most important issues 
dealt with when studying the switched nonlinear systems, are 
discussed extensively by many researchers, and excellent 
results were obtained for various types of switched systems 
(Liu et al., 2017; Long et al., 2017; Liang et al., 2013; Long 
et al., 2013; Sakly et al. 2015).  

Despite these promising good results, few attempts were 
made to stabilize non-minimum phase nonlinear systems 
where each mode can be a non-minimum phase. In general, 
stabilization of non-minimum phase nonlinear systems is a 
challenging problem in the field of control since a nonlinear 
control system is non-minimum phase if it's internal or zero 
dynamics is unstable (Isidori, 1995). Indeed, zero dynamics 
play an important role in the area of control analysis and 
synthesis of nonlinear systems. Some contributions 
investigated non-minimum phase switched nonlinear systems 
where each mode represents non-minimum phase. For 
example, in (Wang et al., 2008), control purpose was realized 
for a class of non-minimum phase cascade switched 
nonlinear systems where the internal dynamics of each mode 
was assumed to be asymptotically stabilizable. A control 
approach for the stabilization of a class of non-minimum 
phase switched nonlinear systems based on the concept of 

multi-diffeomorphismwas contemplated in (Jouili et al., 
2015). Output tracking of non-minimum phase switched 
nonlinear systems was considered in (Oishi et al., 2000) 
where an approximated minimum phase model was utilized. 
In (Yang et al., 2012), the stabilization of non-minimum 
phase switched nonlinear systems applied to multi-agent 
systems was proposed. In these systems, the states of 
linearized dynamics of all modes, which compose the whole 
state space and state dependent stabilization switching laws, 
were provided by considering both common and multiple 
Lyapunov functions. The same problem was also 
investigated, in (Benosman et al., 2007), using an inversion-
based control strategy. 

The main idea of the above-stated results is to design a 
controller for each mode in order to recompense for its own 
unstable internal dynamics such that all modes become 
independently stable. Then, we used the common and 
multiple Lyapunov functions methods to achieve the stability 
of the whole switched system. 

In this paper, we discuss the stabilization problem of non-
minimum phase switched nonlinear systems with Lyapunov 
function method. By extending the result presented in (Jouili 
et al., 2015), the studied switching system consists of two 
parts: The first part represents the linearized dynamics (input-
output behavior), while the second part shows the unstable 
internal dynamics (zero dynamics). Lyapunov functions for 
the whole switched system for each mode are constructed by 
using the multiple Lyapunov functions of the input-output 
behavior part with single control input and common 
Lyapunov function of the internal dynamics part. 

By assuming that the unstable internal dynamics part is 
uniformly global and quadratically stable, sufficient 
conditions, under which the global asymptotical stabilization 
problem is solved, are provided. In fact, the global stability of 
the resulting switched system can be guaranteed by using the 
proposed approach. 
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A nonlinear feedback controllers and switching law 
stabilization are explicitly designed by considering both 
common and multiple Lyapunov functions. 

The introduced approach can be also extended to uncertain a 
switched nonlinear system where each mode may be non-
minimum phase, which was not studied in the literature so 
far. The main contributions of this article include: (i) 
introducing an effective design method for the construction 
of nonlinear feedback controllers and switching law based on 
multiple Lyapunov functions and (ii) providing robust 
stabilization results for a more general class of switched 
nonlinear systems with uncertainty where each mode may be 
non-minimum phase. 

The remainder of the manuscript is organized as follows: In 
section 2, we describe the considered class of switched 
systems. In section 3, we address the problem formulation to 
provide the necessary background for applying the nonlinear 
feedback controllers of switched nonlinear systems addressed 
in section 4. The extension of the proposed approach to the 
switched nonlinear systems with uncertainty is given in 
section 5. In section 6, two numerical examples are presented 
to illustrate the effectiveness of the proposed approach. In the 
final part of this paper, we present a brief conclusion and 
future works. 

2. SYSTEM DESCRIPTION 

We consider a class of switched nonlinear systems of the 
following form: 

   i i ix f x g x u                                                           (1) 

with i is a set of indices specifying the active subsystem. 

where nx   are available states. Define  1,2, ,M m  , 

where m is the number of modes. , ii M u    is the 

input.  .if  and  .ig  are smooth functions such that  

   0 0 0i if g  .  

Lemma 1 (Decarlo et al., 2000):  

Considering system (1), if there exists continuous 

differentiable positive function iV  , , 0ii M V   and
 

     , , 1i i k i i kV x V x   , where ,i k represents the 

time when the thi sub-system is activated at the thk time. In 
this case, the switched system is stable. 

Based on the approach presented in (Jouili et al., 2015), it is 
assumed that every mode i M can be rewritten as the 

normal form. We can find a function iy  and a partition 

 Tx   , where  , ii n rr    , to rewrite the 

system (1) into the normal form [15] specified by the 
following equation system: 

   
 

, ,

,

i i i i

i

A b a u

Q

     

  

   







                                       (2) 

where 
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0 0 1 0
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0 0 0

i ir r
iA 

 
 
 
  
 
 
  




    


 

     1, 0 0 ,i
Tr

i ib b         and

     1, 0 0 ,i
Tr

i ia a         , with  .ib  and 

 .ia  are scalar functions,  . 0ia  . 

Mode i is a non-minimum phase if its zero 
dynamics  0,iQ  is unstable. Otherwise, it is a 

minimum phase. In this paper, the problem to be resolved 
consists in stabilizing the non-minimum phase switched 
nonlinear systems where the internal dynamics of each mode 
are unstable and uncontrollable. 

3. PROBLEM FORMULATION AND BASIC 
ASSUMPTIONS 

In order to design a switching law and nonlinear feedback 
controllers to stabilize switched nonlinear control system (1), 
we first rewrite the switched nonlinear system (2) in the 
form: 

     
 

 
,

, ,0 ,

,

i

i i i i

g

i

f g g u

Q

 

      

  






  



 



  

                           (3) 

where    , ,i ig a     and    , ,i i if A b       

For each mode i of system (3), it is assumed that there exists 
a continuous non-negative function of the following form: 

     V , V Vi i ik                                                      (4) 

where  Vi   are the Lyapunov functions for the each sub-

system i of the first part  with single control input of switched 

system (3),  V   is the common Lyapunov function  of the 

second part of the switched system (3)  without control input, 
and , 1, ,ik i m   are positive constants.  

Then, we need to impose the following assumptions on the 
slow sub-systems (input-output behavior) of equation (3): 

Assumption 1  

For any compact set  , there exists positive definite, 
radially unbounded 1C  function  Vi  for each mode  

1, ,i m   under which  there are  a continuous non-

negative 0C  function   0 1, ,i l l m      and some 

positive constants ,i i   and i , such that: 
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   
 

   

      

 

2

2

2

1

2

V V1
,0 ,0

2

V V 0

V

i i
i i

i

m

i i l l i
l

i
i

f g

i M

 
 

 

     


 





          
          
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    

                (5) 

Assumption 2  

For every 0i  , there exist a positive and radially-

unbounded function  V   in such a way that: 

     2 2V
,i iQ i M


    




   



                   (6) 

Assumption 3  

For system (2), if there exist 0i  , the vector fields 

 ,if   will be globally Lipschitz continuous for each 

i M , in such a way that: 

   , ,0i i if f                                                      (7) 

After imposing the above assumptions on the sub-systems of 
equation (3), we describe, in the next section, the proposed 
approach. 

4. NONLINEAR FEEDBACK CONTROLLERS DESIGN 
AND SWITCHING LAW 

In this section, we present the main obtained results, an 
integrated design of switching laws and nonlinear feedback 
controllers used to stabilize non-minimum phase switched 
nonlinear system where the internal dynamics of each mode 
are unstable. We also construct Lyapunov functions for each 
mode i. Simultaneous, a nonlinear feedback controller for 
system (3) and a switching law are formulated explicitly 
based on multiple Lyapunov functions. The studied non-
minimum phase switched nonlinear system (3) consists of 
two parts: 
- The first part represents the linearized dynamics (input-
output behavior). 
- The second part represents the unstable internal dynamics 
(zero dynamics). 

The switched nonlinear system (3) can be stabilized by using 
Lyapunov function method. Under the assumption that the 
unstable internal dynamics is uniformly and globally 
quadratic stable, sufficient conditions are given, which 
guarantees the global asymptotical stabilizbility of the non-
minimum phase switched nonlinear system (3). A nonlinear 
switched state feedback and a switching law are constructed 
based on the structure characteristics of the switched system. 
The switching law is constructed based on partial state of the 
switched system. 

Let thi  be the sub-system of the switched nonlinear system 

(3). Along the trajectory of the system (3), the time derivative 
of  ,iV   is as follows: 
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            (8) 

For every i and from assumption 1, we deduce that: 
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Thus, 
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Based on assumption2, we obtain the following equation: 
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(11) 

Moreover, from assumption 3 and condition 9, we get the 
following inequality: 
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   
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(12) 

We also obtain: 
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For each 1, ,i m  , if we choose 
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2
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  

 , then 

the nonlinear feedback controller  ,iu    satisfying 

 , 0iV   
 
is as shown below: 
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(13) can be  rewritten as: 
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If the thi  sub-system is switched to the thj sub-system at 

switching time , 1, 2,n n   , the following inequalities will 

be satisfied: 

       , ,ni j nV V                                          (16) 

Then,
 

       , , 1, ,i ki k iiV V       can be 

obtained.  

According to lemma 1, when the switched law and nonlinear 
feedback controllers iu (14) satisfy equation (16), system (3) 

will be stable. 

If the switching law from the thi  sub-system to the thj  

sub-system is a sub-set of the following set 

 , / , ,k ik jkV V i j M and i j                                  (17) 

then the feedback control  ,iu   (14) can stabilize system 

(3) under the corresponding switching law. 

We obtain the following results 

Theorem 1 

Considering the switched nonlinear system (3) satisfying 
assumptions 1-3, for which a family of Lyapunov functions 

 , 1, ,iV i m    satisfies (16), then 
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Let k satisfy (17). If the switched law guarantees that, 

when the thi  subsystem is switched to the thj  sub-system 

i j kS   , then the nonlinear switched feedback controller 

(14) can guarantee the asymptotically-stable system (2). 
 

5. EXTENSION OF THE UNCERTAIN SWITCHED 
NONLINEAR SYSTEMS 

In this section, we consider the switched system (3) with 
uncertainties described by the following equations: 

     
   

, , ,

, ,

i i i i i

i i

A b a u

Q





       

    

   

 







                   (18) 

where  .i  are uncertain functions. Furthermore, functions 

 ,i      and  ,i    are bounded and satisfy the 

inequalities below: 

   
2

, ,i i                                                            (19) 

and 

   
2

, ,i i                                                            (20) 

with i  and i  are positive real values and the other symbols
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are the same as those provided by system (2).Subsequently, 
system (18) can be changed into the following switched form: 

     
 

 

   
,

, ,0 , ,

, ,

i

i i i i i

g

i i

f g g u

Q



 



        

    







   

 

 



          

(21) 

Our objective is to extend the result obtained in section 4 to 
solve the global stabilization problem for switched nonlinear 
system (21). We consider explicitly the Lyapunov function 

     V , V Vi i ik      and its time derivative along the 

trajectories of (18). 

          
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


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
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
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 
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 

 
 

 


 












          

(22) 

Based on the assumptions 2 and 3, we get an inequality of the 
following form: 

 
 

   

           

       
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 
  

  

 
  

 


   



 
   

 







            (23) 

Let consider the assumptions below: 

Assumption 4 

For each mode i M  of system (21), there exist a 

continuous positive Lyapunov function   iV   and positive 

numbers 0i  such that: 

     2 2V
,i

i i


   



  


                                (24) 

Assumption 5 

There exist a continuous differentiable positive function 

 V   and constants 0i   such as, for every i M , 

     2 2V
,i i


   




  



                                  (25) 

From assumptions 2 and 5, we have: 

   
      
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                 (26) 
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Then, we can obtain, from (26), that 
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(27) 

Therefore, in the case of   ,
2
i

i i i i ik k i M


     , 

we can derive  , 0iV    .The nonlinear controller is chosen 

as 
   

2

, V

2

i i
i

i

g
u

   



 


such that the positive function 

 ,iV    satisfies: 
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(28) 

According to theorem 1 presented in the previous section, if 

the switching law from the thi sub-system to the 
thj sub-

system satisfies (16), and   ,
2
i

i i i i ik k i M


     , 

system (17) is stable, we will obtain the following results: 

Theorem 2 

For i M ,  ,iV    are continuous positive Lyapunov 

functions for each sub-system of the switched nonlinear 
system (18) satisfying 
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Let k satisfy (17). If the switched law guarantees that, 

when the thi sub-system is switched to the thj  sub-system
 

i j kS   , then the robust nonlinear feedback controllers 

     
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,
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g
u

   
 



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 can guarantee the 

asymptotically-stable system (18). 

6. SIMULATIONS EXAMPLES 

In this section, we show the applicability and effectiveness of 
our approach by presenting two examples illustrating the 
main results obtained in this research work. 

6.1 Example 1 

In this section, a nonlinear non-minimum phase inverted cart-
pendulum system is presented to illustrate the effectiveness 
of the proposed control structure compared to the 
stabilization of non-minimum phase switched nonlinear 
systems method presented in (Jouili et al., 2015). 

Description of the inverted cart-pendulum system 

We consider the familiar inverted cart-pendulum system 
(Jouili et al., 2015) shown in figure 1. 

u

py



 

Fig. 1. Schematic of the inverted cart-pendulum. 

The cart must be moved using the force u so that the 
pendulum will be in the upright position. Let the mass of the 

cart be M, the mass of the pendulum be m, the length of the 
stick be Land the acceleration of the gravity be g. The mass 
of the stick is smaller compared to the mass m and it will be 
neglected together with the effect of friction if the pendulum 
angle   and the cart position py are chosen as the 

generalized position coordinates for the considered system.  

The inverted cart-pendulum equations are: 

   
  

   
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p
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     
 


    




 

                             (29) 

Let  1 2 3 4

TT

p px x x x x y y     
 and 

3y x .  

Then, we obtain the following state space equation: 
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                   (30) 

Stabilization control simulations 

To stabilize the angle 0    (upright position), when the 
cart position is not limited, we apply the proposed approach 
of system (30). The synthesized control approach, in this 
case, has to maintain the load in a perpendicular position 
during the cart motion. Thus, the balancing angle   remains 
bounded so that we can consider that: 0  .Based on the 

latter hypothesis, we can write the following approximations: 

 3 3sin x x  and  3 1cos x  . If we apply the approach 

presented in section 4, the system given by (30) satisfying the 
lemma 1 will be transformed into the two following sub-
systems: 

- Sub-system 1: 
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 and  1 ,0 0g   .  

- Sub-system 2: 
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It is easy to confirm that assumptions 1 and 3 are satisfied: 

- For sub-system 1, we can compute: 
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          

      



 

     



 

- For sub-system 2, we can compute: 

   
 

   

        
   
     

2

2 2
2 22

2

2 2 2
21 1 2 1 2

2
2 2

2 2 2 2
2 1 2 1 2

V V1
,0 ,0

2

V V 0

, ,0

V
,

f g

f f

Q

 
 

 

      

   


     



          
      

  
    
 



We 

construct the controllers 1u  and 2u , for each sub-system i  

(i=1,2), under the same form of equation (14).  By choosing 

1 6k  and 2 10k  , we construct the following Lyapunov 

functions: 

-  1V ,  for sub-system 1: 

  2 2
1 1 2 2 2

1 2

1 1 6 6
V ,

2 2
   

 
   

               

                       (34) 

-  2V ,  for sub-system 2: 

  2 2
2 1 22 2

1 2

10 10
V ,   

 
                                               (35) 

The stabilizing feedback controller 1u  is: 

 22
1 12

u M L m L


                                                     (36) 

and the stabilizing feedback controller 2u  is: 

 2
2 2 1u M L m L                                                       (37)                 

According to equation (16), the switching law can be 
designed as: 

    , ,ii i arg min V                                             (38) 

With the help of the designed controllers (36), (37) and 
switching law (38), the simulation was carried out using the 
design parameters 1 22, 4,   1 2 2   , 1 2 1   , 

1 1  and 2 1  . 

The simulation results are presented in figures 2 and 3.   

 

Fig. 2. Evolution of the pendulum angle. 



28                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

Fig. 3. Evolution of the control signal. 

We observe, from these figures, that the stabilization of the 
cart angle is satisfactory. Figure 3 presents the evolution of 
the switching signal. Figure 2 shows the state response of the 
inverted cart-pendulum system (30) under the designed 
switching law (38).This state indicates that the closed-loop 
system is asymptotically stable.  Indeed the pendulum angle 
stabilizes quickly to zero, which shows that the controllers 
(36) and (37) can globally and asymptotically stabilize the 
inverted cart-pendulum system (30). Thus, the simulation 
results illustrate well the effectiveness of the introduced 
method. 

Comparison of the proposed approach with the concept of 
multi-diffeomorphism method  

In order to evaluate the performance of the proposed 
approach on the inverted pendulum model, a comparison 
between the proposed approach and the stabilization of non-
minimum phase switched nonlinear systems method 
presented (Jouili et al., 2015) is given in this subsection. 

The results of this study are provided in figures (4) and (5). 

 

Fig. 4. Evolution of the pendulum angle (dashed line: the 
proposed approach; continous line: multi-diffeomorphism 
method). 

Figure 4 shows the state response of the inverted cart-
pendulum system (30). The simulation results prove that 
good convergence performances were achieved and the 
output signal of the inverted cart-pendulum system (30) were 
bounded. It can also be seen that the output state trajectory 
asymptotically converged to the origin. As a result, applying 
the proposed approach, we obtained asymptotic stabilization 
of the system (30), which led to a convergence rate faster 

than that provided by applying the method introduced in 
(Jouili et al., 2015).  

 

Fig. 5. Evolution of the control signal (dashed line: the 
proposed approach; continous line: multi-diffeomorphism 
method). 

In figure 5, the control signal obtained by using the proposed 
approach is inferior to that provided by employing the 
method presented in (Jouili et al., 2015), which highlights a 
more stable evolution of the dynamic variable θ shown in 
figure 4. These results confirm again the remarkable 
performance of both methods while focusing on the 
advantage of the proposed method. 

6.2  Example 2 

In this sub-section, a switched nonlinear uncertain system 
with non-minimum phase modes is presented to illustrate the 
effectiveness of the proposed control structure. We consider 
the uncertain switched nonlinear system (Wang et al., 2016): 

       , 1, 2i i i ix f x g x u x i                               (39) 

with 

     
2 2

1 2 2 1
1 2 13 2

1 2 1 2 2

1
, , ,

4 6

x x x x
f x f x g x

x x x x x

     
       

            
 

   2
2 1

1 2

0
,

2

x
g x x

x x

  
        

 and  
2
2

2
0

x
x

 
   

  
 

We also apply the approach presented in previous section. 
The two switched nonlinear systems given by (39) can be 
written in the form presented by (21): 

- Sub-system 1: 

     
 

 

   
1

1 1 1 1 1

,

1 1

, ,0 , ,

, ,

g

f g g u

Q



 



        

    







    

  

 



           (40) 

With
 

     2 2
1 1 1

4
, 4 , , 0 , , 0f g g       


      , 

   1 12 3

4 1 4
, , , 1Q 

     
 

       and 

 1 2

1
,

 
 

    
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- Sub-system 2: 

     
 

 

   
2

2 2 2 2 2

,

2 2

, ,0 , ,

, ,

g

f g g u

Q



 



        

    







    

  

 



           

(41) 

with
 

     3
2 2 2

3 3
, , ,0 2, , 0

2 2
f g g           

   2 2 3 4
2 2, 4 4 2 4 , , 0Q                   

and   2
2 ,      

Choosing 

     
2

2 2
1 2, 2 , ,

4
V V V

      

     3
12 21 21

1 4 4
4 , 6 2, 6 2

2
         

 
        , 

1 2 1 2 1 2 1 2 1 21, 3, 1, 1                   
, 1 2 1 2 1 21, 1           and 1 2 1   .  

It is easy to confirm that assumptions 1 and 5 are satisfied: 

- For sub-system 1, we can compute: 

   
 

   

      
   
   

   

   

2

1 1
1 12

1

2 2
1 12 2 1

1 1

2 2
1

21 2
1

22
1

V V1
,0 ,0

2

V V 8 7 0

, ,0 0

V
,

V
,

V
,

f g

f f

Q





 
 

 

      

  


   




   



   



          
     
  



 


   



    





 

- For sub-system 2, we can calculate: 

   
 

   

      
   
   

   

   

2

2 2
2 22

2

2 2
2 21 1 2

2 2

2 2
2

22 2
2

22
2

V V1
,0 ,0

2

V V 0

, ,0

V
,

V
,

V
,

f g

f f

Q





 
 

 

      

   


   




   



   



          
    
  



 


   



    





 

By choosing 1 9k   and  2 4k  , we construct the 

Lyapunov functions  V ,i    as follows: 

 
2 2

2 2

9
, 1

4V ,

2 , 2
i

if i

if i

 
 

 

  
  

                                        (42) 

Then, we apply theorem 2 to design a set of state feedback 
controllers for the switched system (39) such that the closed-
loop system is globally and asymptotically stable. 

Following the design procedure presented in the previous 
section, we can find the switching law  

  , , 1, 2ii arg min V i    and the feedback controllers: 

 
 

3
1

2

,

, 4

u

u

  

  

 



                                                                   (43) 

From theorem 2, the controllers (43) guarantee global robust 
asymptotic stability of the switched system (39). The 
simulation results are shown in Figures 6 and 7. Figure 6 
demonstrates the output response of the closed-loop switched 
system. Figure 7 presents the feedback controllers (43). It can 
be seen that the closed-loop system is robustly asymptotically 
stable. These results verify that, by appropriately choosing 
the design parameters, we obtained a good transient 
performance and a moderate control effort. Thus, the 
simulation results validate the developed approach. 

 
Fig. 6. Output response of the switched nonlinear            
system (40). 

 
Fig. 7. Nonlinear switched feedback controller. 

7. CONCLUSION 

In this paper, we discussed the global stabilization problem 
for a class of switched nonlinear systems where each mode 
represents non-minimum phase. Using both common and 
multiple Lyapunov functions, we showed how to explicitly 
design nonlinear feedback controllers that guarantee the 
asymptotic stability of the resulting switched system. The 



30                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

sufficient conditions for the stabilization of the resulting 
switched system were obtained. As extension of the proposed 
design scheme, the global robust stabilization of uncertain 
switched nonlinear systems, where each mode represents 
non-minimum phase, was also studied. It was shown that the 
design idea can be successfully used in global stabilization of 
switched nonlinear systems. The obtained results can be 
easily extended to the multi-input multi-output case. 
However, the tracking control problem of the proposed 
approach was not studied in this paper. This issue would be 
investigated in the future work. 
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