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Abstract: The objective of this paper is to design a heart rate (HR) controller for a treadmill so
that the HR of an individual running on it tracks a pre-specified, potentially time-varying profile
specified by doctors for the cardiac recovery of the person. Initially, a parameter estimation algorithm
is presented with the aim of estimating the values of the parameters of a model relating the speed
of the treadmill with the HR of an individual. The parameter estimation problem is formulated as
an optimization one and solved by using Particle Swarm Optimization (PSO). Afterwards, a super-
twisting sliding mode controller is designed to perform the robust control of treadmill’s speed in the
presence of potential unmodelled dynamics or parametric uncertainties. Numerical examples show that
the estimation procedure is able to obtain accurate values for the system’s parameters while the proposed
control approach is able to obtain zero tracking error without chattering, definitely achieving the control
objectives. In both cases the range of treadmill’s speed goes from 2 to 14 km/h, range that is not usually
employed in previous studies.
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1. INTRODUCTION

The objective of this paper is to design a heart rate (HR) con-
troller for a treadmill so that the HR of an individual running
on it tracks a pre-specified, potentially time-varying profile
specified by doctors for the cardiac recovery of the person. The
controller modifies the speed of the treadmill so as to make
individual’s HR track such a profile. The ability to control the
Heart Rate (HR) in treadmill exercise is of the great importance
in design of exercise routines and it is one of the most signif-
icant vital signs to reflect cardiovascular events, (Hunt et al,
2016). The understanding of HR response with exercise may
also lead to an improvement in developing training protocols
for athletics, more efficient weight loss protocols for the over-
weight people, and in facilitating assessment of physical fitness
and health of individuals, (Anselmio et al, 2017), (Argha et al,
2017), (Weippert et al, 2014). In addition, treadmill exercise has
an important role for people recovering from cardiac disease or
surgery as well as for people involved in weight loss programs,
(Dan and Dragumir, 2012). The design of the controller follows
two steps. The first one is the modeling of the HR response to
the treadmill exercise while the second one designs the con-
troller based on the previous model by means of a sliding mode
control.

Several models have been proposed in the literature to model
heart rate response to treadmill velocity, (Jang and Dae-Geun,

2016), (Cheng et al, 2008), (Peter and Huber, 1964). For in-
stance, (Shtessel and Yuri, 2010) proposes a Hammerstein
model composed of a static non-linearity defined by a look-up
table followed by a linear dynamical system, while (Zhang et
al, 2011) and (Scalzi et al, 2012) propose a nonlinear dynamical
model. Anyway, nonlinearity must be present in the model due
to the nonlinear response of the heart rate to the exercise. In
this study, we use the nonlinear dynamical system proposed
by, (Zhang et al, 2011), (Wang et al, 2007), (Rini et al, 2014),
which is able to capture the dynamic behavior in a compact
way by means of a reduced number of parameters, fact that is
convenient for control purposes.

Heart rate treadmill models are parametrized by a number of
parameters that capture the individual HR response to exercise,
(Kranjec et al, 2014), (Mayer et al, 2018). It is vital, thus, to
design parameter estimation procedures that allow us to have
a personalized model for each individual from measured data.
In this work, parameter estimation is set up as an optimization
problem whose solution leads to the estimated model param-
eters. The optimization problem is solved by using a Particle
Swarm Optimization (PSO) algorithm.

Particle swarm optimization was introduced by Kennedy and
Eberhart in 1995, (Yan et al, 2013), (Shtessel and Yuri, 2010).
At that time, the wide success of Evolutionary Algorithms
(EAs) motivated researchers worldwide to develop and exper-
iment with novel nature-inspired methods. Thus, besides the
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interest in evolutionary procedures that governed EAs, new
paradigms from nature were subjected to investigation. The first
PSO models introduced the novelty of using difference vectors
among population members to sample new points in the search
space, (Souravlias and Parsopoulos, 2016), (Xue et al, 2013),
(Sugonthan, 1997). This novelty diverged from the established
procedures of EAs, which were mostly based on sampling
new points from explicit probability distributions. Additional
advantages of PSO were its potential for easy adaptation of
operators and procedures to match the specific requirements of
a given problem, as well as its inherent decentralized structure
that promoted parallelization, (Storn and Price, 1997). PSO has
gained much attention nowadays and has wide applications in
different fields such a fitness distance ratio, (Yan et al, 2013),
adaptive mutation and inertia weight, (Zhang et al, 2011) and
parameter identification in magnet synchronous motors, (Liu et
al, 2008), hybrid neural network and the level of seismic inver-
sion, (Yang et al,2017). In this study, the parameter estimation
problem is solved by using the Particle Swarm Optimization
(PSO) method, which is the first time where this method is
used for the problem at hand. The parameter estimation will be
focused in the range of treadmill speeds from 2 up to 14 km/h
(2-14 km/h). In many studies, (Bansal et al, 2011), (Ibeas et al,
2016), (Shtessel and Yuri, 2010), the usual range of speed is (2-
8 km/h), or (2-10 km/h). Therefore, the proposed methodology
is applicable in the large range of speeds from 2 to 14 km/h.
Despite this range is popular in many rehabilitation and training
exercises, it is the first time considered in this problem.

On the other hand, a Sliding Mode Controller (SMC) approach
is adopted to design the controller. The SMC has revealed
very useful in the robust control of multiple systems, such as
pneumatic cylinder as actuators for robot manipulators, (Paul
et al, 1994) and the hydraulic dynamics of the manipulator,
(Guo et al, 2008).However, this is the first time that SMC is
used to control the HR during treadmill exercise since previous
works used different control techniques such H∞ robust control
approaches or model predictive controllers, (Scalzi et al, 2012),
(Shtessel and Yuri, 2017), (GAO and Xuehui, 2016). Especial
attention will be devoted to the chattering effect since this is
a crucial aspect in biomedical applications, (Lu et al, 2016).
To this end, a super-twisting based sliding mode controller will
be designed instead of a traditional SMC, (Shtessel and Yuri,
2010), (GAO and Xuehui, 2016). The super-twisting approach
will allow avoiding the undesired oscillations that a classical
sliding mode controller may cause. Simulation results will
show that our approach definitely improves the accuracy of the
model parameter estimation for these treadmill speeds, (up to
14 km/h) and the SMC also improves the heart rate control
which has not been considered in the past.

The rest of paper is organized as follows. In section (2) we
introduce the problem formulation. In this part, we provide
the model description. In the next section, the PSO algorithm
proposed for the parameter estimation is introduced, while the
advantages of this method are commented. In addition, Section
(3) also contains the controller design procedure based on SMC.
Finally, the last section presents the simulation examples and its
comparison with alternative estimation and control methods.

2. PROBLEM FORMULATION

The following nonlinear model describes the relationship be-
tween speed and heart rate during treadmill exercise, (Esmaeili
and Ibeas, 2016), (Jang and Dae-Geun, 2016), (Su et al, 2010):

ẋ1(t) =−a1x1(t)+a2x2(t)+a3u2(t) (1)

ẋ2(t) =−a4x2(t)+ϕ(x1(t)) (2)

ϕ(x1(t)) =
a5x1(t)

1+ exp(−(x1(t)−a6))
(3)

y(t) = x1(t)+HRrest (4)

Where x(0) = [x1(t),x2(t)] = [0,0] is the usual initial condition
and a1, ..., a6 are positive scalars that are adjusted from real
data to describe the particular response of each individual to
exercise. The output y(t) relates to the change of HR of the
person, and HRrest is the value of the Heart Rate at rest. The
control input u(t) describes the speed of the treadmill. The
component x1(t) describes the change of HR from the heart
rate at rest mainly due to the central response to exercise,
whereas the component x2(t) describes the slower and more
complex local peripheral effects. The positive feedback signal
x2, or a dynamic disturbance input to the x1 subsystem, may be
treated as a reaction of HR to the effects from the peripheral
local responses or factors. In this case, the metabolites from
the peripheral local metabolism further accelerate the HR dur-
ing exercise. For instance, in the case of the peripheral local
metabolism, the accumulated metabolic by-products, such as
adenosine, K+, H+, lactic acid and other metabolites, cause
vasodilatation and hyperemia inactive muscles, (Su SW et al,
2010). Vasodilatation in the active muscles causes a reduction
in total peripheral resistance which in turn causes a decrease
in mean arterial blood pressure. In order to regulate the blood
pressure, the cardiac output needs to be increased, meaning that
stroke volume and HR are increased via the baroreceptor reflex,
(Zhang et al, 2011).

The nonnegative nonlinear function ϕ(x1) has the property that
ϕ(x1) << 1 when x1 is small, whereas when x1 is much larger
than a6, ϕ(x1(t)) approaches the linear function x1(t). If x1 is
small and a6 is large, the variable x1 is multiplied by a small
factor(i.e. a4

1+exp(−x1(t)−a6)
≈ 0 in the second equation of (1), so

x2 becomes nearly independent of x1 . If x1(0) = x2(0) = 0 and
the input u(t) is small, the state x1(t) may not be large enough
to make the factor a4

1+exp(−x1(t)−a6)
significant, and x2(t) will re-

main close to zero. As a result, system (1) can be approximated
by the system x1(t) = −a1x1(t)+ a3u2(t) with x2(t) = 0. On
the other hand, if the input u(t) is sufficiently large, the state
x1(t) will be driven to a level that the factor a4

1+exp(−x1(t)−a6)
is

significant, and x2(t) is no longer independent of x1(t).

It is important to bear in mind that the objective of the paper is
twofold. On the one hand to propose a parameter estimation
method based on PSO, while, on the other hand, to design
a SMC controller, both things used for the first time in this
problem and also for speeds ranging from 2 to 14 km/h. In
this way, the estimation of the model’s parameters X = (xi) =
[a1.....a6] is formulated as an optimization problem. Hence, the
optimization of a cost function will provide an estimation of
the parameters. The PSO algorithm will be used to solve the
so-obtained optimization problem.

3. PARAMETER ESTIMATION AND CONTROLLER
DESIGN

This section contains the description of the PSO algorithm
along with the derivation of the sliding mode controller.
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3.1 Parameter estimation of the model

PSO algorithm was utilized for understanding the regulations
dominating the swarms of birds and their sudden changes.
PSO consists of a population (or swarm) of M particles, each
of which represents a n dimensional potential solution of the
optimization problem. In our approach, n = 6 is the number
of parameters to be estimated. Particles are assigned random
initial positions and they change their positions iteratively to
reach the global optimal solution. It is desired to minimize the
fitness function as the PSO iterations progress.

The parameter estimation problem is cast into an optimization
one so that the minimum of the fitness cost function will
provide an estimation of the parameters of the system. The
Squared Error Loss (SEL) is the most common cost function
to be optimized for speed estimation problems and it is also the
easiest to work with from a mathematical point of view. The
SEL is linked with variance and bias of an estimator, so that the
cost function is formulated for the estimated parameter vector
X̂k at iteration step k as :

Ik =Var(ŷk)+bias(X̂k) (5)
where ŷk is the estimated output. Both terms in Eq. (2) are non-
negative i.e. (Var(ŷk) > 0,bias(X̂k) ≥ 0), so that the minimum
of the cost function Ik is given by Ik = 0, argminIk = (0,0).
Therefore, when the cost function Ik vanishes then (Varŷk = 0)
and bias(X̂k) = 0 implying that the estimation of the parameters
is performed adequately. The minimization of such cost func-
tion is done by using the PSO algorithm.

Each particle evaluates its fitness (given by Eq. (5)) and every
particle i = [1, ...,M] has a memory to store the value of its best
own position Pbest id , which is defined as the position where
the particle has minimum fitness. Besides, the best of Pbest id
of all particles, called Gbestd , is stored too. At each iteration
k, the PSO modifies each dimension of the position xid in a
particle by adding a velocity vid and moves the particle towards
the linear combination of Pbest id and Gbestd according to:

vid(k+1) = w vid(k)+ c1 rand1(pid − xid) + c2 rand2(pgd − xid)

(6)

xid(k+1) = xid(k)+ vid(k+1) (7)
In fact, according to Eqs. (6)-(7), some new particles may be out
of the search space so that a projection to the boundaries of such
space is included in the algorithm, (Yan et al, 2013). Moreover,
the most common approach to restrict the particle position in
the search space is to set the violated components of the particle
equal to the value of the violated boundary. In the problem
at hand, the constraint violation appears when the algorithm
provides a negative value for the parameters. Consequently, the
projection algorithm takes the form:

xid =

{
0 , xid < 0
xid , otherwise

(8)

In this way, we can guarantee that the estimated parameters are
nonnegative and the velocity and position of each particle are
updated by the equations until a termination condition is met
and the algorithm finally stops. The parameters c1 and c2 are
the so-called cognitive and social parameters, respectively, and
satisfy 0 < c1,c2 < 1, (Rini et al, 2014). Finally, w is the inertia
weight selected as 0.4≤w≤ 0.9, the range where the algorithm
provides the best results, (Bansal et al, 2011).

Typically, the number of subsequent iterations without im-
provement of the best solution and/or the dispersion of the
particles current (or best) positions in the search space has
been used as indicators of search stagnation. Frequently, the
aforementioned termination criteria are combined in forms such
as:

IF (|Ik+1 − Ik| ≤ ε) OR (k ≥ kmax). T hen Stop (9)
where Ik is is the function to be optimized and k stands for
the iteration number, respectively, and ε is the corresponding
user-defined tolerance. However, the search stagnation criterion
can prematurely stop the algorithm even if the computational
budget is not exceeded. Successful application of this criterion
is based on the existence of a proper stagnation measure.

Figure 1 displays the pseudocode of the PSO algorithm devel-
oped in our study. The PSO search is carried out by the speed

FOR each particle i 

         Initialize position xid   

         Initialize velocity vid  

       End FOR 

   End FOR 

Iteration k=1 

DO   

   FOR each particle i 

    Calculate fitness value 

    IF fitness value is better than p_bestid  in history set current fitness 

value as the p_bestid    

        END IF 

   End FOR 

Choose the particle having the best fitness value as the g_bestd  

FOR each particle i 

     Calculate the velocity according to the equation  

            vid(k+1)= w vid(k)+c1 rand1(pid - xid)+c2 rand2(pg - xid) 

            update particle position according to the equation 

            xid(k+1)=xid(k)+vid(k+1) 

     IF  xid= ✌
✄✁ ✞☛� ✂ ✄
✞☛� ☎✆✝✟✠✡☞✍✟    End IF 

End FOR 

IF ✒✎✏✑✓ ✔ ✎✏✕ ✖ ✗ ☎✘ ✙✚ ✛ ✚✜✢✣✤ ✥✝✟✦✧✆★✩ 

k=k+1 while maximum iteration or minimum error are not acceded 

Fig. 1. PSO pseudocode employed to solve the optimization
problem.

of the particle. During the development of several generations,
only the most optimistic particles can transmit information to
the other ones. One of the advantages of the PSO method is that
it can be applied to optimization problems of large dimensions,
often producing quality solutions more rapidly than alternative
methods, (Yang et al, 2017), (Eswaran et al, 2017), (Hamed et
al, 2017). Also, the algorithm is terminated after a given number
of iterations, or once the fitness values of the particles (or the
particles themselves) are close enough in some sense.

In the results section (Section 4), we describe the M-estimator
as an alternative model to compare with our estimation results,
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showing that the proposed PSO method outperforms the M-
estimator. Once the parameter estimation procedure has been
described, the next step is to design a controller to make the
heart rate track a pre-specified profile. The design of such a
controller is carried out in the following section.

3.2 Super-twisting sliding mode control

The design of control strategies for nonlinear systems has at-
tracted considerable research interest in the recent past, (Shtes-
sel and Yuri, 2017), (Belkaid et al, 2016). Sliding mode control
(SMC), as an effective robust control scheme, has been success-
fully applied to a wide variety of systems, (Gao and Xuehui,
2016), (Abu-Rmileh et al, 2010), (Ebrahimi et al, 2018). This
section contains the design of the sliding mode control for the
system (1). Thus, define the tracking error as:

e = R− y (10)
where R denotes the reference signal (that is, the HR profile to
be tracked) and y is the output of our system. The role of the
controller is to ensure that system’s output accurately tracks the
reference signal R. When the system is perturbed or uncertain,
the finite time stabilization is not ensured, (Vaidynathan and
Sundaropandian, 2017), (Swikir et al, 2016). Hence, a reaching
law based discontinuous control is developed which rejects
the uncertainties of the system and ensures that the control
objectives are fulfilled. The uncertainties in our system can be
modelled as:

ẋ1(t) =−a1x1(t)+a2x2(t)+a3u(t)2 + funcer1(x)

ẋ2(t) =−a4x2(t)+ϕ(x1(t))+ funcer2(x)

ϕ(x1(t)) =
a5x1(t)

1+ exp(−(x1(t)−a6))

y(t) = x1(t)+HRrest

(11)

where funcer1(x) and funcer2(x) account for the unmodelled
dynamics and parametric uncertainty in each of the model
equations. On the other hand we need to consider the following
assumptions.

Assumption 1. funcer1(x) and funcer2(x) are upper-bounded .
Assumption 2. One upper-bound for each one of these terms is
known.

These are common assumptions in SMC, (Shtessel and Yuri,
2010). The sliding mode controller is composed of two parts:

u = uequiv −usliding (12)
where uequiv is the so-called equivalent control used to remove
certain terms in (11)-(12) while the sliding term usliding is the
term used to counteract the uncertainties of the system and
will be of the super-twisting type, (Shtessel and Yuri, 2017).
This approach will also help us avoid the chattering effect,
that would be very harmful in the control system. Initially,
the equivalent control will be derived while the final control
law will be obtained by incorporating the super-twisting sliding
term according to (12).

The following sliding manifold with the integral term is pro-
posed:

S(t) = e(t)+λ
∫ t

0
e(τ)dτ (13)

where λ are strictly positive constant. The equivalent control
is obtained by derivating (13) with respect to time and then
equating the so-obtained derivative to zero. In this way we have:

e(t) = R(t)− y(t) = R(t)− x1(t)+HRrest (14)

ė(t) = Ṙ(t)− ẋ1(t)+ ˙HRrest (15)

= Ṙ(t)+a1x1(t)−a2x2(t)−a3u2(t)+ funcer1(t) (16)

In this way, if we substitute the above expressions into (10) and
simplify we obtain. Now, the derivative of the sliding manifold
reads:

Ṡ(t) = ė(t)+λe(t) (17)

= Ṙ− ẏ+λe(t) = Ṙ− ẋ1 +λe(t) (18)

= Ṙ− (−a1x1 +a2x2 +a3u2 + funcer1)+λe(t) (19)

If Ṡ(t) = 0 we have:

Ṙ+a1x1 −a2x2 −a3u2 − funcer1 +λe(t) = 0 (20)

Now, if we isolate u2 we obtain:

a3u2 = Ṙ(t)+a1x1 −a2x2 − funcer1 +λe(t) (21)

u2(t) =
1
a3

(Ṙ(t)+a1x1 −a2x2)+λe(t) (22)

The uncertain terms funcer1 do not appear in (22) since they are
unknown. Therefore, they do not appear in the equivalent con-
trol part. The super-twisting sliding term is given by, (Swikir,
2016):

usliding = K|S|α sign(S) (23)
It is important to point out that the total control command is
given by (15) while being composed of the sum of (25) plus
(26). Therefore, the value of both state variables x1 and x2 is
needed to calculate the control law. The heart rate x1 can be
measured easily, as there exist multiple devices to measure the
HR of an individual in real time. However, the peripherical
effects x2 cannot be measured. As a consequence, a state
observer is needed in order to implement the control command
in practice. The state observer is given by:

˙̂x2 (t) =−a4x̂2 (t)+ϕ (x1 (t)) (24)
With arbitrary initial condition x̂2(0), since x2 is infusible to
obtain and funcer1 is unknown. The control law reads:

u(t) =
1
a3

(
Ṙ(t)+a1x1(t)−a2x̂2(t)+λe(t)

)
−K|S|α sign(S)

(25)

Despite the observer works with arbitrary initial conditions, a
judicious choice is given by x̂2(0) = 0 since at the beginning
for the exercise, the peripherical effects are small and the initial
value of the state variable is close to zero. In this way, the initial
observation error would be zero and will maintain close to zero
during all the observation.

Assumption 3. The observation error at the initial time is
bounded and an upper-bound for it is known.

The switching gain K has to be selected so as to guarantee
the stability and reference tracking of the closed-loop system.
In order to obtain a guideline for its tuning we consider the
following Lyapunov function candidate:

V (t) =
1
2

S2 (26)

Its time-derivative is given by:
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V̇ (t) = SṠ = S
(
Ṙ− ẋ1(t)+λe(t)

)
= S (a2x̂2(t)−a2x2(t)−Ka3|S|α sign(S)− funcer1(x))

= S (a2x̃2(t)−Ka3|S|α sign(S)− funcer1(x))

=−Ka3|S|α+1 +S (a2x̃2(t)− funcer1(x)) (27)

where x̃2(t) = x̂2(t)− x2(t), represents the observation error.
In order to ensure the appropriate operation of the controller,
the time derivative (27) should be negative-definite, fact that is
achieved if:

Ka3 > a2|x̃2(t)− funcer1(x)| (28)
Condition (28) can be further elaborated in the following way.
The dynamics of the observation error is obtained by Eq. (27),
whose result is:

˙̃x2(t) =−a4x̃2(t)− funder2(x) (29)
The solution to this equation is given by:

x̃2(t) = e−a4t x̃2(0)−
∫ t

0
e−a4(t−τ) funcer2(x)dτ (30)

If the uncertain function funcer2 is upper-bounded, i.e. sup | funcer2|<
∞, fact that holds since according to Assumption 1 the un-
certainty terms are bounded, then (30) can be upper-bounded
accordingly as:

|x̃2(t)| ≤ e−a4t |x̃2(0)|+
1
a4

sup | funcer2(x)|
(
1− e−a4t) (31)

≤ |x̃2(0)|+
1
a4

sup | funcer2(x)| (32)

for all t ≥ 0. In this way, (28) is satisfied if the following
condition holds:

Ka3 >

(
a2|x̃2(0)|+

a2

a4
sup | funcer2(x)|+ sup | funcer1(x)|

)
(33)

since

a2|x̃2(0)|+
a2

a4
sup | funcer2(x)|+ sup | funcer1(x)|

≥ a2|x̃2(t)|+ sup | funcer1(x)|
≥ |a2x̃2(t)− funcer1(x)| (34)

Thus, the switching gain K must be selected to fulfill (33), a
condition that depends on an upper-bound of the observation
error and upper bounds of the uncertainties. In the end, we must
bear in mind that we are working with the square of the control
signal so that the actual speed command is given by:

uactual =
√

max(0,u) (35)

In the case of recovery and training programs, the controller
is able to make the heart rate follow the predefined profile
set up. In the next section, the simulation results showing the
performance obtained by the estimation and control algorithms
are presented.

4. SIMULATION RESULTS

This Section is composed of three subsections. First, the es-
timation results obtained by means of the PSO algorithm are
discussed in section 4.1. Secondly, the control results obtained
by using the super-twisting control law are presented in section
4.2, while the comparison between the PSO and other param-
eter estimation procedures and SMC comparison with PID is
presented in Section 4.3.

4.1 PSO parameter estimation results

In this part, we will apply the PSO parameter estimation al-
gorithm to the data described in tables below corresponding
to ten subjects. These data are numerical data used for test-
ing the algorithm and they do not correspond to real subjects.
The parameters of the PSO algorithm are given by c1 = 0.87,
c2 = 0.67, w = 58, rand1 = 0.1, rand2 = 0.5 and ε ≥ 0.15 then
tolerance is small. The actual parameters of the ten subjects are
given in Tables 1 and 2 and the estimated ones obtained from
the PSO proposed approach are in Tables 3 and 4.

Table 1. Actual parameters of subjects 1 - 5.

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
a1 2.512 2.791 2.683 2.592 2.611
a2 25.92 25.74 25.25 25.41 25.84
a3 0.81 0.85 0.79 0.8 0.81
a4 0.9021 0.9087 0.909 0.9011 0.9108
a5 0.038 0.041 0.035 0.039 0.042
a6 5.37 5.51 5.43 5.65 5.29

HRrest 64 69 66 68 69

Table 2. Actual parameters of subjects 6 - 10.

Parameters Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
a1 3.12 3.7 3.05 3.25 3.9
a2 21.25 21.95 21.1 21.55 21.8
a3 1.5 1.6 1.3 1.4 1.7
a4 1.9 1.8 1.8 1.25 1.9
a5 1.01 1.21 1.16 1.09 1.25
a6 8.15 8.35 8.5 8.6 8.3

HRrest 62 67 64 68 61

Table 3. Estimated parameters obtained by running
the PSO algorithm of subjects 1 - 5.

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
a1 2.508 2.789 2.681 2.588 2.615
a2 25.88 25.69 25.2 25.48 25.71
a3 0.849 0.855 0.788 0.798 0.809
a4 0.9011 0.9079 0.9088 0.9019 0.9098
a5 0.04 0.043 0.039 0.032 0.04
a6 5.41 5.49 5.47 5.59 5.59

Table 4. Estimated parameters obtained by running
the PSO algorithm of subjects 6 - 10.

Parameters Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
a1 2.95 3.15 2.8 2.95 3.5
a2 20.8 21.5 20.5 20.85 21.25
a3 1.1 1.2 0.95 1.15 1.2
a4 1.5 1.3 1.2 0.95 1.5
a5 0.8 0.9 1.0 0.85 1.0
a6 7.75 7.9 8.2 8.1 7.9

As it can be noticed from Tables 1, 2, 3 and 4, the estimated
parameters obtained by the proposed PSO approach are close
to the actual ones. These results mean that the PSO algorithm
performs very well.

Figure 2 shows the actual heart rate corresponding to one of
our subjects (subject No.3) along with the output of the esti-
mated model obtained by using the PSO algorithm described in
Section 3.1. As it can be observed in this figure, the estimated
model captures the dynamics of the heart rate of each person. It
means that the PSO algorithm has a good response. Moreover,
PSO is able to provide accurate parameter values and able
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to reproduce the behavior of the heart rate. Figure 3 displays
the HR generated by the original model parametrized by the
parameters in Table 1 along with the values obtained when the
estimated parameters values are used to obtain the HR response
according to (1)-(4). We can observe some mistmatch between
the actual output and the estimated one in Figure 3, which is due
to the uncertain dynamics that can not be adequately captured
by the model parameters. This unmodeled dynamics will be
counteracted by means of the sliding mode control.

Fig. 2. Heart rate response with using PSO at speed of (2-14
km/h)

Fig. 3. Heart rate response with using PSO at speed of (2-14
km/h)- for 4 random subjects

The following figures (Fig. 4 and Fig. 5) display the evaluation
of the estimated parameters for subjects No.1 and No.8 in Table
1 and the estimated onse. These figures show that after a small
number of iterations the estimated parameters are close to the
actual ones, the fact that is displayed numerically in Tables 2, 3
and 4.

The following Figure 6 displays the actual value of parameters
for the ten subjects. Despite the value of the actual parameters
with exhibit a large variability, showing that the algorithm
works in a variety of situations the parameters. Thus, we have
Figure 7, which is the relative error of the parameters with high
variability. As it can be observed, the proposed PSO algorithm
is able to achieve a superb estimation since the relative error is

Fig. 4. Evaluation of estimated parameter subject No.1

Fig. 5. Evaluation of estimated parameter subject No.8

given by a−aestimation
a ×100 which is very low and algorithm with

this high variabilities has a superb response.

Fig. 6. Actual value of parameter.

4.2 Control Results

In this part, we choose one person (subject No.3) to show
the result. We want to highlight that similar good results are
obtained for all the parameters. The controller parameters are
α = 0.5 and K = 10. In Fig. 8, the actual Heart rate (HR)



CONTROL ENGINEERING AND APPLIED INFORMATICS 57

Fig. 7. Relative Error of parameter.

and the reference signal are shown, In this figure (Fig. 8), the
output and the reference signal are super-impressed implying
that the control objective has been achieved. The zoom of first
150 seconds in the previopus figure (Fig. 8) is shown in Figure
9. On the other hand, Figure 10 shows the speed calculated
from the SMC given by Eq. (10). In this case, the tracking error
after the reaching phase is very small, despite the changes in
the reference signal and it shows that how the SMC had a great
response regards to the absence of chattering in the output and
in the control command.

Fig. 8. Heart Rate provided by the SMC controller.

4.3 Estimation and control comparisons

Previously in some studies, researchers used different methods
such as the M-estimator to solve the parameter estimation prob-
lem, (Peter and Huber, 1964). This method is effective, from the
statistical point of view, to obtain an adequate estimation of the
parameters. The comparison with the M-estimator procedure
shows that PSO has better behavior than the previous approach,
while the accuracy of the estimation parameter is increased by
using PSO.

In this subsection, the theory of M-estimation is introduced for
comparison purposes. The previous researchers used robust per-
formance of estimation for two main reasons, namely: 1)there
may be outliers in the data, that are sample values consid-
ered very different from the majority of the sample and 2)the

Fig. 9. The first 150 seconds HR provided by the SMC con-
troller.

Fig. 10. Speed provided by the SMC controller.

data may depart from the underlying distribution assumptions,
(Cheng et al, 2008), (Peter and Huber, 1964), (Maronna, 1976).
This method is good for estimating the parameters, which is the
reason why we compare our approach with this one. The class
of M-estimators contains the maximum likelihood estimator
(ML) as a special case. If we assume that the data come from
the model distribution F(µ,σ) then the log-likelihood can be
written as:

n

∑
i=0

{log( f0(
xi −µ

σ
)− logσ) (36)

The first order condition for the M-estimator of µ is then given
by:

1
n

n

∑
i=0

ψM(
xi −µM

σ
) = 0 (37)

while the M-estimator of scale verifies
1
n

n

∑
i=0

ρM(
xi −µ

σM
) = 1 (38)

with ψM(u) being the so-called score function, and ρM(u) =
ψM(u)u. Under regularity conditions the ML estimators have a
100 percent efficiency, meaning that their asymptotic variance
equals the inverse of the Fisher information, the lower bound
of the Cramer-Rao inequality, (Tian et al,2014), (Peter and
Huber, 1964). The parameters are coming from the particular
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subject (subject No.3) of Table 1, estimated by solving Eq.
(17) with respect to xi. The estimated parameters obtained by
using the M-estimator are applied again to parametrize Eq. (1)-
(4). Figure 11 demonstrates that in many points the output of
PSO intersects with the reference signal and it means that PSO
estimation is really close to the reference. On the other hand, the
M-estimator displays an output that intercepts at some points
with the reference, it has many variations in most of the points
and this is not as effective as PSO. Whereas, we are calculating
the fit-in error (since it is an error coming from a difference in
the output of the models and actual data) in this part, that is
only in open loop and it is only for estimation purposes. The
fit-in error is calculated as:

J1,k = [rk − pk] (39)

J2,k = [rk −mk] (40)

where : rk = re f erence

pk = PSO out put

mk = M− estimator parameter out put

Fig. 12 shows the fit-in results of the output in the PSO and
M-estimator. We want to show that PSO outperforms the M-
estimator. As it can be seen at the beginning of the process in
Figure 12, PSO after 500 seconds starts definitely better than
the M-estimator and it slightly goes better afterward. Both of
these models have a good response, but PSO performs better
during the fit-in error process. On the other hand, PSO has a
lower error against the M-estimator.

Finally, in Fig. 13 the value of the cost function (Eq. (5)) in
Particle Swarm Optimization and M-estimator are displayed.
The cost function (2) in the PSO after 5 iterations reduces faster
than the M-estimator. So the fact that can be interpreted as that
estimation is performed faster in PSO method against the M-
estimator, and this fact is reflected in the quality of estimation.

Fig. 11. Comparing heart rate tracking result with PSO and M-
estimator.

On the other hand, PID is a common approach in the control of
systems. For this reason, it is used to solve the control problem
in many studies. The SMC control will be compared with the
PID controller implemented in (Girard et al, 2016). Since PID
controllers are widely used in practice we will show the results
achieved by the proposed controller in this scenario. In Fig.

Fig. 12. Fit-in error for the PSO and M estimators.

Fig. 13. Comparing error with PSO and M-estimator.

14, the comparison of the actual HR obtained by using the
SMC and the PID controller is shown. As it is clear, the SMC
works much better than PID showing that it is able to obtain a
zero tracking error despite the presence of uncertainties in the
system’s model. Overall, the presented method is able to obtain
an appropriate and superb closed-loop behaviour.

Fig. 14. Heart rate Comparision with SMC and PID.



CONTROL ENGINEERING AND APPLIED INFORMATICS 59

5. CONCLUSIONS

This paper has considered the design of a sliding mode con-
troller for the HR control during treadmill exercise. Initially, a
Particle Swarm Optimization algorithm has been proposed to
obtain an accurate estimation of the model parameters. Sec-
ondly, a super-twisting based sliding control law has been
designed for the system in order to counteract the remaining
potential unmodelled dynamics or parametric uncertainty in
the system. In both situations, the range of treadmill speeds
goes from 2 up to 14 km/h, range not usually employed in
previous studies. Simulation results show how the proposed
PSO algorithm is able to obtain accurate estimations of the
model parameters while the super-twisting sliding controller is
capable of obtaining zero tracking error without chattering.
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