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Abstract: This paper proposes a new design of a decentralized output-feedback tracking control for a 
class of switched large-scale systems with external bounded disturbances. The controller proposed herein 

is synthesized to satisfy the robust H


 tracking performance with local disturbance attenuation levels. 

Based on multiple switched Lyapunov functions, sufficient conditions proving the existence of the 
proposed controller are formulated in terms of Linear Matrix Inequalities (LMI). A deep simulation is 
proposed to illustrate the effectiveness of the obtained results.   
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

1. INTRODUCTION 

During the latter decades, switched interconnected large-scale 
systems have attracted considerable attention since they 
provide a convenient modelling approach for many physical 
systems. Thus, several studies dealing with the stability 
analysis and stabilization issues for both linear and nonlinear 
switched interconnected large-scale systems have been 
explored by (Chiou, 2006; Belkhiat et al., 2015; Jabri et al., 
2010, 2011; Mahmoud and Al-Sunni, 2010; Sun et al., 2009; 
Thanh and Phat, 2014; Wang and Tong, 2015). Hence, the 
main challenge in treating such problems consists in 
determining the conditions ensuring the stability of the whole 
systems with consideration to the interconnections effects 
between its subsystems. For example, sufficient stability 
conditions for a class of switched large-scale time-delay 
systems have been delivered in (Chiou, 2006). Moreover, the 
problem of decentralized control for a class of switched 
interconnected large-scale systems with value-bounded 
uncertainties has been investigated in (Sun et al., 2009). By 
using Linear Matrix Inequalities (LMI) techniques, 
decentralized state-feedback controllers and decentralized 
switching laws have been designed to make this class of 
system asymptotically stable. In the same way, stabilization 
issue for discrete-time large-scale switched system has also 
been studied in (Jabri et al., 2010). Otherwise, the problem of 

a low-order H


 output-feedback controller design, with a 

decentralized switching rule, for a class of interconnected 
continuous-time switched systems subject to disturbances has 
been treated in (Mahmoud and Al-Sunni, 2010)’s work . The 
main objective of the work seeks to guarantee the asymptotic 
stability of the whole system with local disturbance 
attenuation. Furthermore, the problem of decentralized 
stabilization for a class of large-scale switched Takagi-
Sugeno (T-S) systems has been investigated in (Jabri et al., 
2011). To overcome the nonlinearity problem, the large-scale 

switched nonlinear system was divided into a set of low-order 
interconnected switched T-S Fuzzy subsystems. Then, in 
order to stabilize the overall system, a set of switched non-
PDC (Parallel Distributed Compensation) controllers has 

been employed. In the same context, the problem of H


 

control design, under asynchronous switching, for a class of 
switched discrete-time T-S Fuzzy large-scale systems has 
been explored by (Wang and Tong, 2015). Moreover, (Thanh 
and Phat, 2014) have studied the problem of decentralized 
stability for a class of switched nonlinear large-scale systems 
with time-varying delays in interconnections. By using a set 
of Lyapunov-Krasovskii functional, a delay-dependent 
sufficient condition for designing switching law has been 
established in terms of LMI. Recently, the design of an 
adaptive fuzzy output feedback control was developed by 
(Zhang and Yang, 2017) for a class of switched nonlinear 
large-scale systems with unknown dead zone. Based on the 
above, the main advantage of the decentralized control 
scheme is the tremendous reduction of computational load 
and the design easiness of locally feedback stabilization. 

Likewise, tracking control is one of the most important issues 
currently under consideration by researchers in linear and 
nonlinear control theory in (Cabecinhas et al., 2014; Guan et 
al., 2014). This kind of control has a close relationship with 
the stability analysis and stabilization issues. Generally, 
tracking control deal with the stabilization and the 
minimization of the error between the system output (or state) 
and the reference signal via designing a controller. As regards 
the switched systems, few results have been reported on the 
tracking control problem (Belkhiat et al., 2014; Li et al., 
2009; Lian and Ge, 2013; Liu and Xiang, 2014; Long and 
Zhoa, 2015; Tong et al., 2016). For example, the work carried 
out by (Liu et al., 2014) has focused on performing an 

exponential 
1

L  output tracking control for Switched Linear 

Systems (SLS) with time-varying delays. Similarly, the 
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output tracking control has been studied for a class of 
switched systems containing stabilizable and unstabilizable 
subsystems in (Li et al., 2009). Moreover, in (Liu and Xiang, 
2014), a controller design approach has been proposed for a 
class of switched systems with time-varying delay. This one 
takes into account the effect of the asynchronous switching 

phenomena and satisfies the robust H


 output-feedback 

tracking performance. In the same context, a robust H


 

output tracking control for a class of SLS using switched 
Proportional-Derivative (PD) controller has been designed in 
the reference (Belkhiat et al., 2014). Based on the multiple 
Lyapunov functions and the adaptive fuzzy back-stepping 
technique, sufficient conditions for the adaptive fuzzy 
tracking control problem have been derived in (Long and 
Zhoa, 2015) for a class of switched uncertain nonlinear 
systems with unstable subsystems. Recently, an adaptive 
fuzzy decentralized tracking control for a class of switched 
nonlinear large-scale systems with unknown nonlinear 
functions has been performed in (Tong et al., 2016). The 
proposed approach has dealt with the problems related to 
dead zones and unmeasurable. In a nutshell, it is worth 
pointing out that the aforementioned results are mainly 
restricted to the tracking control of lower-dimensional 
switched systems. Moreover, although some progress have 
been made in several fields of interconnected switched 
systems such as the stability and stabilization issues, the 
tracking control problem of switched interconnected large-
scale systems subject to external disturbances has rarely been 
explored so far, that which motivates the present study.  

Hence, this paper presents the design of a decentralized 
tracking controller for a class of switched interconnected 
large-scale system under synchronous switching and with 
external bounded disturbances. The considered class consists 
of set of low-order interconnected subsystems. Each 
subsystem contains several switching modes which are 
described by using linear system. As regards the 
interconnections among different subsystems, two 
components, combining the state vectors and the external 
disturbances, are taken into account in the mathematical 
model representing the considered class. According to the 
existing literature, the contributions of this paper are the 
followings: 

 provides a new synthesis approach to design a decentralized 
output-feedback tracking control for a class of switched 
interconnected large-scale systems subject to external 
disturbances. By using the descriptor redundancy 
formulation, the proposed approach resolves the crossing 
terms problem related to using the output-feedback control 
strategy.   

 ensure with the designed controller, on the one hand, the 
stability of the overall switched interconnected large-scale 

systems and, on the other hand, the robust H


 output-

feedback tracking performance with for each low-order 
subsystem a specific disturbance attenuation level. 

 provides sufficient conditions to design the proposed 
controller, formulated in terms of LMI thanks to the 
multiple switched Lyapunov functions. 

The remainder of the paper is organized as follows. Section 2 
presents the considered class of switched interconnected 
large-scale system, followed by the problem statement. The 
design of the decentralized controller is presented in section 
3. A numerical example is proposed to illustrate the 
efficiency of the proposed approach in section 4. The paper 
ends with conclusions, appendix and cited references. 

2. SYSTEM’S DESCRIPTION AND PROBLEM 
STATEMENT 

We consider the class of the switched interconnected large-
scale system S . It is composed of N  low-order switched 

subsystems denoted by 
i

S  such that each subsystem 
i

S  has 

its own mode number 
i

M . Thus, the switched interconnected 

large-scale system S  can be represented as follows for 
1, ,i N  : 
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, ,
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i i j i j iy t t C x t
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        (2)  

where   ni
ix t   is the i th state vector,   mi

iu t   is the 

i th input vector,   mi
iw t  is the 

2
L -norm bounded 

external disturbance associated to the i th subsystem. 

  nx t 
   and   mw t 

   denote respectively the state 

vector and the 
2

L -norm bounded external disturbance of the 

 th subsystem with 1, , N    and i  .   pi
iy t   is 

the measurement (output) associated to the i th subsystem. j  

denoted the mode of each i th subsystem. ,
n ni i

i jA
 , 

,
n mi i

i jB  , ,
p ni i

i jC   are constant matrices, 

, ,
n ni

i jF 


  and 
, ,

n mi

i jwF 



  are constant matrices 

which describe the influences of the  th subsystem on the 

i th one. Finally  ,i j t  are the switching rules. They are 

assumed to be real time available.  

The switching rules  ,i j t  are defined that the i th 

subsystem is active in the l th  mode, that is to say: 

 
 

,

,

1

0

i j

i j

t if j l

t if j l





 

 





    (3) 

Note that, the mode’s evolution of each i th subsystem is 
independent of the rest of the subsystems. Hence, the global 
system is represented by Fig. 1. In the sequel, we will deal 
with the output-feedback tracking problem for the considered 
class of large-scale system. The tracking control objective is 
to drive the outputs of the system (1)-(2) via static output-
feedback controllers to track reference signals as close as 
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possible. Hence, to specify the desired trajectory for the 
overall large-scale system S , we present the following 
reference model for 1, ,i N  : 

       
,

1,
i i i i i

N

i
r r r r i r rx t A x t B r t F x t

 
  

        (4) 

   
i i ir r ry t H x t     (5) 

with   ni

ir
x t   and mi

ir   are the i th reference state 

vector and the i th 
2

L -norm bounded reference input vector, 

respectively.   n

rx t 


  and   pi

ir
y t   denote 

respectively the th  state vector and the i th reference 

measurement (output). n ni i

ir
A  , n mi i

ir
B  , p ni i

ir
H   

are constant matrices, where n ni i

ir
A   are specified as 

asymptotically stable matrices.  
 

 

Fig. 1. System representation. 

In order to drive our system S  and to ensure the H


 

tracking performance, decentralized switched controller is 
proposed in this work. The key idea is to synthesize a global 
controller composed of N  local switched controllers. Each 
local controller is associated to a switched subsystem. The 
purpose of the local controllers is to ensure the stability and 
the output-feedback tracking performance of subsystems, 
while taking into account the problems related to the 
interconnections among the subsystems. In this work, the 
local switched controllers and the switched subsystems are 
synchronously orchestrated. Thus, the set of N  local 
switched controllers are defined as follows for 1, ,i N  : 
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M
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i
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

         (6) 

where       pi

ii r ie t y t y t    are the tracking errors, 

,
m pi i

i jK   are the gain controllers1. 

In general, the classical way to write output-feedback 
dynamics consists on substituting the controller's equation (6) 

into the system's equation (1), this leads to, for 1, ,i N  : 
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Thus, the problem considered in this study can be resumed as 
follows: 

                                                 
1 The index time (t) will be omitted in the next when there is 
no ambiguity.  
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Problem 1: The objective is to design the controllers (6) such 
that the switched interconnected large-scale system (1)-(2) 

has a robust H


 output-feedback tracking performance. 

Definition 1: The switched interconnected large-scale system 

(1)-(2) is said to have a robust H


 output-feedback tracking 

performance, if the following conditions are satisfied: 

 Condition 1 (Stability condition): With zero disturbances 

input condition 0iw  , for 1, ,i N  , the closed-loop 

dynamics (7) is stable. 

 Condition 2 (Robustness condition): For all non-zero 

 
2

0iw L  , under zero initial condition  
0

0ix t   , it 

holds that for 1, ,i N  , 

0 0 1,

2
N

i

T T T T
i i i i i i i iJ e e dt w w r r w w dt

 
 

 

 

  
  
 

      (8) 

By observing the closed-loop dynamics (7), it can be seen 

that several crossing terms among the gain controllers ,i jK  

and the system's matrices ( , , ,i j i j i jB K C  and , , ii j i j rB K H , for 

1, ,i N  , 1, , ij M  ) are present. Hence, in view of the 

wealth of interconnections characterizing our system, these 
crossing terms lead surely to very conservative conditions for 
the design of the proposed controller. In order to decouple the 
crossing terms appearing in the equation (7) and to provide a 
LMI conditions, we use an interesting property called the 
descriptor redundancy (Tanaka et al., 2017). Thus, the 
equations (1)-(2), (4)-(5) and (6) are combined as follows for 

1, ,i N  : 
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Then, we consider the following augmented variables: 
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      . 

Hence, the large-scale system (1)-(2), the reference model (4)
-(5) and the controllers (6) can be reformulated as follows for 
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The controllers are; for 1, ,i N  : 

1
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M
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The tracking errors are given by; for 1, ,i N  : 
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Note that the system (9) is called switched interconnected 

descriptor system (    dimrank E E ). 

By substituting the equation (10) into the equation (9), the 
closed-loop dynamics can be written as follows for 

1, ,i N  : 

 
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, ,

1 1,

, , ,
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   (12) 

At this stage of the work, it is worth pointing out that the 
output-feedback tracking control problem of the system (1)-
(2) can be converted into the stabilization problem of the 
augmented system (9). However, it is very complicated to 
work on the first problem due to the large number of crossing 
terms. Therefore, we will achieve our study by using the 
augmented system (9). Thus, the problem 1 can be 
reformulated as follows: 

Problem 2: The objective is to design the controllers (10) 
such that the closed-loop switched interconnected descriptor 

systems (12) is stable with H


 disturbance attenuation 

performance. 

At the end of this section, we introduce the following 
definition and some mathematical materials needed in the 
development of our results. Then, based on the works done 
within the context of the switched linear systems and large-
scale systems in (Zhang and Feng, 2008; Belkhiat et al., 
2014), we propose the following definition. 

Definition 2: The closed-loop switched interconnected 

descriptor systems (12) is said stable with H


 disturbance 

attenuation performance, if the following conditions are 
satisfied:  
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 Condition 1 (Stability condition): With zero disturbances 
input condition , 0iw   , the closed-loop dynamics (12) is 

stable. 

 Condition 2 (Robustness condition): For all non zero 

 
2, 0iw L   , under zero initial condition  

0
0ix t   , 

it holds that for 1, ,i N  ,  
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i  are positive scalars which represents the disturbance 

attenuation level associated to the switched subsystem iS 2, 

0 0 0
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0 0
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pI

 

 
 
 
  

,

0 0

0 0 0

0 0

i

i

m

i

m

I

I

 

 
 
 
  

 and 

0 0 0

0 0

0 0 0

ii mI 
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 
 
  

.  

Indeed, the definition 2 is similar to the definition 1. It gives 
the conditions that should be satisfied to solve the problem 2, 
implicitly the problem 1. The first condition concerns the 
internal stability of the closed-loop dynamics, whereas the 

second one concerns the H


 disturbance attenuation 

performance. Furthermore, noting that the local criterion iJ  

given in definition 2 by the equation (13) is the same one 
given in definition 1 by equation (8). 

Moreover, we provide the following lemma which is helpful, 
in the sequel, in formulating our results in terms of LMI. 

Lemma 1: (Zhou and Khagonekar, 1988): 
Let us consider A  and B  two matrices with appropriate 
dimensions, there exists a scalar 0   such that the 
following inequality holds: 

1T T T TA B B A A A B B       (14) 

In the following, we describe the design of the proposed 
output-feedback tracking control.  

3. ROBUST TRACKING CONTROL DESIGN 

The main goal of this work is to propose sufficient LMI 

conditions in order to determine the gain matrices ,i jK , for 

1, ,i N   and 1, , ij M  , so that the robust H


 output-

feedback tracking performance is satisfied. The main result is 
summarized in the following theorem 3.  

                                                 
2 I   denotes an identity matrix with appropriate dimension.  

3 As usual, in a matrix,    indicates a symmetrical 

transpose quantity. 

Theorem 1: Assuming that the current mode is present by j  

and the up-coming mode by j . Given positive scalars i , 

, ,
1

i j j
   , ,i   for 1, ,i N  , 1, , N   , i  , 

1, , ij M   and 1, , ij M   , j j , if there exist 

matrices , ,
T

i j i jX X ,  1 1
, , 0

T

i j i jX X  , 

 5 5
, , 0

T

i j i jX X  , ,i jY  and non-singular matrices 9
,i jX , 

such that the LMIs (15) and (16) hold. Then, the closed-loop 
switched interconnected descriptor system (12) is stable with 

H


 disturbance attenuation levels 
1

2
i



. Moreover, the 

controller gains are constructed by   19
, , ,i j i j i jK Y X


 . 

 
 

, ,, ,

,

0
i j i ji j j

i j

X X

X

 






 

 
 
  

   (15) 

 

 

 

 

, , , , , , ,

1, 2

1, 2

1, 2

, 2

0 0 0

000

00
0

0

0 0 0

0

0 00

i

i i

i i

i i

i i

T T T T T
i j i j i j i j i j i j

p

i n p

i i n p

i i n p

N i n p

X C X X X

I

I

I

I

I













 

 














 
 
 
 
 
 
 
 
 
 
 
  

         

 

  

   
  
  

     

  

  (16) 

with , ,i j and ,i jX  are described below. 

Proof: Without loss of generality, we assume that the 
switched interconnected descriptor system (9) is regular and 
impulse free in (Sajja et al., 2013). Indeed, the present proof 
is divided in two parts corresponding to the conditions 1 and 
2 are given in the definition 2. 

 Condition 1: At this step of the study and according to the 
definition 2, we assume that we work under zero disturbance 

input condition , 0iw   . Then, our objective is to provide 

sufficient conditions ensuring that the closed-loop dynamics 
(12) is stable. For this purpose, we consider the following 
candidate multiple switched Lyapunov functions: 

      1,...,
1

,
N

i i ii N
i

V x t t x t


     (17)  

with      , ,
1

, ,
iM

i i i j i j i
i

t x t t x t  


     

and         1

, ,, T T
i j i i i i j it x t x t E X x t


    

Thus, the closed-loop dynamics (12) is stable under arbitrary 
switching signal if the following conditions (18), (19) and 
(20) are verified: 
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    1,..., 0i i NV x t     (18) 

    1,..., 0i i NV x t      (19) 

 There exists, for 1, ,i N  , 1, , ij M  , 

1, , ij M   , j j , 
, ,

1
i j j

    such that: 

     ,, , ,
, ,i i j ii j j j i j j j j

t x t t x t      
     (20) 

where the decreasing rates 
, ,

1
i j j

    are positive scalars 

describing the Lyapunov-like evolution at the switching time  

j j
t 

 from the current mode j  to the up-coming j and  

     
     

    

1

1, ,

1 1

,

,

,

i N

MN

i j

i
T

i i i j i

i i j TT
i i j i i

x t E X x t
V x t t

x t X E x t





 






 
 
 
 



 
 

 
. 

In the sequel, we deal with the stability under arbitrary 
switching signal of the closed-loop switched interconnected 
descriptor system in three steps. In the first one, our purpose 
is to provide the conditions ensuring that the equality (18) is 
satisfied. Thus, we develop the inequality (18) as follows: 

            1

, ,1,...,
1 1

0
iMN

T T
i i j i i i j ii N

i j

V x t t x t E X x t



 

     

  (21) 
We can remark that the inequality (21) is verified if, for 

1, ,i N  , 1, , ij M  , the following conditions are 

verified:  

   1

0
TT

i i , j i , j iE X X E
 
     (22) 

 

 
 

     

     

, , , , , ,

, ,

1,

1, 1,

1,

1 1
, , , , , , , , ,

1
, , , , , ,

5 5 5
, , , ,

9 9
, ,

0

1

T

i

i i j i j i j i j

i i i i i

N

i

N N

i i

N

i

T T T
i j i j i j i j i i j i j

T
i j i j i j i j i j

T T
w w w w

T TT T T
i j r r i j i r r i j r

T

i j i j

X A A X F F

X C B Y

B B F F
N

X A A X F F X H

X X

 

 

 

   

 

  














 

   

 

 

  

 


  

   



 



 
 
 
 
 
 
 
 
 
  

 1 5 9
, , , ,i j i j i j i jX diag X X X .  

with 

0 0

0 0

0 0 0

i

i

n

i n

I

E I

 
   
  

 and i , jX  is considered as 

1 2 3

4 5 6

7 8 9

i , j i , j i , j

i , j i , j i , j i , j

i , j i , j i , j

X X X

X X X X

X X X



 
 
 
  

. 

Multiplying (22), left by T
i , jX  and right by its transpose, the 

inequalities (22) are equivalent to: for 1, ,i N  , 

1, ,
i

j M  , 

0T T
i , j i i i , jX E E X     (23) 

The latter inequalities (23), implicitly the conditions (18), are 
verified if the following two conditions, (24) and (25), are 

satisfied for 1, ,i N  , 1, ,
i

j M  , 

 1 1 0
T

i , j i , jX X   and  5 5 0
T

i , j i , jX X    (24) 

and 0l
i , jX I


  , for  2 3 4 6l , , , .  (25) 

Remark 1: The matrices k
i , jX , for  7 8 9k , , , are called 

decision matrices and they can be chosen freely. Moreover, 
these matrices are necessary to obtain in the sequel the LMI 
conditions ensuring the robustness of the tracking control.  

In the second step of the stability study of the closed-loop 
switched interconnected descriptor system, we aim to 
develop the inequality (19).  

     
    

   

1

, , , ,

,1, ,

1

, , , , , ,

1 1 1,

1

1 0
i

TT T

i i j i j i j i j i

i i ji N

TT T T

i j i j i i i j i j

MN N

i j i

x A X X A x
NV x t

x F X x x X F x   

 



 



    


 

 

 
 
 
 
 

 

 
 

    

  (26) 

with , , , ,i j i j i j i jA A B K    . 

Using lemma 1 and assuming that, for 1, ,i N  , , 0i i  , 

the inequality (26) becomes: 

   

     
1

1 1

1,

1

, , , , , 2

,
11

, , , , , , ,

0
i i

N

MN
p

N
i j

i

i

TT
i j i j i j i j p i n p

T
i j i i

T T
i j i i j i j i j

A X X A I

x x

X F F X
 

  









 

 

 


 

 





   
  
  
  
     





 

 

  (27) 
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Inequality (27) is verified,  
i

x t , for 1, ,i N  , 

1, , N   , i  , 1, ,i ij M  , if: 

   

    
1

1,

1

, , , , , 2

11
, , , , , , , 0

i i

N

p

N

i

TT
i j i j i j i j p i n p

T T
i j i i j i j i j

A X X A I

X F F X
 

  







 

 



 

 

 



  
  (28) 

Then, multiplying the inequality (28), left by  Ti , jX  and 

right by i , jX , it yields: 

   

   
1,

1

1
, , , , , , , , ,

, , 2 , 0
i i

N

i

p

T T T
i j i j i j i j i i j i j

NT

i j p i n p i j

X A A X F F

X I X

 
  



 







 

 





 

  (29) 

Remark 2: At this step, it should be stressed that the 
conditions (29) are not LMI and they cannot be resolved with 
the LMI solvers. To skip to LMI formulation, some 
mathematical developments should be performed. However, 
we end the second step of the stability study at this 
development level. Indeed, this matter will be discussed in 
greater detail in the sequel, where we will show that the 
conditions (29), implicitly the conditions (19), will be 
omitted from the Theorem 1. In the third step of the stability 
study, we focus on the stability conditions (20). Their aim is 
to ensure the global behavior of the like-Lyapunov function 

at the switching time 
j j

t 
. 

According to the condition (20), we can write: 

   
1 1

,, , , i ji j i j j
X X 

 
   (30) 

for 1, ,i N  , 1, , ij M  , 1, , ij M   , j j , 

, ,
1

i j j
   . 

Left and right multiplying the latter condition (30) by ,i jX , 

we can obtain: 

  1

, , ,, , ,
0i j i j i ji j i j j

X X X X 


   (31) 

Applying Schur's complement, the LMIs (15) presented in 
the Theorem 1 are provided.  

In the next part of the proof, we are focused on dealing with 
the robustness of the proposed stabilization control according 
to the condition 2 of the definition 2. 

 Condition 2: In this subsection, we provide some sufficient 
conditions concerning the robustness of the proposed tracking 
control with local disturbance attenuation levels. Under zero 

initial condition  
0

0ix t   and for any non-zero 

 , 2 0iw L   , our objective is to formulate the 

conditions (13) of the definition 2 in terms of LMI. 

We can define, based on the condition (13), the global 

criterion 
1

N

i
iJ J



  . Such as T T
i i i i ix x e e   , the global 

criterion can be written as: 

01 1,

2
, , , ,

N N

i i

T T T
i i i i i i i i iJ e e w w w w dt

 
   



  

    
  
  
  

        (32) 

Thus, our objective now is to provide the sufficient 
conditions ensuring that both the global criterion J  and the 

local criterions iJ  (for 1, ,i N  ) are negative.  

Let us consider the candidate multiple switched Lyapunov 
function (17). Hence, the equation (32) can be reformulated 
as follow: 

 

 

01 1,

1

2
, , , ,

,

,

N N

i i

i

T T T i i
i i i i i i i i i

N

i i

d t x
J e e w w w w dt

dt

t x

 
   








  



    



      
   

 




   



 

  (33) 

Such that  ,i it x   are positive for 1, ,i N  , the criterion 

J  is negative, if the following condition is verified: 

 
1 1,

2
, , , ,

,
0

N N

i i

T T T i i
i i i i i i i i i

d t x
e e w w w w

dt 
   




  

    
      
   

 


      (34) 

By using the equation (12), the latter condition (34) can be 
reformulated such us: 

 

 
    

   
   

1

1

1

1

, , , ,

1,

2
, , , , , , ,

, , , ,

, , , , , , ,

, , ,

1

1

M

j

T

T

T

i

i

i j i j

N

i

T T T T
i j i i j i j i i i i i i i i

T T
i i j i j i j i j i

T T T
i j i j i j i i i j i j

T T T
i w i j i i j w

x C C x w w w w

x A X X A x
N

x F X x x X F x

w B X x x X B
 

 
   

   



 





 

 

 

 

   




  

 

 
 
 

       

 

    

    
,

1

1 1,

0

i

M N
i

j i

i

N

w 

 



  



 
 
 
  
  
  
  
  
  
  
  


 

 

  (35) 

As in the previous parts, one used lemma 1and assuming that, 

for 1, ,i N  , , 0i i  , the inequality (35) becomes: 

   

    

   
, , , ,

1

1,

1,

1,

1

, , , , , 2

,
11

, , , , , , ,

2
, ,

1

, , ,

N

i i

i j i

N

p

N

i

i

i

TT
i j i j i j i j p i n p

T
i j i i

T T T
i j i i i i j i j i j

N
T
i i i i i

TT T T
i w i j i i i j w

A X X A I

x x

X F F X C C

w w

w B X x x X B
 

 

 

 

  

 













 

 

 

 



 

 

 

 

   

 

 
 
 
 
 
 

 
 
 









 
  

 

   
1,

1 1

,

0

j

N

i

iMN

i j

iw
 


 

 


 
 
 
 
 
 
 
 
 
 
 
 



 

 

  (36) 
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The latter equation (36) can be reformulated such as: 

 

 1

, ,
1,

1

1,

11 ,

,
2, ,

, ,

0

T

j

i j
i

N

MN i

N
i

i

T

i j w

i i
i j

i i
i i i

i j

X B
x

w

x

w


 

 

 






 



 






    



 
                   
















 

  (37) 

with 

   

    

1

11 , , , , , 2
1

11
, , , , , , ,

1,

i i

NTT
i j i j i j i j p i n p

p

NT T T
i j i i i i j i j i j

i

A X X A I

X F F X C C  
 





 




 

 

   

 



   
 

Based on the inequality (37), the global criterion J , given by 
equation (33), is negative if the following sufficient condition 
is verified for 1, ,i N  , 1, , N   , i  , 

1, , ij M  ; 

, , 0i jT     (38) 

In other words, the verification of the inequality , , 0i j  , 

for 1, ,i N  , 1, , N   , i  , 1, ,
i

j M  , implies 

that each local criterion iJ , for 1, ,i N  , is satisfied 

separately as required in the definition 2.  

Applying the inverse of Schur's complement, we can write 

, , 0i j   as follows; for 1, ,i N  , 1, , N   , i  , 

1, , ij M  : 

   

   

    

, , , ,
1, 1,

1

, , , , , ,

1
1

, ,
1,

11
, , , , , , 2

1, 1

0

i j i j

i i

N

i i

TT T
i j i j i j i j i j i j

N NT T
i j w i i i w i j

i

N NT T
i j i i i i j p i n p

i p

A X X A C C

X B B X

X F F X I

 
    

  
 



 

   

 


 

 

 


  

 

   
  
  

  

  

  

 

 

 

 

  (39) 

with   12
i i 


 . 

Multiplying the latter inequality (39), left by  Ti , jX  and 

right by i , jX , we obtain the following inequalities for 

1, ,i N  , 1, , N   , i  , 1, , ij M  : 

     

 
1

, , , ,

1,

1, 1, 1,

1
, , , , , , , , , , ,

, , ,
1

0
i j i j

N

i

N N N

i i i

T TT T T
i j i j i j i j i j i j i j i j i i i

N T T
p i i j i j w i i i w

p

X A A X X C C X F F

X X B B
 

 

     

  

 


 

     





  

    
    

  



   

   

 

  (40) 

Remark 3: At this step of study, a significant simplification, 
that relates both inequalities (29) and (40), can be considered. 
Indeed, regarding the inequality (29), we can remark that it is 
bounded by the inequality (40). Then, the inequality (29) will 
be systematically verified when the inequality (40) is 
satisfied. For this reason, the inequality (29) is omitted from 
the Theorem 1 as mentioned above in the remark 2. Hence, 
the Theorem 1 contains only the condition (40) formulated in 
terms of LMI (readers are referred to the appendix section). 

Remark 4: Based on the study above, the design procedure 
of the switched decentralized tracking control for 
interconnected switched systems is summarized as follows:  

Step.1. Construct the mathematical model of the real system 
according to equations (1) and (2) 

Step.2. Choose stable interconnected systems as a reference 
model according to equations (4) and (5). 

Step.3. Solve the LMI conditions (15) and (16) of the 
theorem 1, using LMI solver, in order to obtain the matrices 

1
,i jX , 5

,i jX , 9
,i jX  and ,i jY  such that the positive scalars i , 

,i   and 
, ,

1
i j j

    are chosen freely. 

Step.4. Construct the controller gains   19
, , ,i j i j i jK Y X


 . 

Step.5. Implement the obtained switched decentralized 
controller in the control scheme. 

4. SIMULATION AND RESULTS 

In this section, we illustrate the effectiveness of the proposed 
decentralized tracking control via a numerical simulation. For 
that, we consider the following switched interconnected 
large-scale system S  composed of three continuous-time 

switched subsystems 1S , 2S  and 3S : 

Subsystem 1S  is: 

   
       

     

2

1

1

1 2 1 3

1 1 1 1 1 1 2 2

1 1
13 3 2 3j

,j

, ,j , ,j

, j , j w , , j

, j
, , j w w

A x t B u t B w t F x t
x t t

F x t F w t F w t




  


  

 
 
  



   
2

1 1, 1, 1
1

j j
j

y t C x t


     
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with, for mode 1, 11

0 1 1

0 5 1 1
,

- .
A

. .




 
  

, 11

2

0
,B 

 
  

, 

1 1

0 1

0 1,w

.
B

.

    
, 1 2 1

0 01 0 2

0 0 1
, ,

. .
F

.

 
  

, 1 3 1

0 1 0

0 1 0 1
, ;

.
F

. .

 
  

, 

1 2 1

0 01

0 1, ,w

.
F

.

 
  

,
1 3 1

0 1

0 1, ,w

.
F

.

 
  

and  11 4 0,C    

and for mode 2 , 1 2

1 0 25

0 39 1 5
,

- .
A

. - .

 
  

, 1 2

0

0 3
,B

.

 
  

, 

1 2

0 1

0 1,w

.
B

.




 
  

, 1 2 2

0 1 0

0 2 0 1
, ,

.
F

. .

 
  

, 1 3 2

0 1 0

0 02 0 1
, ,

.
F

. .

 
  

,  

1 2 2

0 1

0 1, ,w

.
F

.

 
  

, 
1 3 2

0 1

0 1, ,w

.
F

.

 
  

 and  1 2 0 3,C  . 

Subsystem 2S  is: 

   

     

   
   

2 2

2 3 2 1

2

1

2 2 2 2

2 2 2 1 1 2 3 3

3 1

, j

, , j , , j

j

, j , j w

, j , , j , , j

w w

A x t B u t B w t

x t t F x t F x t

F w t F w t




 

  

 

 
 
 
 
 



   
2

1
2 2, 2, 2

j
j jy t C x t



     

with, for mode 1, 2 1

4 6 2

1 5 0 1
,

- .
A

. .




 
  

, 2 1

2 5

0
,

.
B 

 
  

, 

2 1

0 2

0 1,w

.
B

.



 
  

, 2 1 1

1 0 2

0 01 0 1
, ,

.
F

. .

 
  

, 2 3 1

1 0 2

0 01 0
, ,

.
F

.

 
  

,

2 11

1

0 1
w , ,F

.

 
  

,
2 3 1

1

0, ,wF 
 
  

and  2 1 3 5 0,C . ,  

and for mode.2, 2 2

4 0 2

1 2 3
,

- .
A

. -

 
  

 , 2 2

0

0 6
,B

.

 
  

, 

2 2

0 2

0 1,w

.
B

.




 
  

, 2 1 2

0 1 1

0 5 0 1
, ,

.
F

. .

 
  

, 2 3 2

0 4 1

0 02 0 1
, ,

.
F

. .

 
  

, 

2 1 2

0 1

0 1, ,w

.
F

.

 
  

, 
2 3 2

0 4

0 1, ,w

.
F

.

 
  

 and  2 2 0 3 2,C .  

Subsystem 3S  is: 

   

     

   
   

3 3

3 1 3 2

3 3 3 3
2

3 3 3 1 1 3 2 2
1

1 2

, j

, , j , , j

, j , j w

, j , , j , , j
j

w w

A x t B u t B w t

x t t F x t F x t

F w t F w t




 

  

 

 
 
 
 
 

  

   
2

3 3, 3, 3
1

j j
j

y t C x t


     

with, for mode 1, 3 1

14 6 11

10 5 12 1
,

- .
A

. .




 
  

, 3 1

2 75

0 1
,

.
B

.

 
  

, 

3 1

1 2

0 1,w

.
B

.



 
  

, 3 11

0 01 0 7

0 0 1
, ,

. .
F

.




 
  

, 3 2 1

0 1 0

1 0 1
, ,

.
F

.




 
  

,

3 1 1

0 01

0 1, ,w

.
F

.




 
  

,
3 2 1

0 1

0 1, ,w

.
F

.




 
  

 and  3 1 2 65 0,C .  

and for mode 2, 3 2

15 9 9 2

10 2 13
,

- . .
A

. -

 
  

, 3 2

0

0 76
,B

.

 
  

, 

3 2

0 45

0 1,w

.
B

.




 
  

, 3 1 2

0 01 0 1

0 8 0 1
, ,

. .
F

. .



 
  

, 3 2 2

0 1 0 01

2 0 1
, ,

. .
F

.

 
  

, 

3 1 2

0 01

0 1, ,w

.
F

.

 
  

, 
3 2 2

0 1

0 1, ,w

.
F

.

 
  

 and  3 2 0 3 45,C . .  

The initial states are given as follow: 

   1 0 10 20 Tx  ,    2 0 10 20 Tx   ,    3 0 15 23
T

x   . 

As stated above, each subsystem has its own mode’s 
evolution independently from other subsystems. Noting that 
the large-scale system S  is unstable. 

As mentioned above, we consider the following reference 
large-scale model to specify the desired trajectory for the 
overall large-scale system S . This reference model is 
composed of three subsystems: 

1st Subsystem: 

         
11 1 1 1 1,2 2 1,3 3r r r r r r r rx t A x t B r t F x t F x t      

 
1 1 1r r ry H x t  

with
1

1 5 0 25

0 125 0 125
r

- . .
A

. .




 
  

,
1

0 1

2
r

.
B 

 
  

,
1 2

0 1 0 2

0 0 1,r

. .
F

.

 
  

, 
1 3

0 1 0

0 1 0 1,r

.
F

. .

 
  

 and  
1

1 0 3rH .  . 

2nd Subsystem: 

         
22 2 2 2 2,1 2 2,3 3r r r r r r r rx t A x t B r t F x t F x t      

 
2 2 2r r ry H x t  

with 
2

3 0 5

0 3 0 3
r

- .
A

. .




 
  

, 
2

1

1
rB



 
  

, 
2 1

1 0 2

0 01 0 1,r

.
F

. .

 
  

, 

2 3

1 0 2

0 01 0,r

.
F

.

 
  

 and  
2

2 0 6rH .  . 

3rd Subsystem: 

         
3 3 3 3 3,1 1 3,2 23r r r r r r r rx t A x t B r t F x t F x t     

 
3 3 3r r ry H x t  
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with
3

13 6 5

8 10
r

- .
A 



 
  

, 
3

1 01

1
r

.
B



 
  

, 
3 1

0 1 0 2

0 1 0,r

. .
F

.

 
  

, 

3 2

0 2 0 2

0 01 0,r

. .
F

.

 
  

 and  
3

2 3 0 6rH . .  . 

Now, by using the Matlab LMI toolbox, a solution of the 
Theorem 1 is obtained and leads to the design of the proposed 
control. This latter is composed of three local switched 
controllers of the form (6) and defined as follows: 

1st controller:      
2

1
1 1, 1, 1

j
j ju t t K e t



     for the 

attenuation level 1 2 7.   and the decreasing rates 

1, j , j
=0.99  , we obtain the following gains: 11 39 54,K .  

and 1 2 54 03,K . . 

2nd controller:      
2

1
2 2, 2, 2

j
j ju t t K e t



     for the 

attenuation level 2 2 3.   and the decreasing rates 

2 , j , j
=0.81  , we obtain the following gains: 2 1 17 66,K .  

and 2 2 28 90,K . . 

3rd controller:      
2

1
3 3, 3, 3

j
j ju t t K e t



     for the 

attenuation level 3 2 5.   and the decreasing rates 

3, j , j
=0.87  , we obtain the following gains: 3 1 18 35,K .  

and 3 2 29 27,K . . 

The following reference signals are considered under this 
simulation: 

   
 

1

1 0 5

20 0 02 5 10

7 0 01 10 15

t s

r t sin . * t t s

square . * t t s

 

   

  






,  

 
 

2

20 0 008 0 7 5

0 5 7 5 15

cos . * t t . s
r t

. . t s

  


 





,  

 
 

 
3

10 0 005 0 5

1 5 10

20 0 008 10 15

  

  

  





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,  

and the external disturbances signal  iw t , for 1; 2;3i  , are 

considered as a white noise sequence. 

The outputs  iy t  and  
ir

y t , for 1 3i , ,  , are shown in 

Fig. 2. The tracking errors evolution, computed between the 
outputs of the large-scale system S  and the reference model, 

are depicted in Fig. 3. As expected, the outputs  iy t  of the 

large-scale system S  can track the desired trajectories 

 
ir

y t  (for 1, , 3i   )  after a finite time interval. Thus, the 

obtained results demonstrate that the proposed controller can 

guarantee the H


 output-tracking performance.  

 

Fig. 2. Outputs trajectory (system and reference model). 

5. CONCLUSION 

In this paper, the problem of the decentralized output-
feedback tracking control, intended to drive a class of 
switched interconnected large-scale systems subject to 
disturbances, has been studied. Two kinds of the 
interconnections between different subsystems have been 
considered: interconnections depending on state vector and 
those depending on unknown disturbances. By effectively 
using the descriptor redundancy formulation, some new 
sufficient conditions, which guarantee that the proposed 

controller had the H


 output-feedback tracking performance, 

have been derived. These conditions have been reformulated 
in terms of LMI thanks to the multiple switched Lyapunov 
functions. Some concrete simulations are achieved to 
illustrate the effectiveness of the proposed approach. 
Moreover, considering the performances obtained in this 
work in terms of output-feedback tracking control under 
synchronous switching, relaxation of this assumption and 
extension of the proposed approach to general switched 
systems under asynchronous switching will be the focus of 
future work. 
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Fig. 3. Evolution of tracking errors. 

APPENDIX A 

In this section, we are focused on formulating the inequality 

(40) in terms of LMI. We recall that 0
ii
  , the latter 

inequality (40) can be written as follows for 1, ,i N  , 

1, , N   , i  , 1, , ij M  : 
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Then, by applying the Schur's complement, the latter 
equation (41) can be written for 1, ,i N  , 1, , N   , 

i  , 1, , ij M  : 
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We substitute ,i jA , ,i jC , ,iF 
 , 

, ,i jwB


 , i , jX , iI  in the 

inequality (42), we can obtain the inequality (43). 

Remark 5: It is important to note that the inequality (43) is 
not a LMI due to the presence of the quadratic terms 

( 7
, ,i j i jK X , 8

, ,i j i jK X , 9
, ,i j i jK X ). A way to skip to LMI 

conditions is to act on decision matrices mentioned in the 

remark 1. Hence, we choose (for 1, ,i N  , 1, , ij M  ) 

matrices 7
, 0i jX   and 8

, 0i jX  . Therefore, using the 

following change of variable 9
, , ,i j i j i jY K X , under 

condition that the matrices 9
,i jX  are non-singular, the LMI 

(16) given in the Theorem 1 is provided. 
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