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Abstract: The paper contributes a special design of a 2-DOF MEMS (Micro Electro Mechanical System) 
vibratory gyroscope in a mere schematic way which has benefit of being manipulated  
by  balanced  force  actuation  mechanism  and  a  differential  capacitive  sensing  one  as  well.  
These two embedded mechanisms function along drive and sense axes because the control- 
tasked system requires observation of displacement and velocity states simultaneously. In other  
significant stand, a composite adaptive controller (CAC) is suggested to hold quadrature error  
compensation true compelling the sensory oscillation mechanism to get vibrated with distinct  
frequency and amplitude in a sinusoidal manner. Not only does the proposed composite scheme takes 
advantage of rotation rate estimation being subjected to persistent excitation, but also it gains  
the benefit of rapid tunable estimation, considerable identification sharpness and an intrinsic  
adjustable structural robustness in comparison to the adaptive sliding mode controller (ASMC).  
The simulation results emerge persuasive. It is worthwhile being mentioned that quadrature error and 
uncertainty get significant in fabrication procedures and ruin sense mode gyroscope response. They 
mainly originate from slight geometrical distortion which itself causes aniso-damping and aniso-
elasticity. Furthermore, inaccuracy in modeling and fabrication process necessitates design of an 
effective controller. Tracking performance shortcomings in pole-placement state-feedback controller and 
integral rotation rate estimation requires considering other modern controllers such as adaptive ones. 
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1. INTRODUCTION 

MEMS vibratory gyroscope sensors are exploited for angular 
rotation rate measurement at a large group of rotary machines 
due to their extraordinary benefits and distinctions. The most 
basic MEMS vibratory gyroscope is a 2-DOF gyro which is 
comprised of a suspended seismic mass - on a silicon 
substrate. The mass oscillates along drive direction.  Being 
subjected into rotation around z axis, a Coriolis force with the 
same drive frequency   will   be   induced   over   the   seismic   
mass in a sinusoidal manner having it vibrate along the y 
direction (Acar and Shkel, 2008). A practical model is 
displayed on (Acar and Shkel, 2008). (Rashed and Momeni, 
2007) achieved major equations of MEMS gyroscopes with 
focus on vibratory type and its mechanical parameters. (Fei 
and Batur, 2009) also derived the dynamical model of a 2-
DOF MEMS vibratory gyroscope sensor. The  basic design  
and  other  modern  constructed  MEMS  gyros  in (Acar  and  
Shkel, 2008) lack  balanced force actuation mechanisms     
and also differential capacitance measurement bridges along 
both drive and sense axes, all functioning simultaneously. 

They drastically have effect on sensor linearity and stability 
particularly utilizing control systems instead of exploitation 
of resonance frequency lock technique. The progressive 
schemes have dramatically ameliorated robustness against 
amplitude variation because of regional frequency shift; 
however, it requires proposal of control systems to buffer 
either robustness in a narrower frequency domain or against 
very small Hertz-to-Hertz frequency variation. 

The sense mode vibration along the axis betokens rotation 
rate into which the gyro is subjected. Considering a controller 
which guarantees perfect tracking of desired sinusoidal 
oscillations along the directions with desired amplitudes   and   
frequencies, despite uncertain gyro parameters, is important 
to realize accurate rotation rate measurement. Adaptive 
sliding mode control is an effective technique to deal with 
gradual parameter alteration or control a system with 
parametric uncertainty with a disturbance rejection capability 
(Rossomando et al., 2014; Sefriti et al., 2012; Devaraj 2015). 
Adopting composite adaptive control is a useful solution to 
attain both aims including parameter estimation. Composite 
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adaptive control has the benefit of both   parameter 
estimation and adaptive control capability. Various control 
algorithms are used to exploit vibrational mechatronic 
systems in an efficient manner. Numerous control solutions 
have been maintained controlling micro devices, especially 
MEMS inertial sensors, in recent years (Fei et al., 2013; Juan 
and Fei, 2013; Wu and Fei, 2016). (Raman et al., 2009) 
evolved a closed-loop digitally controlled MEMS z-axis 
gyroscope exploiting unconstrained sigma-delta force   
balanced feedback control. (Dong and Avanesian, 2009) 
proposed a modern design  methodology and hardware 
implementation for drive-mode control of vibratory  
MEMS z-axis gyroscopes utilizing active disturbance 
rejection control (ADRC) strategy. (Li et al., 2010) presented 
a nonlinear robust adaptive controller to manage drive axis 
vibrations in a MEMS z-axis gyro vulnerable to parametric   
uncertainty and external disturbances. He accomplished it 
exploiting combination of Dynamic Surface Control (DSC)   
technique with disturbance attenuation method. (Wang et al., 
2011) suggested a frequency control design established upon 
phase locked loop (PLL). (Saif et al., 2011) proposed a 
modern technique to approximate time-varying rotation  
rate utilizing sliding mode observer as well as a robust  
control scheme for z-axis MEMS gyro performance  
improvement, in spite of coupling between vibratory  
gyroscope modes and innate model uncertainties.  Terminal 
Sliding Mode Control (TSMC) was employed to  
evolve  tracking  performance  of  drive  and  sense  modes  
regarding  uncertain  model  of  vibratory  gyro. (Fei et al.,  
2011) proposed a direct adaptive fuzzy control  
exploiting a supervisory compensation for tracking 
robustification in a z-axis MEMS gyro. (Jiang et al., 2012) 
proposed a signal processing method to ameliorate  
rotation rate sharpness in the gyroscopic system through 
combining outputs of an array of MEMS gyros. (Salah et al., 
2010) adopted a strategic nonlinear estimation method to 
hold a correct read-out of time-dependant rotation rate 
exploiting an on-line control-observation scheme. Yuan et al. 
(2016) contributed algorithmic novelty in parameter 
estimation at 3-DOF gyros to predominantly manage their 
stochastic errors and to improve estimation accuracy in an 
array of gyros. 

This article conceptually contributes a schematic  
design which takes advantage of owning force-balanced  
electrostatic actuation mechanisms along both x and y axes. 
The design compels the system to be manipulated and 
physically controlled in a dramatic way. It shows quite 
beneficial a schematic design armed with two embedded 
differential capacitance measuring bridges bringing a 
physically-observable design at the access. The main 
accomplishments in comb-drives are long-stroke actuation 
competency and capability to generate displacement 

independent forces, which puts greatly stable actuation 
mechanism at the access (Acar and Shkel, 2008). The 
balanced comb drive owns all mentioned extra paramount 
features and exclusively functions applied voltage linearly. 
Differential capacitance sensing bridge is normally exploited 
to make capacitance change with deflection linear. The 
capacitance alteration inversely turns proportional to the 
square of the initial gap and sensor performance (i.e. 
sensitivity, resolution, and signal to noise ratio) improves 
following electrode gap decrease as the result (Acar and 
Shkel, 2008). These allegations will be proved in section 6. In 
sections 3 and 4, a new composite adaptive controller (CAC), 
for a single-axis 2-DOF MEMS vibratory gyro with seven 
uncertain parameters, is also proposed in order to overcome 
fabrication problematic issues, low accuracy in modelling 
and pivotal faults with open loop design. It also obtains 
desired sinusoidal vibrations with non-destructive operational   
amplitudes and frequencies along two orthogonal axes. The 
uncertain parameters are the stiffness and damping factors as 
well as rotation rate. The benefit is that the whole system 
appears more swift and sharp in estimation of all discussed   
unknown parameters and robust being subjected into much 
more severe external fixed disturbance, all in comparison to 
ASMC (Fei, 2012). Justified parameter estimation in the  
suggested scheme, however, is because of persistently 
excitation condition (PEC). PEC is brought about by unequal 
drive excitation frequencies in two vibration mechanisms, 
likewise ASMC. The comparative simulation study between 
ASMC and CAC verifies that the latter is capable of 
demonstrating more accuracy, considerable identification 
pace and sharpness, and even more robustness, especially in 
parameter estimation. As depicted on Fig. 7, the contributing 
control scheme of CAC includes two major bodies; a 
conventional model reference adaptive controller (MRAC) 
and a self-tuning regulator (STR) (Ranjbar et al. 2018). The 
first part plays the role to realize a thorough faultless tracking 
of distinct sinusoidal vibrations along drive and sense 
directions and the second estimates the rotation rate. It owns 
an intrinsic tunable speed and robustness in parameter 
alteration track. Indeed, two parameter update laws are 
embedded in the system; the first one vouches for the system 
stability and the second guarantees right estimation of 
unknown gyroscopic parameters. The technique is established 
upon external drive force matrix decomposition and error 
dynamical equation matrix factorization as well. The error 
dynamical equation is decomposed into parameters’ 
estimation error vector and regressor (trajectory) matrix 
because of decomposition of external drive or control force 
vector. The result is deemed as a prediction error and 
attempts are done to make a cost function minimized. The 
cost index betokens exponential prediction error growth. The 
minimized cost yields the parameters’ update law equation 
where the regressor matrix is involved. The system 



38                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

parameters update law appears as a function of trajectories 
because the matrix itself is a function of accessible 
trajectories. Increase in richness of the regressor matrix is so 
important since it boosts excitation of more modes and 
guarantees PEC and estimation of the parameters such as 
angular velocity as the main result. It is worthwhile notifying 
that trajectory data are given by electronic measuring circuits 
and the reference model. The delicate point which mandates 
one’s focus to be maintained is that ASMC, depicted on Fig. 
8, loses pace and accuracy due to operation upon smooth 

transient switching function instead of sgn( )s  to overcome 

lumped uncertainty and disturbance, in order to assuage 
chattering consequences. Notably, CAC shows extraordinary 
disturbance rejection in comparison to ASMC. The variable, 
s, is the sliding surface. 

The article is structured as following. A single-axis 2-DOF 
MEMS vibratory gyroscope model is intuitively conversed 
and represented in section 2. Persuasive simulation yields and 
comparison with ASMC are put forth. In section 3 and 4, 
CAC and estimator are devised and adjusted. The simulation 
results are illustrated in section 5. The conceptual analysis of 
modifying contribution in gyroscopic structure is discussed in 
section 6. Final outcomes as well as some future attractive 
research fields are presented in section 7. 

2. MODEL REVIEW AND PRINCIPLES OF OPERATION 

As shown on Fig. 1, the structure is thought up in such a way 
that the seismic mass is capable of vibrating along  
two major perpendicular axes entitled x and y. The described 
structure is chiefly made up of two vibratory mechanisms 
(Acar and Shkel, 2008); drive vibrator and sense one; the x 
vibrational mechanism involves the proof mass, the 
suspension structure that allows the seismic mass   to vibrate 
merely along the x direction, stationary/moving x comb drive 
electrostatic actuation electrodes and stationary/moving x 
comb differential capacitance sense electrodes, and so does 
the y vibrator (Acar and Shkel, 2008; Ranjbar et al., 2013, 
2014). The vibration along the sense axis betokens the 
rotation rate which is going to be measured (Acar and Shkel, 
2008). Rotation rate measurement in MEMS vibratory 
gyroscope is based upon displacement measurement brought 
about by the resulting Coriolis force. The so called “Coriolis 
force induction” principle is presented to clarify the MEMS 
vibratory gyroscopic mechanism (Ranjbar et al., 2014; John 
and Vinay, 2006). 

Note that the forces are applied by two blocks of electronic 
circuits, numbered 8 and 9, connected to the x  

and y actuation electrodes which are signed with xV , xV , 

yV  and yV  on Fig. 1. Additionally, the signals proportional 

to the proof mass constrained displacements, velocities and 
accelerations along the x and y axes are respectively 
measured by two blocks of trans-impedance amplification 
circuits which are numbered with 10 and 11 on Fig. 1. More 
explanation and details about the electro-mechanical 
transduction embedded mechanisms are provided in Section 
6. It is necessary notifying that dynamical model of the novel 
conceptual design, more explained in Section 6, does not 
differ from the previous ones in (Acar and Shkel, 2008; John 
and Vinay, 2006). Before obtaining the proof mass equations, 
it is emphasized that presumptions come in subsequent order; 
first off, the gyro is subjected into rotation and transition. 
Secondly, the substrate has the non-accelerated transitive 
movement and constant rotary speed. Furthermore, the 
centripetal forces become so partial and the gyro rotates just 
around the z direction in such a way that the Coriolis force is 
produced merely along x and y directions (Acar and Shkel, 

2008). Presume x yV V V   as the vector in the rotating 

frame, x-y. Time derivative of V in the inertial frame, X-Y, 
turns 

(d / d ) = (d / d )XY xyV t V t V 
  

,                                         (1) 

where   is the rotation rate of the rotating frame x-y. 

(d / d )XYV t


 and (d / d )xyV t


 are respectively time-derivatives 

of the vector V


 (its mapping) in the rotating frame and (its 

mapping) in the inertial frame (Meriam and Kraige, 2012), as 
illustrated on Fig. 2(b).  

The rotating frame is attached to the substrate on which the 
seismic mass is kept in suspension as illustrated in Fig. 2. 
Before obtaining the seismic mass equations, the following 

symbols are introduced regarding Fig. 2(c); Ar  as the position 

vector of the seismic mass relative to the inertial coordinate 

system A (X-Y), Br  as the position vector of the seismic 

mass relative to the rotating coordinate system B (x-y) and   

as an orientation vector of the rotating coordinate system B 
relative to the inertial one A.   is the rotation rate of the 

rotating coordinate system B ( =   ) and R  is the position 

vector of the gyro’s substrate (rotating coordinate system B). 
The dynamical equation will be obtained via describing the 
position vector of the seismic mass in two parts; one term 
with respect to the rotating coordinate system and the other 
with respect to the inertial one so;  

/ /= =d dt d dt
B BA A Br rR r r R r      

 

( )= B B BA B B rr rr rR r              
 

= ( ) 2 .A B B B Ba A r r v a     
                                      (2) 
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A


 is the transitive acceleration of the gyro substrate. 

Ultimate obtained term, Aa


, is the acceleration of the seismic 

mass relative to the inertial frame A (Acar and Shkel, 2008). 

In (2), the term, 2 Bv
 

, is the Coriolis acceleration which is 

the major function that transforms rotation rate of the rotating 
reference frame B into an imaginary inertial force Acar and 
Shkel (2008). Finally, the whole external force influencing 
over the seismic mass is attained by (3) assuming the 
transitive acceleration to be inconsiderable;  

= ( ) 2 ,ext B B B BF m r m r m v m a      
                       (3) 

2 2= (ext y z y x y z z xF m z y y x x z       
  

 

         
22 2 ) (y z z x z y zz y x i m x z z y          

   
 

         
2 2 2 ) (x z x x y x zy x z y j m y x x          

   
 

         2 2 2 2 ) .x y x y y z x yx z z y y x z k          


      (4) 

It is supposed that the gyro’s substrate rotates just around the 

z direction with a fixed rotation rate. Consequently, = 0x , 

= 0x , = 0y  and = 0y . It will not be exaggerative that 

the seismic mass hardly diverges out of the parallel plane 
with the gyro’s substrate, resulting in no movement along the 
z direction - = = = 0z z z  . For rotation rates at frequencies 

lower than the gyro operational frequency, the term 2
z  

becomes partial Acar and Shkel (2008); the centripetal forces 
are negligible as emphasized before. These presumptions 
simplify the long Eq. (4): 

= ( 2 ) (2 ) .ext z zF m y x i m x y j     
  

                                (5) 

From another aspect, it may be stated that  
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Fig. 1. Physical construction of the MEMS vibratory gyro which is equipped with force balanced actuators and differential 
capacitance sensory bridges together simultaneously. 
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Fig. 2. (a) Gyro lumped model (b) Derivative of rotating vector (c) Gyro's table is virtually connected to the rotating coordinate 
system. 

= ( ) ( )ext x x x y y yF u d x k x i u d y k y j    
  

                         (6) 

where xu  and yu  are control forces along the two directions. 

The resistant elastic and damping forces are considered 

against the moving forces; xu , and yu . The following 

equations will be obtained regarding (5) and (6): 

2 =x z x xu m y d x k x mx                                                    (7) 

2 =y z y yu m x d y k y my                                                   (8) 

Geometric abnormalities unavoidably decrease stability and 
rotation rate measurement accuracy. Indeed, separate mode 
vibrations cross-couple in practice. In other terms, coupling 
exists between the mentioned resistant coercions of the drive 
and sense modes due to geometrical abnormalities. Cross 
stiffness and damping factors might be taken into account in 
subsequent formulation (Rashed and Momeni, 2007): 

= 2x xx xy xx xy zmx u d x d y k x k y m y                                   (9) 

= 2y yy yx yy yx zmy u d y d x k y k x m x                                 (10) 

3. CAC DESIGN 

Now, a CAC is designed which guarantees faultless tracking 
of desired trajectories and is capable of rotation rate 
estimation. As it is seen on Fig. 7, CAC is made up of two 
major bodies (Controller and STR); the first subsystem is the 
adaptive Lyapunov-based model reference controller which is 
responsible for tracking desired trajectory perfectly in such a 
way that the whole system stabilizes. The second is a self-
tuning regulator which plays the role of estimator to make a 
correct measurement of uncertain parameters, particularly the 
rotation rate. The suggested CAC is designed in such a way 
that it has the quadrature error compensated in order to obtain 
desiderated sinusoidal vibrations with suitably defined 
amplitudes and frequencies along the two directions. It 
intensively results in so swift and precise angular velocity 
estimation, being subjected into aggravating exogenous 
disturbance. 

Gyroscopic dynamics may be restated so that it would be 
similar to a 2-DOF robot equation Fei (2012). Dividing (9) 

and (10), by m  and defining vectors, = [ ]Tq x y , 

= [ ]Tx yu u u , and matrices as:  

0
= , = , = ,

0

xx xy xx xyz

z yx yy yx yy

d d k k
D K

d d k k

    
              

          (11) 

the gyro dynamics would be subsequently reconsidered;  

/ / 2 = / .q Dq m Kq m q u m                                          (12) 

It is worth transforming equations into non-dimensional ones 
for simulation goals. Regarding resonance frequency of drive 

and sense mode vibration mechanism as 0  and assuming 

external applied frequencies to be d  and s , one may take 

into account non-dimensional time t  as 0=t t  and 

0d / = dt t  as the result. Equation (12) is a two-rowed 

vector equation. Supplanting t  with 0/t   and dividing first 

and second rows respectively by the reference displacement 

0x  and 0y  then completely by 2
0  yield  

2
0 0

02 2
0 00 0 0

d ( '/ ) d ( '/ )1 1
( ' / )

d 'd '

q t q t
D Kq t

m q tq t m q

 


 
   

0
02

0 00 0

d ( '/ )1 1
= ( '/ ) 2 .

d '

q t
u t

q tm q





                                 (13) 

Defining vector variables and matrix parameters as 

following: 2 2
0 0' = d ( ' / ) / d 'q q t q t , 0 0' = d ( ' / ) / d 'q q t q t ,

0 0' = ( ' / ) /q q t q , 2
0 0 0' = ( ' / ) /u u t m q  , 0' = (1 / )D m D ,

2
0' = (1 / )K m K  and 0' = (1/ )  , the plant equation 

appears as:  

' ' ' ' ' = ' 2 ' 'q D q K q u q                                                   (14) 

or the subsequent one by crossing out the prime symbol:  

= 2 .q Dq Kq u q                                                           (15) 

At this stage, a CAC is designed to achieve thorough tracking 
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of the seismic mass and rotation rate estimation. Perfect 
tracking is obtained exploiting an MRAC (Model Reference 
Adaptive Controller) and gyro parameters are measured by an 
STR. The non-dimensional gyroscopic dynamics is 
reconsidered as  

( 2 ) =q D q Kq T     ,                                                   (16) 

where T  is the control force-vector. The dynamical equation 
can be recast by  

=lMq V K T                                                                  (17) 

where, 11 12 1 1

21 22 2 2

1 0
= = , = = = ,

0 1

M M u
M T u

M M u




      
      

      
 and  

1 2 2 1 2

1 1 2 1 2

2
= , =

2
xx xy z xx xy

l
yx z yy yx yy

d q d q q n q n q
V K

d q q d q n q n q

      
         

  
                     (18) 

This plant is constructed on the simulation block 1 on Fig. 7. 

It is presumed that =xy yxd d , and =xy yx  . Were this 

supposition not considered, number of uncertain parameters 
could merely grow without losing generosity and any 
problem imposition on final solution. 

The control force vector can be factorized into product of 
regressor matrix and parameters’ vector so the dynamics is 
reconsidered and (16) would be converted into (19);  

= ( ) ( ) = ( , , ) ( ).T W s P t W q q q P t                                           (19) 

Thus, ( )W s  and ( )P t  are obtained by the next equations: 

1 2 2 2 1 1

2 1 1 1 2 2

0 0 0
( ) =

0 0 0

q q q q q q
W s

q q q q q q

 
 
 

   
   

           (20) 

11 22( ) = 2xy z xy xx xx yy yyP t M M d n d n d n       (21) 

If the uncertainties are neglected, control input, v , and 

control law, T , are going to be designed subsequently in 
such a way that they vouch for tracking error zero 
convergence and system stability.  

= d v pv q K q K q                                                               (22) 

= lT Mv V K                                                                  (23) 

In (22) and (23), = dq q q , is the tracking error. vK  and 

pK  are fixed matrices defined by 2 2
1 2= diag{ , }vK    and 

1 2= diag{2 ,2 }pK    where 1  and 2  are positive 

adjustment constants. If this control law is superseded in the 
system dynamics, it would bring about a Hurwitz tracking 
error dynamics; 

T=Mv V Kl= = 0.l v pMq V K T q K q K q
        

On the other hand, there is uncertainty in parameters, hence 
the control law modification;  

ˆ ˆ ˆ= .d v p lT M q K q K q V K     
                                       (24) 

Supplanting the latter control law in (17) would yield the next 
tracking error dynamics:  

ˆ ˆ ˆ=l d v p lMq V K M q K q K q V K       
    .                  (25) 

Equations (22) and (24) are constructed within blocks 3 and 4 

on Fig. 7. Regarding ˆ=M M M , ˆ=V V V  and 

ˆ=l l lK K K , and supplanting them with the corresponding 

terms at the left side of (25) would lead to  

ˆ= .l v pMq V K M q K q K q     
                                          (26) 

Equation (26) is multiplied by the inverse of the so-called 

“estimated mass matrix", 1M̂  . Even though M̂  equals to 

2( = )M M I , the multiplication is carried out as an 

inspiratory solution for such problematic an issue while 
grams of the seismic mass is undetermined. Nevertheless, the 
article is concerned with a mass-defined gyroscope.  

1ˆ=v p lq K q K q M Mq V K      
                                         (27) 

Equation (27) changes into (28) regarding (17) and (19);  

1ˆ= ( , , ) ( ).v pq K q K q M W q q q P t                                          (28) 

Bringing the latter mass presumption into the mind, (28) is 
converted into  

= ( , , ) ( ).v pq K q K q W q q q P t                                                (29) 

The tracking error dynamics could be stated in terms of 
product of trajectory regressor matrix and uncertain 
parameter estimation error vector. A state space model may 
be depicted considering the tracking error dynamics. The 
proof mass movement along the two vibrational-trajectory 
axes are regarded as state variables, hence adoption of state 

vector by  1 2 1 2 1 21 4 1 4 1 4
= = =TX x x q q q q q q

  
      

        . 

Its time-derivative can be stated as following:  

1 2=x x                                                                                 (30) 

2 1 2= p vx K x K x WP                                                        (31) 

Hence, the state space model is given in subsequent terms: 

=X AX BU                                                                    (32)  

where  1 2= =
TT

X x x q q  
  , =U WP , and   
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2 2 2 2 2

2

0 0
= and = .

p v

I
A B

K K I
    

          
                                     (33) 

System output can be deemed as the following combined 
error vector which includes weighted tracking errors of 
displacement and velocity. It is noteworthy that > 0 , 

> 0j  and 2 2 1 2= diag{ , }  .  

1 1 1 1 1 1

2 22 2 2 2

0
= =

0

q q q q
Y

qq q q

 
  



       
       

          

    
    

 

 2 2 2= I X                                                          (34) 

Therefore, output is announced by the observer matrix C  

and the state space vector (seen at the bottom of Fig. 7 next to 
block numbered 6):   

 2 2 2= and = .Y CX C I                                            (35) 

As constructed within block 6 on Fig. 7, the output is defined 
by positive weighting factors of error and its time-derivative 
( > 0 , > 0j ). Maximum degree of time-derivative of the 

error is one. A  is a strictly stable matrix (Slotine and Li, 
1991). Equation (36) gives the input-output transfer function 
matrix;  

 2 2
1 1 2 2( ) = diag ( ) / ( ) , ( ) / ( ) .Y s s s s s                   (36) 

It is strictly positive real (SPR) due to 4 conditions of SPR 
functions (Slotine and Li, 1991). { , }A B  is a controllable pair 

because controllability matrix rank is full 

( 2 3

4 8
= 4B AB A B A B


   ). It is worth being noticed that 

 
4 4

det =1 0B AB


 , hence a controllable linear time-

independent system depiction. In the description, input-
output transfer function appears SPR. Consequently, 
necessities of the Kalman-Yakobovich Lemma are provided 
(Slotine and Li, 1991), and it could be affirmed that 
symmetric positive definite matrices, P  and Q , lay in such a 

way that  

= and = .T TA P PA Q PB C                                             (37) 

The subsequent Lyapunov candidate, which is a function of 
tracking and parameter estimation errors, is selected as  

1( , ) = T TV X P X PX P P                                                  (38) 

where 9 9  presents a symmetric positive definite matrix. 

Time-derivative of the function is obtained in (39).  

1( , ) = 2T T TV X P X PX X PX P P                                      (39) 

V  is made simple regarding the state space model;  

1= ( ) ( ) 2T T TV AX BU PX X P AX BU P P                     (40) 

1= ( ) 2 .T T T T T TV X A P PA X U B PX X PBU P P             (41) 

With regard to (37) and the scalar terms of T TU B PX  and 
TX PBU , (41) changes to  

1( , ) = 2 2 .T T T TV X P X QX U B PX P P                            (42) 

Summation of sign-indefinite terms are zeroed stabilizing the 
system, considering (37) and (43);  

= = = .T T T TP W B PX W CX W Y                            (43) 

With regard to parameter consistency or slow variation, (43) 
is expressed in another way;   

ˆ = = .T TP W CX W Y 


                                                      (44) 

Equation (44) is the parameters’ update law which is 
constructed in block 5 on Fig. 7. The matrix, ( , , )W q q q  , is 

obtained through linear parameterization of the exogenous 
driving force vector into the regressor matrix and the 
uncertain parameter vector. The matrix is produced in block 9 
on Fig. 7. It should be brought into one’s mind that  

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) = 1 1 2xy z xy xx xx yy yyP t d n d n d n               (45)  

and 1 2= = 10   as well as 9=150I . Equation (37) and 

equality of Q  to 2I  are all exploited for P  determination;  

2.625 0 0.005 0

0 2.625 0 0.005
=

0.005 0 0.0253 0

0 0.005 0 0.0253

P

 
 
 
 
 
 

                             (46) 

Considering (37), matrix C  is equal to  

0.005 0 0.0253 0
=

0 0.005 0 0.0253
C

 
 
 

                              (47) 

Regarding (35), = 0.0253 , 1 2= = 5 / 25.3  .  

4. LEAST MEAN SQUARE ESTIMATION SCHEME 
BASED UPON BOUNDED EXPONENTIAL 

FORGETTING FACTOR 

Here, an estimator will be devised to identify uncertain 
parameters, particularly the rotation rate. The following 
output prediction error might be defined;  

ˆ= .pe y y                                                                           (48) 

The exogenous driving forces over the gyro are regarded as 
output. The output will be forestalled by the prediction 
system. As it was proved, the output could be factorized into 
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the regressor matrix and the uncertain parameters’ vector, 
hence a new restatement of the prediction error:  

ˆ= ( ) ( ) ( ) ( ) = ( ) ( ).pe W s P t W s P t W s P t                               (49) 

The prediction error is generated via the red line part, 
numbered with 11 on Fig. 7 as well as block 10. The 
following cost function is proposed as the accumulated 
prediction error index;   

2 2

0 0

ˆ= ( ) d = ( ) ( ) ( ) d .
t t

pJ e t s W s P t y s s                     (50) 

The cost function minimization yields zeroing ˆ/J P  . It is 

demonstrated by Slotine and Li (1991) that the estimator, 
which is expressed by (51) and (52), minimizes the suggested 
index. Equations (51) and (52) betoken the parameters and 
gain update laws respectively;  

ˆ = ( ) ( )T
pP G t W s e
,                                                            (51) 

ˆ = ( ) ( ) ( ) ( )TG G t W s W s G t


.                                               (52) 

The estimator shows inertial. It requires a huge memory for 
data storage as well. It becomes incapable of tracking the 
time-dependant parameters as data accumulates with 
identification advancement. While PEC gets fragile, 
explosive gain corruption and annoying sensitivity become 
apparent. However, the major benefit of the system is a fine 
noise filtration and disturbance rejection which could be 
contemplated as robustness to some extent. Assuaging 
spoiling effect of piled-up data and compelling the estimation 
mechanism to be farther swift as well as improving time-
dependant parameter tracking competency, the least mean 
square estimator with bounded exponential forgetting factor 
is suggested. The subsequent cost function is proposed as the 
lumped prediction error index (Slotine and Li, 1991);   

( )d
2

0

ˆ= ( ) ( ) ( ) d .

t
r rt

sJ e W s P t y s s


                                     (53) 

Minimization of the cost function again yields in zeroing 
ˆ/J P  . Estimator-descriptive Eq. (54) and (55), respectively 

as the parameters and gain update laws, minimize the 
suggested cost function;   

ˆ = ( ) ( )T
pP G t W s e
                                                             (54) 

ˆ = ( ) ( ) ( ) ( ) ( ) ( )TG t G t G t W s W s G t 


                                 (55) 

The two recent equations are implemented in blocks 7 and 8 
of Fig. 7 and so are the Eq. (51) and (52).  

Were   set to zero, the simple inertial estimator would be 

applied. It is not competent of following time-dependant 
parameters. There would be too much sensitivity when PEC 

became fragile with time progression. Were   a nonzero 

fixed value, there would be a least square estimator with 
constant forgetting factor. It somehow would be a fine 
solution for the problem of huge memory requirement and 
sensitivity issue when PEC grew fragile during the time, 
because of eruptive gain increase ( ( ) =lim t G t   ). 

Avoiding the gain corruption,   is adopted time-dependant 

in such a way that it will converge to zero if PEC turns 
fragile and it will increase resulting in data forgetting 
intensification if PEC is fostered. ( )t  is given by Slotine 

and Li (1991);  

0 0( ) = (1 ( ) / ).t G t K                                                     (56) 

0  is a desired fixed value. 0K  is calculated by the 

supremum of the gain matrix (Slotine and Li, 1991);  

0
>0

= ( ) .sup
t

K G t                                                                 (57) 

These fixed values are adjusted by trial and error through 
simulation. There is another equation between the gain and 
trajectory regressor matrices in the least mean square 
estimator with bounded exponential forgetting factor (Slotine 
and Li, 1991);  

( )d ( )d
1 1 0 0

0
( ) = (0) ( ) ( ) d .

t t
r r r rt TG t G e e W s W s s

  
                (58) 

According to (58), G   betokens PEC. When PEC loses its 

intensity, G   will grow and ( )t  would diminish 

considering (56) as the result. This extenuates data forgetting 
and hampers gain explosion. While PEC intensifies , G   

will step down and ( )t  will grow contemplating (56). It 

yields farther data forgetting and a swift estimator as an 

important consequence. Selecting greater amounts for 0  

causes more data forgetting and enhances time-dependant 
parameter tracking competency; however, it causes much 
more oscillatory deviations in parameter estimation. It 
mandates a trade-off to choose between time-dependant 
parameter tracking pace and oscillations in parameter 
estimation. The proposed CAC involves two major parts: 
MRAC and STR. See Fig. 8 and 7. 

Table. 1. Major parameters of the single-axis 2-DOF MEMS 
vibratory gyro. 

Parameter Nominal value Parameter Nominal value 

m  71.8 10 Kg  xxd  61.8 10 /Ns m  

xxk  63.955 /N m  yyd  61.8 10 /Ns m  

yyk  95.92 /N m  xyd  73.6 10 /Ns m

xyk  12.779 /N m  
z  200 /rad s  
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5. SIMULATION RESULTS 

Simulation schemes of the novel proposed ASMC and CAC 
are depicted on Fig. 8 and 7. Blocks of STR and controller, 
on Fig. 7, are separated with two different background colors 
– pale orange and yellow respectively. The proposed CAC 
control design is verified through simulation utilizing 
parameter values in Table 1. It is put under operation being 
prone to abnormal conditions such as being susceptible to 
seven undetermined parameters and also aggravating fixed 
disturbance. Initial values of parameters are 90% of the real 
ones. The gyro is vulnerable to a rotation rate of 200 rad/sec. 
As it could be seen on Fig. 3(a), thorough tracking is attained. 
Not only is the tracking performance convincing and do the 
combined tracking and prediction errors tend to zero, but also 
all the parameters, including angular velocity, are measured 
and have tended to their real values as depicted on Fig. 4(a), 
5(a) and 6(a). The proposed control-measurement design is 
more rapid and much more precise than ASMC in (Fei, 
2012). ASMC is simulated resulting in depictions of Fig. 
3(b), 4(b), 5(b), and 6(b). Figure 3(b) illustrates ASMC 
tracking performance while the three others, including 4(b), 
5(b) and 6(b), are displaying parameter convergence 
achievement. One may make a comparison between CAC and 
ASMC correspondingly observing Fig. 3(a) and 3(b). He also 
keeps up with the judgment comparing 4(a), 5(a), 6(a) 
respectively with 4(b), 5(b) and 6(b). The consequent 
judgment is on behalf of absolute preference of the proposed 
CAC to ASMC from aspects of identification speed, 
preciseness and considerable tracking performance as well. 
Figure 3 demonstrates that the tracking error converges 
nearly to zero in about 0.0005 sec at CAC while it converges 
to zero in 0.07 sec at ASMC. As demonstrated and 
analyzable on Fig. 4(a) and 4(b), the damping factors of dxx, 
dxy and dyy converge to their real values in about 0.0003 sec at 
the CAC system whereas they get close to the physical values 
in about 0.07 sec or 0.08 sec in the ASMC system. Likewise, 
as depicted and comparable on Fig. 5(a) and 5(b), stiffness 
factors of kxx, kxy and kyy converge to their real values in about 
0.0003 sec at CAC while they get close to the actual values in 
about 0.07 sec in ASMC. Again, shown and measurable on 
Fig. 6(a) and 6(b), the angular velocity has been estimated in 
about 0.0003 sec with ultra high precision at the CAC 
scheme that the angular velocity has got close to the real 
value of 200 rad/sec in 0.07 sec with unsatisfactory precision 
in the ASMC scheme; it is about 168 or 172 rad/sec. All 
these comparisons confirm superiority of CAC to ASMC in 
speed and accuracy. The CAC system performs at least 233 
times faster than the ASMC system. This superiority draws 
one's attention while we notice that the disturbance imposed 

on the input force channels of the CAC system are 
respectively 45 and 54 while they are about 0.18 in the 
ASMC system - which means imposing a more exacerbating 
condition on our CAC in comparison to the ASMC system. 
See Fig. 3(a) and 3(b) and compare the disturbance. Notably, 
all the other simulation conditions such as parameter values, 
noise, etc. are quite alike for both CAC and ASMC. On the 
figures related to the convergence of parameters in both CAC 
and ASMC, the result of the division of the values signed 
with green circles by the values  flagged by the red circles is 
about 1.11 which represents a 10% divergence of the real 
values of parameters from nominal values – the considered 
parametric uncertainty in the system dynamics. If the green 

circle-flagged values and the red ones are assumed to be gv  

and rv , then /   1.11g rv v  , and 

 Divergence(%) = 100 / 10%.g r gv v v                        (59) 

 ASMC Lyapunov function is firstly considered as 

1( , ) = / 2 / 2T T
s s s sV s p s s p p                                              (60) 

where s , sp , s  are respectively sliding surface, 

parameters’ estimation error and symmetric positive definite 
matrix. The adaptive parameters’ update law, (61), is 
responsible for stabilizing the Lyapunov candidate. 
Furthermore, PEC contributes to true parameter convergence 
because of the regressor matrix richness influenced by 
inequality of operational stimulating frequencies.  

ˆ = T
sp W s                                                                       (61) 

In Fig. 8, it is calculated in block 4. Theta_hat is the symbol 
of p̂  which is parameter estimation vector. W  is the 

regressor matrix which mandates the reference model to 
provide necessary richness. It would appear in time-
derivative of the sliding surface trying to extrude out a vector 
of uncertain parameters. The control law in (62) comes with 
the latter equations compelling the system to track the desired 
trajectories thoroughly and faultlessly. It is constructed in 
block 5 on Fig. 8.    

2 2 2
2 2

0
=1 =1 =1

ˆ= / ( ) sgn( )i i i i i i id
i i i

u W p q q q s                    (62) 

i  is a positive fixed value which should be larger than 

lumped uncertainty norm including unknown spring and 

damping forces, and fixed disturbance if all i  are 

contemplated equal. Another delicate point is that 

supplanting sat( )is  with tanh( )is  or sgn( )is , to diminish 

chattering phenomenon, undesirably influences parameter 
estimation and successful perfect tracking. 
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  6. CONTRIBUTING CONCEPTUAL SCHEMATIC 
DESIGN MODIFICATION    

As displayed on Fig. 1, two parallel plate variable area 
capacitor pairs (comb drive structure) along either x or y axis 
can be distinguished. Electrostatic actuation force is obtained 
by (63) for a variable-area capacitor structure presuming 
capacitance of each companion of the capacitor pair along the 

x axis as ( )dxC t  while the proof mass has no displacement 

(Acar and Shkel, 2008).  

2= 0.5 /eF V C x                                                                 (63) 

eV  is the electrical potential across x stretch. x  is the 

displacement along x axis and 0x  is the initial length which 

is shared between two plates and forms an effective 
capacitance area. For a balanced comb drive structure in each

companion of the pair, when the proof mass moves, the 

lengths will be 0x x  and 0x x  with respect to each 

companion. The two capacitances are presented by (64) 

presuming d  and t  to be respectively as finger separation 

and thickness or height.  

 0 0( ) = ( ) /dxC t x x t t d                                                    (64) 

Each moving finger plate connected to the proof mass is 
surrounded by two stationary lateral finger plates yielding 
changes in two areas and doubling the electrostatic actuation 
force as the result. Contemplating (63) and (64), the balanced 
force over the moving finger is achieved by (65) 

( =e DC x DC xV V V V  ) 

2 2
0

1
= 2 = 4 /

2
dx dx

x DCx DCx DC x

C C
F V V tV V d

x x


 
   

  
  

       (65) 
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Fig.  3. Tracking performance: (a) CAC (b) ASMC. CAC is more rapid and accurate regarding data cursors and time axis scale. 
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Fig. 4. Parameter convergence associated with damping and cross-damping factors in the designed CAC and ASMC; as it is 
seen, the estimated damping factors converge to their real values more rapidly and precisely in the CAC in comparison with 
the ASMC (0.07/0.0003≈233 times faster). 

For a comb drive structure including N  moving fingers 
connected to each lateral side of the seismic mass and two 
sets of 1N   fixed fingers attached to the respective lateral 
parts of the substrate along the x axis, as displayed on Fig. 1, 
the whole balanced force equals to  

0= 4 / .xt DC xF N tV V d                                                         (66) 

It is noteworthy that xtF  functions the variable voltage, which 

is applied as the control effort, in a linear manner.  
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Fig. 5. Parameter convergence associated with stiffness and cross-stiffness factors in the designed CAC and ASMC; as it is 
seen, the estimated damping factors converge to their real values more rapidly and precisely in the CAC in comparison with 
the ASMC. 
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Fig. 6. Parameter convergence in the designed CAC and ASMC; as it seen, the angular velocity gets converged to real value of 
200 (rad/sec) in the CAC faster and more accurate in comparison with the ASMC. 

As displayed on Fig. 1, the two differential variable-gap 
capacitor pairs along either x or y axis are distinguished. 
Capacitance of each companion of the capacitor pair along 

the x axis are presumed to be ( )sxC t  while the mass has no 

displacement. For a displacement along the x axis, the 
fingers, which are parallel to the y axis and connected to the 
mass, get close to one set of fixed fingers connected to the 
substrate resulting in capacitance increase and get far from 
the other fixed set yielding capacitance decrease. Reasonably, 
capacitance of each companion of the x capacitor pair is 
expressed by (67).  

( ) = ( )sx sx sxC t C t C                                                            (67) 

Logically, a differential capacitive bridge is had constituted. 
Take into account electrical charge and current of each 

capacitor companion respectively as sxq , sxq , sxi  and sxi .  

Suppose 3UG  to be the gain of differential amplifier in Fig. 1 

and presume trimR  to get adjusted in order to make 

compensation for resistor tolerances of 1R  and again 1R  as 

well. Therefore, 1oxV  could be affirmed in subsequent 

mathematics;  

   1 3 1 1 3 1= =ox U sx sx U sx sxV G i R i R G R q q        

         3 1

d
= ( ) ( )

dU DC sx sx sx sxG R V C t C C t C
t

      

 
1 3 1 3 1

d
= 2 = 2 .

d
sx sx

ox U DC U DC

C C
V G RV G RV x

t x

 


                (68) 

The differential capacitance for an electrode, including N  
fingers on each side, could be stated by (69) regarding L  as 
the length of the fingers Acar and Shkel (2008).  

2
0= 2 / .sx sxC C C N tL x d                                             (69) 

Regarding (68) and (69), 1oxV  and 3oxV  are calculated as:  

2
1 3 1 0= 4 /ox U DCV G RV N tLx d  ,                                           (70) 

2
3 1 3 1 0= = 4 / .ox ox U DCV V G R V N tLx d                                    (71) 

Hence, 1oxV  and 3oxV  are approximated by velocity and 

acceleration linear functions. Likewise, along the y axis:  

0= 4 / ,yt DC yF N tV V d                                                         (72) 

2
1 3 1 0= 4 / ,oy U DCV G RV N tLy d                                              (73) 

2
3 1 3 1 0= = 4 / .oy oy U DCV V G RV N tLy d                                    (74) 
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Fig. 7. Simulation Scheme of CAC. 

Driving voltages of the sensor, xV  and yV , ought to be 

applied in such a way that =x xtu F  and =y ytu F . It should 

not be concealed out of mind that xu  and yu  are control 

efforts. It is significant to notice that the seismic mass 
acceleration along the x and y directions should be exploited 
because the regressor matrix, ( , , )W q q q  , functions the linear 

accelerations. Therefore, the velocity variables which are 

available should be differentiated and they are the mass 
velocity along the x  and y  axes. The conventional 

differentiator op-amp circuitry or an inductor could be 
applied for the purpose but it brings about serious noisy 
measurements! Not only could the modified differentiating 
op-amp circuit in Fig. 9 be utilized on the ground of the 
distinct gyro operating frequency and band-pass filtration of 
the measuring signal adjusting the cut-off frequencies in the 
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accessorial circuits, but also the STR would effectively 
suppress measurement noise regarding its inertial dynamics. 
See Fig 1. Another solution might be proposed to avoid 
second time-derivative of the mass displacement. It is 

filtration of linear parameterized equation of forces, 
= ( , , ) ( )T W q q q P t  , via a stable first-order filter and 

exploitation of convolving integral transforming q  into q  

(Slotine and Li, 1991). 
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Fig. 8. Simulation Scheme of ASMC.

 

Fig. 9. Frequency response of the modified differentiator to 
reduce the measurement noise. 

  7. CONCLUSION AND FUTURE WORK    

By and large, sinusoidal vibration guarantee, along the drive 
and sense directions with desirable operational amplitudes 
and frequencies for more accurate rotation rate measurement, 
appears so crucial an issue in the MEMS 2-DOF single axis 
gyro application. The topic gets controversial considering 
unavoidable parameter uncertainty, aniso-elasticity and 
aniso-damping caused by imperfection in fabrication process. 
Consequently, proposal of competent control schemes will be 
so beneficial and contributing to compensation of quadrature 
error. The suggested CAC vouches for the sinusoidal 
vibrations with desirable amplitudes and frequencies along 
the perpendicular directions, each orthogonal to the rotation 
axis. Stimulating the system with two unequal driving 

frequencies, the designed STR embedded at the composite 
scheme, appears swift in estimation of angular velocity and 
other gyroscopic parameters. Furthermore, the whole control 
scheme takes advantage of adjustable speed and intrinsic 
structural robustness through tuning of multiple constant 
parameters; not only is the suggested CAC perfectly involved 
in successful tracking and parameter estimation, but also it 
functions speedily and precisely in a more robust manner, 
imposing absolute superiority to ASMC. The implementation 
proposal individually gets derived of landmark stability, 
linear manipulation and detection capacitive mechanisms 
resulting in controllability and observability of the 
gyroscopic system. Nonetheless, more investigative 
numerical design and model validation and modification 
could be put into one’s prospective for a serious research 
field. The model parameters are merely presumed to equal to 
some values, approximately similar to the actual operational 
status. Naturally, it is suggested to make a quantitative 
assessment of the model using a finite element software for 
verification of the model parameters such as stiffness and 
damping factors, and the mass as well, running a static 
simulation. Functionality of the angular velocity sensor 
susceptible to high frequency control effort signal ought to be 
inspected implementing a thorough software modal analysis; 
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however, dynamic simulative sensor investigation might be a 
hard and time-consuming task. Linear parametrization of the 
applied control effort to assuage the undesirable effect of 
linear acceleration terms in the control law could be another 
challenging issue to boost the performance of the controlling 
system. 
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