Adaptive Output Feedback Force Tracking Control for Lower Extremity Power-Assisted Exoskeleton

Shengli Song*, Yuxuan Cao *, Haitao Wang*, Jinhong Xue*, Xinglong Zhang *, Junyong Fu**, Fangwen Tu***

Abstract: This paper presents an output feedback adaptive force tracking control scheme for Lower Extremity Power-assisted Exoskeleton (LEPEX). LEPEX is driven by electro-hydraulic actuators geometrically mounted for the active joints, which exhibits high nonlinear dynamics. In view of this, a robust observer resorting to Radius Basis Function Neural Network (RBF-NN) is proposed to approximate the nonlinearities so as to detect the values of the process variables. An adaptive controller compatible with the RBF-NN estimator is adopted to cope with the nonlinearities and possible model uncertainties. The convergence of the output, i.e., load force variable, to a computable set is guaranteed in the context of Lyapunov direct method. Finally, simulation and experimental tests on the force control of an ankle joint of LEPEX are studied to witness the potentiality of the proposed approach.

Keywords: lower extremity exoskeleton, hydraulic driving system, neural network, adaptive control, output feedback control.

1. INTRODUCTION

Nowadays, heavy loads are usually transported with wheeled vehicles due to their adequate load-carrying capability. However, wheeled vehicles are not suitable for the rugged terrains and/or the needs to move up and/or down stairs. For these reasons, the developments of legged locomotion become more attractive over the last decades, see (Zoss et al., 2006; Chu et al., 2005; Ghan and Kazerooni, 2006; Gupta et al., 2008). Among them, lower extremity exoskeleton is a legged locomotive humanoid robot, which is used for helping soldiers bear heavy loads so as to increase their load capacity and improve their flexibility, and for assisting elders and patients who experience difficulties in their movability, to fulfill the daily living movements, see (Banala et al., 2009; Li et al., 2013).

A Lower Extremity Power-assisted Exoskeleton (LEPEX) is presented in Fig. 1, where each leg has 7 degrees of freedom (d.o.f.), among which, 3 d.o.f. is allowed at the hip joint, 1 d.o.f. is enabled at the knee joint, while the other 3 ones are employed at the ankle joint. Among them, the d.o.f. of the knee and ankle joints in the sagittal plane are active ones. Each active joint is driven by an actuator that must provide power in real time to reduce wear’s energy consumption. Hence, control of the hydraulic actuators (joints) is vital to achieve high level human-machine interaction performance.

Force control is widely used in power augmentation exoskeleton robot due to the fact that it implicitly guarantees a safe and smooth operation for human-robot interaction (Lee et al., 2012). In recent years, literatures related with force tracking control goal for hydraulic driving systems have been reported, see (Alleyne and Liu, 2000; Kilic et al., 2012; Steger, 2005), but it has been noticed that force perception that provides precise and repeatable measurements in terms of human lower extremity exoskeleton is still difficult and costly, see (Ho and Ahn, 2010; Kazerooni et al., 2005; Pan et al., 2014; Rito et al., 2006). In (Kazerooni and Steger, 2006), a virtual force/torque control algorithm has been developed where only indirect measurement of the external force is required. A robust integral admittance shaping approach has been addressed in (Nagarajan et al., 2016) for active exoskeleton with parameter uncertainties. It has been proven that neural network (NN) is capable to approximate nonlinearities globally without a priori the structure of the system, see (Jagannathan, 2006; Park and Han, 2010; Huang et al., 2013; Ge and Wang, 2014). The methods have been extended to the application to estimation of robot dynamics with NN, see (Ge et al., 2009; Kazerooni and Steger, 2006). An observer for nonlinear system based on NN has also been developed with resorting to back propagation, see (Abdollahi et al., 2006; Sharma and Verma, 2012; Sharma and Verma, 2013; Li et al., 2013; Huang and Jiang, 2015).

In this paper, an output feedback adaptive force tracking control scheme with NN observer is developed for LEPEX. First, a dynamic model describing the open-loop hydraulic driving system and geometric structure of the robot is established which shows high nonlinear dynamics. A multilayer feedforward Radius Basis Function Neural Network (RBF-NN) observer is proposed to approximate the nonlinearities so as to estimate the states, such as force of load \(F_x \), valve spool position \(v_x \). An adaptive controller compatible with the RBF-NN estimator is developed to cope with the nonlinearities and possible model uncertainties. The convergence of the output, i.e., load force variable, to a computable set is guaranteed in the context of Lyapunov...
direct method. Finally, simulation and experimental tests on the force control of an ankle joint of LEPEX are studied to witness the potentiality of the proposed scheme. The contributions of this paper are twofold: 1) Compared with the existing method, see (Ho and Ahn, 2010; Kazerooni et al., 2005; Pan et al., 2014; Rito et al., 2006; Kazerooni and Steger, 2006), the proposed approach relies on a robust observer, which allows to estimate the external force without the use of multi-dimensional force sensors; 2) The system is a slightly improved version of the one in (Song et al., 2014), while the proposed control algorithm shows a huge improvement especially in its capability to deal with nonlinearities and model uncertainties. Note that, for simplicity the force control of only one joint, i.e., the right or left ankle joint, is considered as the study example in this paper.

2. DESCRIPTION OF THE MODEL

The hydraulic driving system (see Fig. 2) is made by a pump, a servo-valve, a cylinder, a relief valve, a check valve, a reservoir, an accumulator, a filter and other auxiliary components. The pump in the system is adopted to produce high pressure fluid for driving the hydraulic cylinder. The accumulator is introduced to provide the emergency stop or the opening of the flow system once it encounters urgent events. The relief valve is in charge of guaranteeing constant pressure of the pump. The operation principle of hydraulic driving system is as follows. The voltage signal is regarded as the control action of the system, while the spool displacement and force of the cylinder are chosen as the corresponding controlled variables. In the system, the spool and the cylinder form a feedback connection. Cylinder displacement can accurately react as the spool displacement varies, in this way the input of mechanical quantity is transformed into a large value of output force. Therefore, in view of this, the system is seen as a power amplifying device. The opening degree of the spool changes based on the voltage variations resulting from the regulator, in this way the values of pressure and the flow rate varies accordingly.

The state space representation of the hydraulic driving model can be given as, see (Song et al., 2014)

\[
\begin{align*}
\dot{\phi} &= \frac{1}{J}[M(F_\ell + F_c) - mgr\sin(\phi)] \\
\dot{F}_\ell &= n_1\dot{x}_s - n_2\dot{x}_c - n_3F_c + n_4 \\
\frac{dx}{dt} &= \frac{1}{\tau}(k,u - x_s)
\end{align*}
\]

where

\[
F_\ell = A_p p_A - A_p p_B
\]

\[
n_1 = \frac{\beta(A_1 + A_2)K_p}{V_0}
\]

\[
n_2 = \frac{\beta(A_1 + A_2)K_v}{2V_0}
\]

\[
n_3 = \frac{\beta(2K_p + C_e + C_w)(A_1 - A_2)}{V_0}
\]

\[
n_4 = \frac{\beta(2K_p + C_e + C_w)(A_1 - A_2)}{2V_0}
\]

In (1), \(\phi\) is the joint angle of LEPEX, \(J\) is the system inertia, \(M\) is the moment arm related to ankle joint, \(F_\ell\) is the load force, \(F_c\) is the friction force caused by the interaction of the piston and the cylinder, \(m\) and \(r\) are the mass and the mass center, \(x_s\) is the spool displacement, \(\dot{x}_s\) is the derivative of the position displacement, \(\tau\) is the mechanical time constant of the spool, \(k\) is the DC gain of the valve voltage to the spool position, \(u\) is control variable, \(A_1\) and \(A_2\) are the areas of piston corresponding to A and B, \(p_A\) and \(p_B\) are the pressure of room A and B, \(C_e\) and \(C_w\) are the hydraulic internal and external leakage of the system, \(V_0\) is initial volume of cylinder respectively.
3. RBF-NN OBSERVER BASED ADAPTIVE CONTROLLER DESIGN

In this section, the RBF-NN based observer is initially designed to estimate the state variable of (1). Based on this observer, a NN network based back-stepping controller is introduced in order to deal with nonlinearities and model uncertainties.

3.1 RBF-NN Observer Design

In this section, a three-layer RBF-NN estimator is developed to approximate the variables, e.g., F_k and x_k of system (1).

To this end, first let z be $[F_k^T, x_k]^T$, and from system (1) we also define
\[
F(z, u) = \left[\begin{array}{l}
\frac{1}{\tau}k_1u - \frac{1}{\tau}x_k \\
n_1x_k - n_2x_k - n_3F_k + n_k
\end{array} \right]
\]
(2)

Then, by adding and subtracting Az, from (1) one can write
\[
\dot{z}(t) = Az + G(z, u) \\
y(t) = Cz(t)
\]
(3)

where $G(z, u) = F(z, u) - Az$, A is selected such that A is Hurwitz stable and the pair (C, A) is observable.

Therefore, the state observer of the system (1) can be described as
\[
\dot{\hat{z}}(t) = A\hat{z} + \hat{G}(z, u) + L(y - C\hat{z}) \\
\hat{y} = C\hat{z}(t)
\]
(4)

where \hat{z} and \hat{y} are the estimated state and output variables respectively. $L \in R^{2 \times 1}$ is the observer gain, and the selection of L must satisfy that matrix $A - LC$ is Hurwitz stable.

It has been noted that a three-layer RBF-NN with only one single-hidden layer is sufficient to approximate any degree of nonlinear system, see (Ge et al., 2009; Igelnik and Pao, 1995; Jagannathan, 2006; Lewis et al., 1999; Lewis and Vrabie, 2009; Xiong et al., 2014). For this reason, according to the approximation principle of RBF-NNs, $G(z, u)$ can be described by
\[
G(z, u) = W_S(H\hat{z}) + \varepsilon(z)
\]
(5)

where W and H are the corresponding weight matrices of the output and hidden layers, $z = [z^T, u^T]^T$ is the input to be applied to the NN observer, ε is the NN functional approximation error, and it is bounded, i.e., $|\varepsilon| \leq \varepsilon_0$, ε_0 is a small positive scalar and in principle can be arbitrarily small by adjusting the structure of the NNs, $S_i(\cdot)$ is the NN activation function.

Assume that perfect weights W is bounded with a finite constant, that is
\[
\|W\| \leq W_u
\]
(6)

where $\|\cdot\|$ represent the Euclidean norm.

The nonlinear function $G(z, u)$ can be approximated by
\[
\hat{G}(\hat{z}, u) = \hat{W}_S(H\hat{z})
\]
(7)

where \hat{z} is the estimated state vector, $\hat{z} = [\hat{z}^T, u^T]^T$, \hat{W} is the estimate of the perfect weights vector.

Then, the dynamics of NN observer can be described by
\[
\dot{\hat{z}}(t) = A\hat{z} + \hat{W}_S(H\hat{z}) + L(y - C\hat{z}) \\
\dot{\hat{y}}(t) = C\hat{z}(t)
\]
(8)

We define $\hat{z} = z - \hat{z}$ and $\hat{y} = y - \hat{y}$, where \hat{z} and \hat{y} are the state and output estimation errors, then from (4), (5) and (8), the dynamics resulted from the deviation of (8) and (3) can be obtained as
\[
\dot{\hat{z}}(t) = A\hat{z} + W_S(H\hat{z}) - A\hat{z} - \hat{W}_S(H\hat{z}) - L(Cz - C\hat{z}) + \varepsilon(z) \\
\dot{\hat{y}}(t) = C\hat{z}(t)
\]
(9)

By adding and subtracting $W_S(H\hat{z})$ in (9), we define $\hat{W} = W - \hat{W}$, $A = A - LC$, then (9) can be rewritten as
\[
\dot{\hat{z}}(t) = A\hat{\hat{z}} + \hat{W}_S(H\hat{z}) + \zeta(t) \\
\dot{\hat{y}}(t) = C\hat{z}(t)
\]
(10)

where $\zeta(t) = W[S_i(H\hat{z}) - S_i(H\hat{z})] + \varepsilon(z)$ is a bounded disturbance term.

Inspired by (Abdollahi et al., 2006), an improved weight updating law proposed for the NN observer is described as follows:
\[
\dot{\hat{W}} = -\eta(\hat{z}^TCA_{\hat{\hat{z}}}^T)S_i(T)(H\hat{z}) - \theta\|\hat{z}\|\hat{W}
\]
(11)

where $\Gamma(H\hat{z}) = diag\{S_i(H\hat{z})\}$, $j = 1, 2, \ldots, m,
\text{sgn}^T(\hat{z}_k) = \begin{cases} 1, & \text{for } \hat{z}_k > 0 \\ 0, & \text{for } \hat{z}_k = 0 \\ -1, & \text{for } \hat{z}_k < 0 \end{cases}$
(12)

where $k = 1, 2, 3, \ldots$, and $\eta > 0$ is the learning rate, θ is the designed positive number.

Theorem 1. Under the weight adjustment algorithm (11), there exist a computable positive scalar d such that the estimation error of z is uniformly ultimately bounded, i.e., $\|\hat{z}\| \leq d$.

Proof: see reference (Abdollahi et al., 2006).
3.2 Adaptive NN controller design

Let $x_i = \tilde{F}_l x_2 = \hat{F}_l$, from system (1) one has

$$
\dot{x}_1 = x_2
$$

$$
\dot{x}_2 = \frac{n_k}{\tau} u - n_k \tilde{F}_l x_2 - n_k(\dot{x}_n - n_k \tilde{x}_n - n_k F_n + n_k)
$$

(13)

Assume that a reference trajectory be $x_i(t)$ and define a generalized tracking error as $z_i(t) = x_i(t) - x_i(t)$ and have $\dot{z}_i(t) = x_2(t) - \dot{x}_i(t)$. Another error variable $z_i(t)$ is defined by introducing a virtual control $\alpha_i(t)$, that is $z_i(t) = x_i(t) - \alpha_i(t)$. The virtual control α_i is selected as

$$
\alpha_i = -K_i z_i + \dot{x}_i,
$$

(14)

where the gain matrix $K_i > 0$. Therefore, one promptly has

$$
\dot{z}_i = z_i + \alpha_i - \dot{x}_i = z_i - K_i z_i
$$

(15)

Under (15), we recall the possibility that the model parameters might not be known a-priori. A feedback control policy u can be selected as

$$
u = -\frac{\tau}{n_k} (\dot{z}_i + K_i z_i) + \hat{f}
$$

(16)

Where

$$
f = \frac{1}{k_s} x_i + \frac{n_k}{n_k} \dot{x}_i + \frac{n_k}{n_k} (\dot{x}_n - n_k \tilde{x}_n - n_k F_n + n_k) + \frac{\tau}{n_k} \alpha_i
$$

(17)

$$
f = \frac{1}{k_s} x_i + \frac{n_k}{n_k} \dot{x}_i + \frac{n_k}{n_k} (\dot{x}_n - n_k \tilde{x}_n - n_k F_n + n_k) + \frac{\tau}{n_k} \alpha_i
$$

(18)

In order to compensate for uncertainties in (17), we employ a critic NN to approximate the system. The feedback control u is designed as

$$
v = -\frac{\tau}{n_k} (\dot{z}_i + K_i z_i) + \hat{W}_e S_2(Z)
$$

(19)

Where $f_e = \alpha f$, $\alpha = \frac{\tau}{n_k}$, $e_i(Z)$ is the approximation error and $e_i(Z) \leq \bar{E}$, \bar{E} is a positive scalar which also depends on the value of ε and ε_0.

The NN adaptive law is developed as (He et al., 2015)

$$
\dot{W}_e = -\Gamma S(z_i) z_2 + \sigma \dot{W}_e
$$

(20)

where Γ is the gain matrix, a constant, σ is a small constant, $\sigma > 0$.

In order to verify the stability of the NN, a Lyapunov function candidate is chosen, that is

$$
V = \frac{1}{2} \varepsilon^2 z_i^2 + \frac{1}{2} \sigma^2 \dot{W}_e^T (\alpha T)^T \varepsilon
$$

(21)

where $\dot{W}_e = \varepsilon - \dot{W}_e$.

Theorem 2. Under control law (18), weight adjustment algorithm (20) and the condition that $K_i > 1$, then the states of system (15) is uniformly ultimately bounded within a computable set $\Omega = \{ z | z^T K z \leq \rho \}$, where K is defined in (27).

Proof:

$$
\dot{V} = z_i (z_i - K_i z_i) + \frac{\varepsilon_i}{\alpha} (u - f_i) + \dot{W}_e (\alpha T)^T \dot{W}_e
$$

$$
= z_i z_i - K_i z_i + \frac{\varepsilon_i}{\alpha} (u - f_i) + \sigma \dot{W}_e (\alpha T)^T \dot{W}_e
$$

(22)

where $\dot{z}_i = z_i - \dot{z}_i$ and $\dot{z}_i = z_2 - \dot{z}_2$.

Taking into account that $\dot{z}_i z_2 \leq 1/2 z_i^2 + 1/2 z_2^2$ and $-K_i z_i z_2 \leq -K_i z_i z_2 \leq -(K_i + 1/2) z_i^2 + 1/2 K_i z_i^2$, then

$$
\dot{V} \leq z_i z_i - K_i z_i + \frac{\varepsilon_i}{\alpha} (u - f_i) + \sigma \dot{W}_e (\alpha T)^T \dot{W}_e
$$

(23)

By completion of squares, one has

$$
\dot{W}_e S_2(Z) \leq \frac{1}{2} \dot{z}_2^2 + \frac{1}{2} \sigma \dot{W}_e S_2(Z)
$$

(24)

$$
\dot{W}_e S_2(Z) \leq \frac{1}{2} \dot{z}_2^2 + \frac{1}{2} \sigma \dot{W}_e S_2(Z)
$$

(25)
Define $K_{20} > 0$ and $K_{21} > 0$ such that $K_{20} = K_2 - 1 - K_{21}$, then

$$-K_{21}z_1^2 + z_2\alpha^{-1}e_{c}(Z) \leq \frac{(\alpha^{-1}\bar{e})^2}{4K_{21}}$$

(26)

Therefore, from (21) and in view of (22-24), it follows that

$$\dot{V}_2 \leq -K_2z_1^2 - K_{20}z_2^2 + r$$

(27)

where

$$r = \alpha^{-1}(-\sigma\|\bar{W}_c\| + \sigma\|W_c\|\|\bar{V}_c\| + 1/2\|S_{ec}(Z)\|\|\bar{V}_c\| + 1/2z_1^2 + 1/2(K_{21}^2 + 1)z_2^2 + (\alpha^{-1}\bar{e})^2/4K_{21}).$$

Recalling that $K_2 > 1$, the state z_1 and z_2 is uniformly ultimately bound in the set $\Omega = \{z|z^T \bar{K}z \leq r\}$, where

$$z = [z_1, z_2]^T$$

and

$$K = \begin{bmatrix} K_1 & 0 \\ 0 & K_{21} \end{bmatrix}$$

(28)

Remark 1. From Theorem 2, it is evident that larger values of K_1, K_{20}, and smaller values of K_{21} and α could result in a larger amplitude of the set Ω. Hence, in order to achieve satisfactory control performance (e.g., fast convergence and small robust set), it is advisable to select larger values of K_1, K_{20}, K_{21} and α, and small values of K_2.

Remark 2. The parameter σ and \bar{e} affects the radius of the set Ω and in principle can be set arbitrarily small. In case σ is chosen such that $\sigma \to 0$ and the number of neurons of the observer and the adaptive controller increases until $\bar{e} \to 0$, then it follows that $[\tilde{z}_1, \tilde{z}_2]^T \to 0$ and $\tilde{W}_c \to 0$. Consequently, the state z_1 and z_2 converge to the origin.

4. SIMULATION AND EXPERIMENT STUDY

In order to verify the validity of the adaptive output feedback force tracking control algorithm, simulation and experimental tests have been employed, and the corresponding results are reported and analyzed in this section.

4.1 Simulation

The diagram of force adaptive NN tracking controller with NN observer for LEPEX is shown in Fig. 3. During the simulation, the sampling period is selected as 0.001s. The desired force is set as $F_{ld} = 200 \times \sin(3\pi t)$.

![Fig. 3. Diagram of force adaptive NN tracking control scheme with NN observer.](image)

The structure and parameters of the NN observer and adaptive NN force tracking controller are described in Table 1. Note that, as shown in Table 1, two NN structures are designed: a three-layer NN with a single-hidden layer containing sixteen neurons is employed to construct the RBF-NN observer, and an adaptive NN three-layer NN with a single-hidden layer and containing 256 neurons is adopted for the adaptive regulator to compensate for the system uncertainties. The values of the vital parameters of the hydraulic driving system are given in Table 2. The simulation results have been reported in Fig. 4-7, where Fig. 4 depicts the tracking trajectories with desired force of $F_{ld} = 200 \times \sin(3\pi t)$, Fig. 5 is rectangular area marked in Fig. 4, Fig. 6 gives the deviation of the actual force and the desired one, while Fig. 7 describes the control signal during the force tracking control.

![Fig. 4. Tracking trajectories with desired force of $F_{ld} = 200 \times \sin(3\pi t)$](image)
Fig. 5. The rectangular area marked in Fig. 4.

Fig. 6. The force tracking error.

It has been shown from Fig. 6 that the maximum force tracking error is 0.774N. Considering the maximal amplitude of the force reference being 250N, the simulation results indicate that the closed-loop control system exhibits an outstanding force tracking performance.

Table 1. Structure and parameters of the observer and controller.

<table>
<thead>
<tr>
<th></th>
<th>NN-observer</th>
<th>Adaptive controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of NN</td>
<td>RBF-NN</td>
<td>RBF-NN</td>
</tr>
<tr>
<td>Number neurons</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>Learning rate</td>
<td>$\eta = 45$</td>
<td>$\Gamma_1 = \Gamma_2 = 100$</td>
</tr>
<tr>
<td>The initial weights of W</td>
<td>random within $[0, 0.3]$</td>
<td>random within $[0, 0.2]$</td>
</tr>
<tr>
<td>Gain matrices</td>
<td>$K_1 = 585$</td>
<td>$K_2 = 24$</td>
</tr>
<tr>
<td>Other parameters</td>
<td>$\phi = 1.5$</td>
<td>$\sigma_1 = \sigma_2 = 0.02$</td>
</tr>
</tbody>
</table>

4.2 Experiment

To further demonstrate the validity of the force tracking control system, experimental tests have been addressed in this section. The setup of the proposed approach for the LEPEX hydraulic driving system is described in Fig. 8. The hydraulic cylinder and servo valve are self-made to meet the specific requirements such as maximum torque, minimal mass, suitable length and so forth. The configuration of the computing center is P4/2.0G CPU, 2G memory, 250G hard disk with a 16-bit A/D convertor, a 16-bit D/A convertor and an amplifier, etc. The experiment results are reported in Fig. 9-12. It clearly shows that the tracking error in the experiment is 0.966N, a bit larger than that in the simulation.
4.3 Results and discussion

Among the main characteristics of the proposed control scheme, we recall the possibility to require less sensors thanks to the use of RBF-NN observer. From the simulation results, it has been shown that the RBF-NN observer is robust (see Fig. 6) even though a limited number of neurons (that is 16) adopted, also the adaptive controller is effective in compensating for the nonlinearities of the system (see again Fig. 6).

In view of the experimental results, the tracking error is slightly larger than that in the simulation. This is due to the presence of possible model uncertainties and measurement noise. This, on the other hand, shows that the proposed control scheme is also robust to model uncertainties and measurement noise.

5. CONCLUSIONS

This paper presents a RBF-NN observer based force adaptive tracking controller for LEPEX. The approach allows to reduce the number of sensors thanks to the use of RBF-NN observer. Compatible with the observer, a NN adaptive output feedback controller has been designed to achieve the force tracking control goal. Moreover, rigorous Lyapunov analysis has been addressed to guarantee that the output variable of the control system, i.e., the load force converge to a computable set. From the simulation and experimental results, it has been shown that the proposed approach is effective in fulfilling the force control objective in presence of model nonlinearities and possible uncertainties. Future work will focus on the extension to the approach to switched control of LEPEX.

6. ACKNOWLEDGEMENTS

Part of this work was done at Social Robotics Laboratory, Department of Computer Science and Engineering, National University of Singapore. The author would like to thank Prof. Shuzhi Sam Ge for his kind guidance and fruitful suggestions.
REFERENCES

