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Abstract: This paper presents an output feedback adaptive force tracking control scheme for Lower 
Extremity Power-assisted Exoskeleton (LEPEX). LEPEX is driven by electro-hydraulic actuators 
geometrically mounted for the active joints, which exhibits high nonlinear dynamics. In view of this, a 
robust observer resorting to Radius Basis Function Neural Network (RBF-NN) is proposed to 
approximate the nonlinearities so as to detect the values of the process variables.  An adaptive controller 
compatible with the RBF-NN estimator is adopted to cope with the nonlinearities and possible model 
uncertainties. The convergence of the output, i.e., load force variable, to a computable set is guaranteed 
in the context of Lyapunov direct method. Finally, simulation and experimental tests on the force control 
of an ankle joint of LEPEX are studied to witness the potentiality of the proposed approach. 
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1. INTRODUCTION 

Nowadays, heavy loads are usually transported with wheeled 
vehicles due to their adequate load-carrying capability. 
However, wheeled vehicles are not suitable for the rugged 
terrains and/or the needs to move up and/or down stairs. For 
these reasons, the developments of legged locomotion 
become more attractive over the last decades, see (Zoss et al., 
2006; Chu et al., 2005; Ghan and Kazerooni, 2006; Gupta et 
al., 2008). Among them, lower extremity exoskeleton is a 
legged locomotive humanoid robot, which is used for helping 
soldiers bear heavy loads so as to increase their load capacity 
and improve their flexibility, and for assisting elderlies and 
patients who experience dificulties in their movability, to 
fulfil the daily living movements, see (Banala et al., 2009; Li  
et al., 2013). 

A Lower Extremity Power-assisted Exoskeleton (LEPEX) is 
presented in Fig. 1, where each leg has 7 degrees of freedom 
(d.o.f.), among which, 3 d.o.f is allowed at the hip joint, 1 
d.o.f is enabled at the knee joint, while the other 3 ones are 
employed at the ankle joint. Among them, the d.o.f. of the 
knee and ankle joints in the sagittal plane are active ones. 
Each active joint is driven by an actuator that must provide 
power in real time to reduce wear’s energy consumption. 
Hence, control of the hydraulic actuators (joints) is vital to 
achieve high level human-machine interaction performance.  

Force control is widely used in power augmentation 
exoskeleton robot due to the fact that it implicitly guarantees 
a safe and smooth operation for human-robot interaction (Lee 
et al., 2012). In recent years, literatures related with force 
tracking control goal for hydraulic driving systems have been 
reported, see (Alleyne and Liu, 2000; Kilic et al., 2012; 

Steger, 2005), but it has been noticed that force perception 
that provides precise and repeatable measurements in terms 
of human lower extremity exoskeleton is still difficult and 
costly, see (Ho and Ahn, 2010; Kazerooni et al., 2005; Pan et 
al., 2014; Rito et al., 2006). In (Kazerooni and Steger, 2006), 
a virtual force/torque control algorithm has been developed 
where only indirect measurement of the external force is 
required. A robust integral admittance shaping approach has 
been addressed in (Nagarajan et al., 2016) for active 
exoskeleton with parameter uncertainties. It has been proven 
that neural network (NN) is capable to approximate 
nonlinearities globally without a priori the structure of the 
system, see (Jagannathan, 2006; Park and Han, 2010; Huang 
et al., 2013; Ge and Wang, 2014). The methods have been 
extended to the application to estimation of robot dynamics 
with NN, see (Ge et al., 2009; Kazerooni and Steger, 2006). 
An observer for nonlinear system based on NN has also been 
developed with resorting to back propagation, see (Abdollahi 
et al., 2006; Sharma and Verma, 2012; Sharma and Verma, 
2013; Li et al., 2013; Huang and Jiang, 2015). 

In this paper, an output feedback adaptive force tracking 
control scheme with NN observer is developed for LEPEX. 
First, a dynamic model describing the open-loop hydraulic 
driving system and geometric structure of the robot is 
established which shows high nonlinear dynamics. A 
multilayer feedforward Radius Basis Function Neural 
Network (RBF-NN) observer is proposed to approximate the 
nonlinearities so as to estimate the states, such as force of 
load LF , valve spool position vx . An adaptive controller 

compatible with the RBF-NN estimator is developed to cope 
with the nonlinearities and possible model uncertainties. The 
convergence of the output, i.e., load force variable, to a 
computable set is guaranteed in the context of Lyapunov 
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direct method. Finally, simulation and experimental tests on 
the force control of an ankle joint of LEPEX are studied to 
witness the potentiality of the proposed scheme. The 
contributions of this paper are twofold: 1) Compared with the 
existing method, see (Ho and Ahn, 2010; Kazerooni et al., 
2005; Pan et al., 2014; Rito et al., 2006; Kazerooni and 
Steger, 2006), the proposed approach relies on a robust 
observer, which allows to estimate the external force without 
the use of multi-dimensional force sensors; 2) The system is a 
slightly improved version of the one in (Song et al., 2014), 
while the proposed control algorithm shows a huge 
improvement especially in its capability to deal with 
nonlinearities and model uncertainties. Note that, for 
simplicity the force control of only one joint, i.e., the right or 
left ankle joint, is considered as the study example in this 
paper. 

 

Fig. 1. Structure of the LEPEX 1-Hip 2-Thigh 3 
Thigh Drive Cylinder 4-Shank  5-Bound Device 6-
Shank Drive Cylinder 7-Ankle 8-Sole. 
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Fig. 2. The principle diagram of hydraulic driving model. 

The rest of this work is presented as follows: Section 2 
introduces the description of hydraulic driving model. 
Section 3 describes the RBF-NN based observer and the 
adaptive controller as well as their theoretical properties. 
Section 4 presents the simulation and experiment results 
while Section 5 concludes the paper. 

2. DESCRIPTION OF THE MODEL 

The hydraulic driving system (see Fig. 2) is made by a pump, 
a servo-valve, a cylinder, a relief valve, a check valve, a 
reservoir, an accumulator, a filter and other auxiliary 
components. The pump in the system is adopted to produce 
high pressure fluid for driving the hydraulic cylinder. The 
accumulator is introduced to provide the emergency stop or 
the opening of the flow system once it encounters urgent 
events. The relief valve is in charge of guaranteeing constant 
pressure of the pump. The operation principle of hydraulic 
driving system is as follows. The voltage signal is regarded 
as the control action of the system, while the spool 
displacement and force of the cylinder are chosen as the 
corresponding controlled variables. In the system, the spool 
and the cylinder form a feedback connection. Cylinder 
displacement can accurately react as the spool displacement 
varies, in this way the input of mechanical quantity is 
transformed into a large value of output force. Therefore, in 
view of this, the system is seen as a power amplifying device. 
The opening degree of the spool changes based on the 
voltage variations resulting from the regulator, in this way the 
values of pressure and the flow rate varies accordingly. 

The state space representation of the hydraulic driving model 
can be given as, see (Song et al., 2014) 
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In (1), is the joint angle of LEPEX, J  is the system inertia, 
M  is the moment arm related to ankle joint, LF is the load 

force, fF is the friction force caused by the interaction of the 

piston and the cylinder, m and r are the mass and the mass 
center, vx is the spool displacement, cx is the derivative of the 

position displacement,  is the mechanical time constant of 
the spool, sk is the DC gain of the valve voltage to the spool 

position, u is control variable, 1A  and 2A  are the areas of 

piston corresponding to A and B, Ap and Bp are the pressure 

of room A and B， inC and ecC are the  hydraulic internal and 

external leakage of the system, 0V is initial volume of 

cylinder respectively. 
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3. RBF-NN OBSERVER BASED ADAPTIVE 
CONTROLLER DESIGN 

In this section, the RBF-NN based observer is initially 
designed to estimate the state variable of (1). Based on this 
observer, a NN network based back-stepping controller is 
introduced in order to deal with nonlinearities and model 
uncertainties.  

3.1 RBF-NN observer Design 

In this section, a three-layer RBF-NN estimator is developed 
to approximate the variables, e.g., LF and vx  of system (1). 

To this end, first let z be  TL vF x  ，and from system (1) 

we also define 

1 2 3 4

( , ) 1 1
v c L

s v

n x n x n F n
F z u

k u x
 

   
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                                   (2) 

Then, by adding and subtracting Az , from (1) one can write 
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( ) ( , )

( )
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
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                                                             (3) 

where ( , ) ( , )G z u F z u Az  , A is selected such that A is 

Hurwitz stable and the pair ( ,  )C A  is  observable.  

Therefore, the state observer of the system (1) can be 
described as  
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                                         (4) 

where ẑ and ŷ are the estimated state and output variables 

respectively. 2 1L R  is the observer gain, and the selection of 
L  must satisfy that matrix A LC  is Hurwitz stable. 

It has been noted that a three-layer RBF-NN with only one 
single-hidden layer is sufficient to approximate any degree of 
nonlinear system, see (Ge et al., 2009; Igelnik and Pao, 1995; 
Jagannathan, 2006; Lewis et al., 1999; Lewis and Vrabie, 
2009; Xiong et al., 2014). For this reason, according to the 
approximation principle of RBF-NNs, ( , )G z u can be 

described by 

 1( , ) ( )G z u WS Hz z 
                                                    (5) 

whereW and H are the corresponding weight matrices of the 

output and hidden levels, ,
TT Tz z u     is the input to be 

applied to the NN observer,  is the NN functional 

approximation error, and it is bounded, i.e., 0| |  , 0 is a 

small positive scalar and in principle can be arbitrarily small 
by adjusting the structure of the NNs, 1( )S  is the NN 

activation function. 

Assume that perfect weights W is bounded with a finite 
constant, that is  

MW W
                                                                            (6)  

where ‖‖represent the Euclidean norm. 

The nonlinear function ( , )G z u can be approximated by 

 1
ˆ ˆ ˆˆ( , )G z u WS Hz

                                                             (7) 

where ẑ  is the estimated state vector, ˆ ˆ ,
TT Tz z u    , Ŵ  is 

the estimate of the perfect weights vector. 

Then, the dynamics of NN observer can be described by 
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We define ˆz z z   and ˆy y y   , where z and y are the 

state and output estimation errors, then from (4), (5) and (8), 
the dynamics resulted from the deviation of (8) and (3) can be 
obtained as 
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By adding and subtracting 1
ˆ( )WS Hz  in (9), we 

define ˆW W W  , cA A LC   , then (9) can be rewritten 

as  
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where   1 1
ˆ( ) ( ) ( )t W S Hz S Hz z      is a bounded 

disturbance term. 

Inspired by (Abdollahi et al., 2006), an improved weight 
updating law proposed for the NN observer is described as 
follows: 

1
1
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where 2
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where 1,2,3k  , and 0   is the learning rate,   is the 

designed positive number. 

Theorem 1. Under the weight adjustment algorithm (11), 
there exit a computable positive scalar d  such that the 
estimation error of z  is uniformly ultimately bounded, i.e., 

z d . 

Proof: see reference (Abdollahi et al., 2006). 
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3.2   Adaptive NN controller design 

Let 1 2,L Lx F x F    , from system (1) one has 
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Assume that a reference trajectory be ( )rx t  and define a 

generalized tracking error as 1 1( ) ( ) ( )rz t x t x t   and 

have 1 2( ) ( ) ( )rz t x t x t   . Another error variable 2 ( )z t  is 

defined by introducing a virtual control 1( )t  , that 

is 2 2 1( ) ( ) ( )z t x t t  . The virtual control 1  is selected as 

1 1 1 rK z x                                                                     (14) 

where the gain matrix
1 0K  . Therefore, one promptly has 
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Under (15), we recall the possibility that the model 
parameters might not be known a-priori. A feedback control 
policy u can be selected as 
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where t̂ is the measured value of the general variable t . 

With (16), uncertainties might be introduced into the second 
line in (15) due to the possibly inaccurate measurement of the 
model parameters, that is  
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where  
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In order to compensate for uncertainties in (17), we employ a 
critic NN to approximate the system. The feedback control u 
is designed as 

1 2 2 2
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ˆ ˆˆ ˆ( ) ( )
ˆˆ

T
c
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u z K z W S Z
n k


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where the gain matrix 2 0K  , ˆ
cW  is the weight matrix, 

2 ( )S Z is the basis function in vector form, 1ˆ[ , ]vZ x   is the 

input to be applied to the adaptive NN and where ˆvx is the 

estimated value of vx . The NN with estimated weights, i.e., 

2
ˆ ( )T

cW S Z  approximates the optimal estimation *
2 ( )T

cW S Z  

which is described in the form 

*
2 ( ) ( )T

c c cW S Z f Z                                                         (19) 
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  , ( )c Z  is the approximation 

error and ( )c Z  ,   is a positive scalar which also 

depends on the value of   and 0 . 

The NN adaptive law is developed as (He  et al., 2015) 

2 2
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                                                  (20) 

where  is the gain matrix, a constant,  is a small constant, 
0  .  

In order to verify the stability of the NN, a Lyapunov 
function candidate is chosen, that is 
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c c cW W W  . 

Theorem 2. Under control law (18), weight adjustment 
algorithm (20) and the condition that 2 1K  , then the states 

of system (15) is uniformly ultimately bounded within a 

computable set { | }Tz z Kz r   , where K is defined in 

(27). 

Proof:                                                                                                          
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where 1 1 1̂z z z   and 2 2 2ˆz z z  . 

Taking into account that 2 2
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By completion of squares, one has 
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Define 20 0K   and 21 0K  such that 20 2 211K K K   , 

then  
1 2

2 1
21 2 2

21

( )
( )

4cK z z Z
K

  

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Therefore, from (21) and in view of (22-24), it follows that 

2 2
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where  
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2 2 1 2
2 2 211 2( 1) ( ) 4K z K   . 

Recalling that 2 1K  , the state 1z and 2z is uniformly 

ultimately bound in the set { | }Tz z Kz r   , where 

 1 2

T
z z z and 

1
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0

K
K
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Remark 1. From Theorem 2, it is evident that larger values 
of 1K and 20K lead to a faster convergence of the state variable 

z to the set , while a larger value of 2K and smaller values 

of 21K and   could result in a larger amplitude of the set . 

Hence, in order to achieve satisfactory control performance 
(e.g., fast convergence and small robust set), it is advisable to 
select larger values of 1K , 20K  , 21K  and , and small values 

of 2K .  

Remark 2. The parameter  and  affects the radius of the 
set  and in principle can be set arbitrarily small. In case   
is chosen such that 0  and the number of neurons of the 
observer and the adaptive controller increases until 0  , 

then it follows that 1 2[ , ] 0Tz z   and 0cW  . Consequently, 

the state 1z and 2z converge to the origin.            

4. SIMULATION AND EXPERIMENT STUDY 

In order to verify the validity of the adaptive output feedback 
force tracking control algorithm, simulation and experimental 
tests have been employed, and the corresponding results are 
reported and analyzed in this section. 

4.1 Simulation 

The diagram of force adaptive NN tracking controller with 
NN observer for LEPEX is shown in Fig. 3. During the 
simulation, the sampling period is selected as 0.001s. The 
desired force is set as 200 sin(3 )LdF t  .  

 

Fig. 3. Diagram of force adaptive NN tracking control 
scheme with NN observer. 

The structure and parameters of the NN observer and 
adaptive NN force tracking controller are described in Table 
1. Note that, as shown in Table 1, two NN structures are 
designed : a three-layer NN with a single-hidden layer 
containing sixteen neurons is employed to construct the RBF-
NN observer, and an adaptive NN three-layer NN with a 
single-hidden layer and containing 256 neurons is adopted for 
the adaptive regulator to compensate for the system 
uncertainties. The values of the vital parameters of the 
hydraulic driving system are given in Table 2. The simulation 
results have been reported in Fig. 4-7, where Fig. 4 depicts 
the tracking trajectories with desired force 
of 200 sin(3 )LdF t  , Fig. 5 is rectangular area marked in 

Fig. 4, Fig. 6 gives the deviation of the actual force and the 
desired one, while Fig. 7 describes the control signal during 
the force tracking control.  
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Fig. 4.  Tracking trajectories with desired force of 
200 sin(3 )LdF t  . 
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Fig. 5. The rectangular area marked in Fig. 4. 
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Fig. 6.  The force tracking error. 

It has been shown from Fig. 6 that the maximum force 
tracking error is 0.774N.  Considering the maximal amplitude 
of the force reference being 250N, the simulation results 
indicate that the closed-loop control system exhibits an 
outstanding force tracking performance. 

Table 1. Structure and parameters of the observer and 
controller. 

 NN-observer Adaptive controller 

Type of NN RBF-NN RBF-NN 

Number neurons 16 256 

Learning rate 45   1 2 100     

The initial 
weighs of W  

random within 
[0, 0.3]  

random within 
[0, 0.2]  

Gain matrices — 1 585K   2 24K   

Other parameters 1.5   1 2 0.02    

Table 2. The vital parameters of the hydraulic driving 
system. 

Parameters Value Parameters Value 

Cylinder dead 
length(m) 

0.23 
cylinder stroke 
length(m) 

0.1016 

The hydraulic 
density 
(kg/m3) 

28.304e  

the hydraulic 
effective bulk 
modulus (s-1) 

91.517e  

m  (kg) 40 LP  ( MPa) 5.5 

VF  (Ns/m) 10000 CF  (N) 4 

  (s) 0.0035 cK  (m3s/Pa) 
112.0e

 

in exC C  
142e

 sk  (m/Ma) 1.54 

1A (m2) 
43.25e

 2A (m2) 
42.1e

 

0l  (m) 0.28 qK
(m3 sA) 

318.2e
 

4.2 Experiment 

To further demonstrate the validity of the force tracking 
control system, experimental tests have been addressed in 
this section. The setup of the proposed approach for the 
LEPEX hydraulic driving system is described in Fig. 8. The 
hydraulic cylinder and servo valve are self-made to meet the 
specific requirements such as maximum torque, minimal 
mass, suitable length and so forth. The configuration of the 
computing center is P4/2.0G CPU, 2G memory, 250G hard 
disk with a 16-bit A/D convertor, a 16-bit D/A convertor and 
an amplifier, etc. The experiment results are reported in Fig. 
9-12. It clearly shows that the tracking error in the 
experiment is 0.966N, a bit larger than that in the simulation. 
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Fig. 7.  The control signal u .  
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4.3 Results and discussion  

Among the main characteristics of the proposed control 
scheme, we recall the possibility to require less sensors 
thanks to the use of RBF-NN observer. From the simulation 
results, it has been shown that the RBF-NN observer is robust 
(see Fig. 6) even though a limited number of neurons (that is 
16) adopted, also the adaptive controller is effective in 
compensating for the nonlinearities of the system (see again 
Fig. 6).  

 

Fig. 8.  Block diagram of LEPEX servo system for NN-
observer-based force adaptive tracking control. 

In view of the experimental results, the tracking error is 
slightly larger than that in the simulation. This is due to the 
presence of possible model uncertainties and measurement 
noise. This, on the other hand, shows that the proposed 
control scheme is also robust to model uncertainties and 
measurement noise. 
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Fig. 9. Tracking trajectories with desired force of  

200 sin(3 )LdF t   
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Fig. 10. The rectangular area marked in Fig. 9. 

5. CONCLUSIONS 

This paper presents a RBF-NN observer based force adaptive 
tracking controller for LEPEX. The approach allows to 
reduce the number of sensors thanks to the use of RBF-NN 
observer. Compatible with the observer, a NN adaptive 
output feedback controller has been designed to achieve the 
force tracking control goal. Moreover, rigorous Lyapunov 
analysis has been addressed to guarantee that the output 
variable of the control system, i.e., the load force converge to 
a computable set. From the simulation and experimental 
results, it has been shown that the proposed approach is 
effective in fulfilling the force control objective in presence 
of model nonlinearities and possible uncertainties. Future 
work will focus on the extension to the approach to switched 
control of LEPEX. 
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Fig. 11.  The experimental force tracking error. 
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