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Abstract: This paper deals with Predictive Sliding Mode Control (PSMC) that uses Laguerre
functions in the design of a control input signal. Two types of PSMC algorithms are considered:
one originating from the digital equivalent control method approach, and another containing
an additional sliding mode control component that provides the robustness and determines the
system dynamics in reaching mode. A one-step-delayed disturbance estimator is introduced to
account for system nonlinearities and unknown disturbances, as well as to ensure better system
steady-state accuracy. The proposed algorithms are demonstrated by conducting several real-
time experiments on a modular DC servo system. Robustness of the closed loop, affected by
tuning parameter values, is demonstrated as well.
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1. INTRODUCTION

Sliding mode control (SMC) is a particular class of variable
structure control, characterized by robustness to exter-
nal disturbances and parameter variations (Utkin, 1978;
Young et al., 1999; Yu and Kaynak, 2009). SMC drives a
system state along predefined sliding surface, determined
by a SMC switching function. Thus, the effective system
dynamics is of lower order and robust performance is
achieved. When SMC is realized by using micro-controllers
or digital signal processors, a quasi-sliding motion (Utkin,
1977; Milosavljević, 1985) arises in an O(T ) vicinity of the
sliding surface, where T is a sampling period. A review
of digital SMC algorithms can be found in (Milosavl-
jević, 2004; Yu et al., 2011). The discretization process
may produce chattering that excites non-modelled system
dynamics and increases maintenance costs. To eliminate
the chattering phenomenon, several approaches are rec-
ommended in (Bartoszewicz, 1998; Golo and Milosavljević,
2000; Bartoszewicz and Leśniewski, 2016; Leśniewski and
Bartoszewicz, 2016).

One simple way to design a chattering-free digital SMC
is to use a digital equivalent control algorithm that forces
the system state to reach the sliding surface at the very
next sampling instant (Su et al., 2000). This digital SMC
provides O(T 2) sliding mode accuracy when the system
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disturbances are either known or when a one-step delayed
disturbance estimator is used (Milosavljević et al., 2004).
It belongs to the class of deadbeat control algorithms
(Ignaciuk and Bartoszewicz, 2012), characterized by the
use of large control input signals, often beyond the control
saturation limits. Furthermore, if the model is inaccurate
(which is often the case), the effective disturbance may
depend on the model input. In such cases one may experi-
ence chattering or oscillations, or even instability. Similar
system behaviour also occurs if traditional SMC with
a relay control component is applied. Therefore, model
predictive control (MPC) seems to be a good candidate
for overcoming these SMC imperfections i.e. to deal with
constraints and to stabilize the system in the presence of
the control input dependent disturbances.

MPC has been a great industrial success, particularly
in the process industries (Qin and Badgwell, 2003) and
can be also implemented in the control of other complex
systems (Sgaverdea et al., 2015; Bojan-Dragos et al.,
2015; Duţescu et al., 2017; Chelladurai et al., 2017). Still,
robustness of the MPC controllers continues to be an
active research issue. There are many approaches to robust
MPC, including dynamic programming, optimization over
feedback policies, min-max MPC, Tube MPC (Mayne
et al., 2006; Rawlings and Mayne, 2009; Benlaoukli et al.,
2008), as well as the combination of SMC and MPC.

The SMC based on generalized predictive control (GPC)
is considered in (Corradini and Orlando, 1997; Mitić et al.,
2013b). In (Garcia-Gabin et al., 2009), the SMC compo-
nent is not treated as a part of the optimization problem
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at all, and the reaching and existence conditions of the
sliding mode, as well as system stability are not discussed.
Only the predictive part of controller is derived by op-
timizing the cost function. Hierarchical control schemes,
consisting of a high level MPC and a low level SMC, are
considered in (Incremona et al., 2015; Benattia et al., 2015;
Rubagotti et al., 2011a,b), where the SMC component
rejects the matched disturbances acting the plant, and
reduces uncertainty for the MPC design in that way. In
(Spasić et al., 2016), SMC is chosen to be the auxiliary
controller in Tube MPC, due to its trivial computational
requirements and good robustness properties. To cope with
the problem of system instability, when the control input
dependent disturbances act, two different approaches are
given in (Neelakantan, 2005), which integrate SMC and
MPC concepts. In the first one, direct optimization of
the cost function with respect to the digital equivalent
control is proposed. In the second control method, the cost
function is optimized with respect to the reaching control
part that guides the system towards the sliding surface.
Once the system state reaches the sliding surface, it stays
on it thanks to the equivalent control term.

In this paper, the predictive sliding mode control (PSMC)
is based on using Laguerre functions, unlike the control
approaches presented in (Neelakantan, 2005). The imple-
mentation of these functions for the approximation of
control input signal is justified due to faster solving of
the optimization problem. Laguerre functions are chosen
among other orthogonal functions due to their smoothness
and easiness for tuning of closed-loop system performance
by only two parameters (N - the number of the Laguerre
terms, and a – the pole of the Laguerre network). There
are no fast and steep changes in the control signal and the
decay rate of the incremental control signal is determined
by the parameter a. The traditional MPC is a particular
case of this control approach when a = 0. (Wang, 2009,
2001; Barry and Wang, 2004; Bavili et al., 2015). Laguerre
functions have been already used in the design of Tube
MPC presented in (Spasić et al., 2017) where MPC con-
trols the nominal system, and SMC is introduced as an
auxiliary controller.

Two types of PSMC are considered herein. The first
one is based on the switching function predictive model
derived from (Su et al., 2000). The second one uses
the predictive model of the switching function dynamics
obtained from the chattering free reaching law method for
digital SMC (Golo and Milosavljević, 2000). In both cases,
the Laguerre functions compose the control components
that are the analogues to the digital equivalent control of
SMC, and the cost functions are optimized with respect
to the coefficients of Laguerre functions. In the latter
control approach, the system dynamics in reaching mode
is fully determined and the system state attains the sliding
mode in finite number of steps comparing to the second
control method presented in (Neelakantan, 2005). The
system robustness and steady-state accuracy are improved
as well and even become better after introducing the
one-step delayed disturbance estimator. The disturbance
estimator can be avoided by using the reaching laws with
higher relative degree switching functions (Bartoszewicz
and Leśniewski, 2016; Bartoszewicz and Latosinski, 2018)
at the price of lower accuracy.

The paper is organized as follows. The problem formula-
tion is given in Section 2, first the augmented plant model
is defined, then two conventional digital sliding mode
control approaches are briefly described, and at the end
the Laguerre functions based MPC is explained. The pro-
posed PSMCs based on Laguerre functions are developed
in Section 3. The experimental results are presented and
discussed in Section 4 where the proposed algorithms are
applied to a real DC servo system (Inteco, 2011). Section
5 contains some concluding remarks.

2. PROBLEM FORMULATION

2.1 Mathematical Model of Plant

Consider a discrete-time state-space model of plant given
by

xk+1 =Axk +Buk + dk, (1)

yk =Cxk (2)

where xk ∈ Rnx , uk ∈ Rnu , and dk ∈ Rnx represent vectors
of system state, control input signals and disturbances,
respectively. To introduce integral action in the controller,
the following augmented state-space model is obtained

xe,k+1 =Aexe,k +Be∆uk + δk (3)

yk =Cexe,k (4)

where the control increment ∆uk = uk − uk−1 is used as
an optimization variable and

xe,k =

[
xk
uk−1

]
; δk =

[
I
0

]
dk; (5)

Ae =

[
A B
0 I

]
;Be =

[
B
I

]
;Ce = [C 0] . (6)

It is assumed that the pair (Ae, Be) is controllable.

2.2 Sliding Mode Control

The design procedure for the sliding mode control of
discrete-time systems can be carried out in two steps. The
first one involves the selection of a switching function

Sk = Gxe,k (7)

where rank(G) = nu and nu is a number of control inputs.
Note that Sk = 0 denotes a so-called sliding surface, also
known as a sliding manifold, defining the system behaviour
in a desired manner. In the second step, the discrete-time
control signal ∆uk is selected such that the reaching and
existence conditions of sliding mode are satisfied.

In order to determine the system dynamics in sliding
mode, the equivalent control method is used (Draženović,
1969; Utkin, 1978). Starting with Sk+1 = Gxek+1

= 0,
taking into account (3), the equivalent control input signal
is obtained in the form of

∆ueqk = −(GBe)
−1G(Aexe,k + δk). (8)

By implementing (8) in (3), the system dynamics in sliding
mode is defined by
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xe,k+1 = (Ae −Be(GBe)
−1GAe)xe,k. (9)

in the absence of any disturbance. If the system state is
close to the sliding manifold, the equivalent control can
drive the system along the sliding surface. However, since
δk is not available, a one-step-delayed estimator obtained
from (3) as

δ̂k = δk−1 = xe,k −Aexe,k−1 +Be∆uk−1 (10)

is usually utilized in design of ∆uk

∆uk = −(GBe)
−1G(Aexe,k + δ̂k). (11)

Substituting (11) in (3), using (7), the switching function
dynamics is described by

Sk+1 = G(δk − δk−1). (12)

This control approach belongs to the class of deadbeat
controllers with some drawbacks. If the control input signal
(11) is not saturated, it will drive the system state to
the sliding manifold at one sampling period T . When
the saturation happens, caused by high calculated values
of the control signal, the system dynamics in reaching
mode and reaching time will not be predefined. The
oscillatory motion may also occur in perturbed system
(when the model used is in error) due to such large control
input values, since the system is overcompensated and the
system state crosses the sliding surface at the very next
time instants. Finally, if the disturbance depends on the
control input

δk = δ∗k + (∆Be)∆uk (13)

where ∆Be represents the error in Be and δ∗k is indepen-
dent of the control input, the system can either go unstable
or produce chattering (Su et al., 1993, 1996). In the latter
case, the switching function dynamics is defined by

Sk+1 = −G∆Be(GBe)
−1[2Sk − Sk−1] +O(T 2) (14)

and for significant error in the control matrix ∆Be, the
poles of the equation (14) can be outside the unit disk
in the z-plane. However, it is typically neither necessary
nor optimal to force the system to reach the sliding mode
at the very next instant. Therefore, in order to avoid
high control input signals and to determine switching
function dynamics in reaching mode, the additional control
component is introduced into the control algorithm (Golo
and Milosavljević, 2000) yielding

∆uk =− (GBe)
−1G(Aexe,k + δ̂k − xe,k

+min(Sk, diag(K)sign(Sk))). (15)

Substituting (15) in (3), using (7), the switching function
dynamics is now defined as

Sk+1 = Sk −min(Sk, diag(K)sign(Sk))

+G(δk − δk−1) (16)

where K ∈ Rnu is a gain vector. The control signal (15)
will drive the system state to the sliding manifold in a
finite number of sampling instants if

K > ∆ (17)

where

|G(δk − δk−1)| < ∆ (18)

and ∆ is a positive vector (Mitić et al., 2013a).

Unfortunately, if the disturbance has the form of (13),
the system may become unstable in this case, as well.
In order to cope with the later issue and to incorporate
and solve the problem of control signal saturation in
SMC design, model predictive control (MPC) is used
due to its ability to deal with constraints and stability
problem caused by model error. In this manuscript, unlike
the algorithm described in (Neelakantan, 2005), Laguerre
functions based MPC is proposed to allow faster solving
of the optimization problem.

2.3 Laguerre functions based MPC

The Laguerre functions can be expressed as

Lk(z) =
(z−1 − a)

(1− az−1)
Lk−1(z) (19)

with

Lk−1(z) =

√
(1− a2)

1− az−1
(20)

where 0 ≤ a < 1 is the pole of the Laguerre network. A
difference equation, defining discrete-time Laguerre func-
tions, is given by

Lk+1 = AlLk (21)

where

Lk = [l1k l2k ... lNk]T . (22)

is a vector of discrete-time Laguerre functions representing
the inverse z-transformations of Lk(z) for i = 1, N , where
N is the number of Laguerre terms, and Al is a matrix
defined by

Al =

 a 0 0 ... 0
β a 0 ... 0
−aβ β a ... 0
−aN−2β −aN−3β ... −aN−Nβ a

 (23)

where a and β = 1 − a2 are adjustable parameters of the
Laguerre functions, and L(0) is determined by

L(0)T =
√
β[1 − a a2 − a3 ... (−1)N−1aN−1].

(24)
Equation (21) is obtained by implementing the inverse
z-transformation on the Laguerre networks defined by
(19) and (20). The control increment ∆uk+m can be
composed of a set of Laguerre functions (Wang, 2009),
l1k, l2k, l3k, ..., lNpk

, as

∆uk+m =

N∑
j=1

cjkljm. (25)

Here the index m denotes a future sampling instant and
cjk(j = 1, N) are the Laguerre coefficients at time instant
k. Eq. (25) can be written in vector form

∆uk+m =Lm
T ηk; (26)

ηk = [c1k c2k ... cNk].

In order to obtain the control increment ∆uk, the op-
timal Laguerre parameter vector ηk has to ensure that
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constraints on the input and its rate of change are fulfilled.
These are defined by

Θηk 6 Π (27)

where

Θ =

 M1

−M1

M2

−M2

 ; Π =


∆umax

−∆umin

umax − uk−1

−umin + uk−1

 (28)

and

M1 =


Lm1

T 02
T ... 0m

T

01
T Lm2

T ... 0m
T

...
...

. . .
...

01
T 02

T ... Lmnu

T

 ; (29)

M2 =



i−1∑
j=0

Lj1
T 02

T ... 0m
T

01
T

i−1∑
j=0

Lj2
T ... 0m

T

...
...

. . .
...

01
T 02

T ...

i−1∑
j=0

Ljnu

T


The time instants at which the constraints are imposed on
∆uk are represented by m1, · · · ,mnu

.

The implementation of Laguerre functions in the design
procedure of PSMC will be described in the next section.

3. PREDICTIVE SMC

The PSMC design based on the equivalent control method
is considered first. The future values of the switching
function can be obtained by extending (7) within the
prediction horizon as follows

Sk+1 =Gxe,k+1 = G(Aexe,k +Be∆uk + δk)

Sk+2 =Gxek+2
= G(Aexe,k+1 +Be∆uk+1 + δk+1)

=G(Ae
2xe,k +AeBe∆uk +Aeδk +Be∆uk+1)

.

.

.

Sk+Np =Gxek+Np

=G(Aexe,k+Np−1 +Be∆uk+Np−1 + δk+Np−1)

=G(Ae
Npxe,k +

Np−1∑
i=0

Ae
iBe∆uk+Np−i−1)

+G

Np−1∑
i=0

Ae
iδk+Np−i−1 (30)

By substituting (26) into (30) one obtain the prediction of
the future switching function as

Sk+m =GAe
mxe,k +G(

m−1∑
i=0

Am−i−1
e BeLi

T )ηk

+G(

m−1∑
i=0

Ae
iδk+m−i−1). (31)

The design goal is to find optimal ηk by minimising a cost
function

J =

Np∑
m=1

Sk+m
TSk+m + ηk

TRηk (32)

subject to the constraints (27), where R > 0 is a weighting
matrix. The control input increment ∆uk is then calcu-
lated using (26). Unfortunately, the latter control input
does not define the system dynamics in reaching mode.
That is why PSMC, based on the control approach de-
scribed by (15), is considered in the sequel. One should
expand the difference ∆Sk+m = Sk+m − Sk+m−1 in the
prediction horizon (m = 1, Np) first. This gives

∆Sk+1 =Gxe,k+1 −Gxe,k +Gδk

=G(Ae − I)xe,k +GBe∆uk +Gδk

∆Sk+2 =Gxek+2
−Gxe,k+1

=G(Aexe,k+1 +Be∆uk+1 + δk+1)

−G(Aexe,k +Be∆uk + δk)

=G(Ae − I)Aexe,k +G(Ae − I)Be∆uk

+GBe∆uk+1 +G(Ae − I)δk +Gδk+1

.

.

.

∆Sk+Np
=Gxek+Np

−Gxek+Np−1

=G(Ae − I)Ae
Np−1xe,k

+G

Np−1∑
i=0

Ae
iBe∆uk+Np−i−1

−G
Np−2∑
i=0

Ae
iBe∆uk+Np−i−2

+G

Np−1∑
i=0

Ae
iδk+Np−i−1

−G
Np−2∑
i=0

Ae
iδk+Np−i−2 (33)

By substituting (26) into (33), the later equation can be
rewritten as



16 Control Engineering and Applied Informatics

∆Sk+m =G(Ae − I)Ae
m−1xe,k

+G

m−1∑
i=0

Am−i−1
e BeLi

T ηk

−G
m−2∑
i=0

Am−i−2
e BeLi

T ηk

+G

m−1∑
i=0

Ae
iδk+m−i−1

−G
m−2∑
i=0

Ae
iδk+m−i−2. (34)

within the prediction horizon. Now, the desired control
should be calculated by minimizing the cost function

J =

Np∑
m=1

(∆Sk+m +min(Sk+m, diag(K)sign(Sk+m))T

(∆Sk+m +min(Sk+m, diag(K)sign(Sk+m))

+ ηk
TRηk (35)

with respect to ηk subject to the constraints (27). Again,
the control input increment ∆uk is calculated using (26).

Notice that, if R = 0, the minimization of (35) will lead to
the predictive model of switching function dynamics (16),
represented by the following form

Sk+m+1 = Sk+m −min(Sk+m, diag(K)sign(Sk+m))

+G(δk+m − δk+m−1) (36)

for m = 2, Np. If K is selected according to (17), the
sliding manifold will be reached in a finite time within the
prediction horizon (Spasić et al., 2016). By choosing an
input weight R > 0 of significant magnitude, the stability
problem is solved in presence of the disturbance depending
on the control input signal.

The both optimization problems, (32) and (35), can be
handled by a number of optimization routines (Boyd and
Vandenberghe, 2004). The one used herein, which includes
the Kuhn-Tucker conditions (Luenberger, 2003), together
with Hildreth’s algorithm (Hildreth, 1957), is described in
detail in (Wang, 2009).

4. EXPERIMENTAL RESULTS

The modular servo system (Inteco, 2011) is used for
the demonstration of proposed control algorithms. The
transfer function of the DC servo system is

G(s) =
θ(s)

u(s)
=

Ks

s(Tss+ 1)
(37)

whereKs = 184.95 rad/s, Ts = 0.9 s, and the system states
are angular position θ = x1, and angular velocity ω = x2.
It is assumed that the control signal is dimensionless scaled
input voltage, u(t) = v(t)/vmax where vmax = 12 V which
satisfies |u(t)| ≤ 1.

The discretization is done using Matlab function c2d.m,
with the sampling time T = 0.01s, and the following
augmented state-space model is obtained
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(a) The angular position x1 for
PSMC based on equivalent con-
trol method (without the one-step-
delayed estimator).
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(b) The angular position x1 for
PSMC based on equivalent control
method (with the one-step-delayed
estimator).

Fig. 1. The angular position x1.

Ae =

[
1 0.0099 0.0102
0 0.9890 2.0437
0 0 1

]
;Be =

[
0.0102
2.0437

1

]
;Ce =

[
0
0
1

]T
.

The parameters for design of the Laguerre functions based
PSMC described in Section 3 are: the prediction hori-
zon Np = 30, the number of Laguerre terms N = 5,
Laguerre functions parameter a = 0.15, the switching
function parameter G = [−0.0358 − 0.0071 0]. Notice
that the proposed approach uses 4 times less parameters in
comparison to traditional MPC (Spasić et al., 2016) and,
consequently, the optimization problem is solved faster.
The reference signal r is defined by

r =

{
0 if Time < 0.5s

40 if 0.5s ≤ Time ≤ 5s
0 if Time > 5s

. (38)

The constraints on the control signal and its increment are
defined as

−1 ≤ uk ≤ 1; −0.2 ≤ ∆uk ≤ 0.2. (39)

The first type of proposed PSMC based on equivalent con-
trol is applied to the DC servo system and two experiments
are conducted in order to compare the performance of the
system with and without the one-step-delayed estimator.
The results are shown in Figure 1. It can be seen that the
steady state accuracy is better when the one-step-delayed
estimator is used in the design of the proposed control law.

The control signals, Figure 2, and the corresponding con-
trol increments, Figure 3, respect the constraints defined
by (39) in both cases. One can notice that in the steady
state, the control signal is not equal to zero. That happens
because of the Coulomb friction and it is in the range of
control signal from −0.15 to 0.15. From the previous set
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of experiments, it is concluded that the one-step-delayed
disturbance estimator is needed to improve the system
response accuracy.

Then, the second type of PSMC, with the additional SMC
term in the form of

min(Sk, diag(K)sign(Sk)),

is implemented. In the first experiment, the second type of
PSMC without the estimator is used to demonstrate the
ability of additional control term to reject the disturbance
as good as in the case when the PSMC based on the digital
equivalent control with the estimator is implemented. The
additional control component parameter value was K =
0.1. The system output response is depicted in Figure 4(a).
In the next experiment, the second type of PSMC is used
with the estimator providing the zero steady-state error,
which is presented in Figure 4(b). The constraints, (39),
are respected by the control signal and its increment which
is shown in Figures 5 and 6, respectively.

In order to show the effectiveness of the proposed PSMC,
two additional experiments are performed. It is demon-
strated how the choice of the tuning parameter R affects
the robustness of the closed loop. The PSMC is using a
model where the value of Bd is 40 % larger than the true
value. Figure 7(a) shows that the system is unstable with
the tuning factor R = 0.1, while in Figure 7(b) it is stable
and has good performance when choosing R = 10. Figure
8 illustrates system robustness when the additional SMC
term is used. Stable system with the oscillations in the
output response with R = 0.001 is presented in Figure
8(a). In order to suppress the oscillations, tuning factor
is chosen to be R = 0.1, which is demonstrated in Figure
8(b).
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(b) PSMC u based on equivalent con-
trol method (with the one-step-delayed
estimator).

Fig. 2. PSMC signal u.
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(a) PSMC increment ∆u based on
equivalent control method (without the
one-step-delayed estimator).
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(b) PSMC increment ∆u based on
equivalent control method (with the
one-step-delayed estimator).

Fig. 3. PSMC signal increment ∆u.
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(a) The angular position x1 for PSMC with
the additional SMC term (without the one-
step-delayed estimator).
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the additional SMC term (with the one-
step-delayed estimator).

Fig. 4. The angular position x1.
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(a) PSMC with the additional SMC term
(without the one-step-delayed estimator).

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

P
S

M
C

 

 
u

(b) PSMC with the additional SMC term
(with the one-step-delayed estimator)

Fig. 5. PSMC signal u.
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(a) PSMC increment with the additional
SMC term (without the one-step-delayed
estimator).
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(b) PSMC increment with the additional
SMC term (with the one-step-delayed es-
timator).

Fig. 6. PSMC signal increment ∆u.
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(a) The angular position x1 for PSMC
based on equivalent control, R = 0.1
(perturbed system; with the one-step-
delayed estimator).
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(b) The angular position x1 for PSMC
based on equivalent control method,
R = 10 (perturbed system; with the
one-step-delayed estimator).

Fig. 7. The angular position x1.
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(a) The angular position x1 for
PSMC with the additional SMC term,
R = 0.001 (perturbed system; with the
one-step-delayed estimator)
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(b) The angular position x1 for PSMC
with the additional SMC term, R = 0.1
(perturbed system; with the one-step-
delayed estimator).

Fig. 8. The angular position x1.
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5. CONCLUSION

In this manuscript, an approach to design of Predic-
tive Sliding Mode Control (PSMC) based on Laguerre
functions has been studied. Two PSMC algorithms are
presented. The first one came from the digital equiva-
lent control method approach, which belongs to the class
of deadbeat control laws and implies that the reaching
law is not defined at all. The second one is based on
the chattering free reaching law method resulting in the
control signal with an additional Sliding Mode Control
(SMC) component as proposed by (Golo and Milosavljević,
2000). In that way, the system dynamics in reaching law
is thoroughly determined and the system robustness is
improved. By using the Laguerre functions for PSMC, the
onlline optimization problem is solved faster compared to
the traditional Model Predictive Control (MPC) approach.
The constraints on control input signal and its increment
are incorporated, which is impossible to achieve with tra-
ditional SMC. The stability problem of SMC, which may
arise when the disturbance depends on the control input
signal, is overcome by using a sufficiently large weight
R. Improved system steady-state accuracy is achieved by
introducing the one-step-delayed disturbance estimator in
the proposed control algorithms, in order to reduce the
effects of system nonlinearities and disturbances further.
This combination of MPC and SMC is demonstrated by
experimental results.
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