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Abstract: With regard to the optimization of Central Pattern Generators (CPGs) for bipedal locomotion 
in robots, this paper investigates how the different cases of CPGs such as uncoupled, unidirectional, 
bidirectional two CPGs are used to produce rhythmic patterns for one leg with two degrees of freedom 
(DOF). This paper also discusses the stability analysis of CPGs and attempts to utilize genetic algorithms 
with the hybrid function and adapts the CPGs to robotic systems that perform one-leg movement, by 
utilizing the bidirectional two CPGs. The results show far greater improvement than in the other cases. 
CPGs not only enhance movement but also control locomotion without any sensory feedback. 
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1. INTRODUCTION 

Locomotion of robots is one of the most widely discussed 
topics with basic locomotors at the heart of investigations. In 
biological systems, a number of various patterns occur which 
are produced by a central nervous system such as, running, 
walking, swimming and crawling. The central nervous 
system is called Central Pattern Generator (CPG). The central 
nervous system of vertebrate and invertebrate animals locals 
in the spinal cord as shown by some researches (Ijspeert, 
2008; Sillar, 1996). Some studies have shown that there are 
functions in the human body, for instance breathing and 
digestion, that cannot be controlled consciously, but 
controlled by CPGs (Ijspeert, 2008; Billard and Ijspeert, 
2000). 

Biologically, CPGs can be defined as inspired networks of 
nonlinear oscillating neurons capable of generating rhythmic 
patterns without higher control centres or sensory feedback. 
A neural oscillator comprises a pair of neurons with 
inhibitive connections between them. Each neuron suppresses 
the other, which are a flexor and an extensor neuron 
(Bucheret et al., 2000; Casasnovas and Meyrand, 1995; Van 
Vreeswijk et al., 1994). It should be known that a single CPG 
is not a small neural network. Rather, it receives inputs from 
the higher parts of  control centres (Ijspeert, 2008; Sillar, 
1996). 

Various mathematical and physical structures of the legs and 
limbs have been modeled (Williamson, 1999; Arikan and 
Irfanoglu, 2011; Abdalftah Elbori et al., 2017) and the control 
systems have been copied to reproduce patterns of movement 
in robots similar to those in certain biological organisms. 
When the body initiates movement, CPGs commence 

synchronization and send signals to neurons simultaneously 
in a movement cycle (Kimura et al., 2007; Wu et al., 2013).  

Interestingly, various mathematical structures in the literature 
have modelled and mimicked biological control parameters 
(Williamson, 1999; Amrollah and Henaff, 2010; Ijspeert and 
Cabelguen, 2006; Jiaqi et al., 2011). Various CPG models, 
including the connectionist models, have been implemented 
in the robotic systems (Arena, 2000; Lu et al., 2005). Also, 
there are  some studies discussing how systems of oscillators 
can be coupled (Crespi and Ijspeert, 2006; Ijspeert and 
Crespi, 2007; Ijspeert et al., 2007; Kimura et al., 1999).  

Recently, various CPGs models have been implemented and 
designed in order to control bipedal locomotion in humanoid 
robots (Jiaqi et al., 2011; Taga, 1998; Taga et al., 1991). 
Also, different kinds of robots and modes of locomotion have 
been controlled using CPGs. The locomotion of hexapod and 
octopod robots is employed in some different CPG models 
(Arena et al., 2004; Inagaki et al., 2006; Inagaki et al., 2003). 
Also, CPGs are used to control swimming robots, for 
instance swimming lamprey or eel robots (Ijspeert and 
Crespi, 2007; Inagaki et al., 2006; Arena, 2001; Crespi and 
Ijspeert, 2008), as well as to control quadruped robots 
(Billard and Ijspeert, 2000; Brambilla et al., 2006; Fukuoka et 
al., 2003). For some studies that explored how one can use 
CPGs to control bipedal locomotion, we refer the reader to 
(Ishiguro et al., 2003; Pinto and Golubitsky, 2006; Wang  et 
al., 2014; Arikan and Irfanoglu, 2011; Inada and Ishii, 2003; 
Abdalftah Elbori et al., 2017; Aoi and Tsuchiya, 2005; Endo  
et al., 2005; Torres-Huitzil and Girau, 2008; Nachstedt et al., 
2017). Some of these studies have been considered the Van 
der Pol and the Hopf oscillator. Others used different 
mathematical structures of CPGs to control bipedal 
locomotion.  
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This paper mainly focuses on the analysis and optimization of 
the central pattern generators in details for the purpose of 
locomotion. If we want to apply the optimized patterns for 
the bipedal locomotion, the dynamical stability of the robot 
must be ensured by using the ZMP (zero moment point) 
technique. In this case, the patterns may be modulated to 
guarantee the stability which is shaped by the ZMP analysis. 
In addition, the torso may be activated to improve the 
dynamical stability of the bipedal robot. This paper draws on 
and derives support from the studies mentioned above and 
investigates how CPGs can be optimized for bipedal 
locomotion via an adaptation to the robotic systems that 
perform one leg movement. In particular, this paper 
investigates a nonlinear limit-cycle oscillator similar to the 
Van der Pol oscillator. It combines both oscillators to control 
the swing phase of the kinematic model of a single leg 
system. The mathematical analysis for the optimization of the 
CPG can be another novelty in this paper. Based on the cost 
function, this paper uses a developmental algorithm to find 
the optimum parametric values for two CPGs in three 
different cases, it is predicted that the bidirectional two CPGs 
will give the best results. 

The paper is organized as follows: The kinematic model has 
been discussed in the next section. A strategy to couple two 
CPGs is given in Section 3. In Section 4, the stability analysis 
is discussed. Section 5 is devoted to the optimization results. 
In Section 6, some conclusions are drawn and suggestions for 
future research are given. 

2. KINEMATIC MODEL 

Economically speaking, the kinematic model is designed to 
conduct a base analysis. Fig 1 presents the leg structure in 
two cases of motion: a swing mode and a stance mode. There, 

 and  are the lengths from the hip joint to the knee joint, 
and from the knee joint to the end effector, respectively; and 

 is the angular position of the hip and  is the angular 
position of the knee,  is the distance between the lower 
body and the ground. The coordinates of the lowest part of 
the hip and knee are denoted by ,  and , , 
respectively.  

 
Fig. 1. Swing and stance modes of the leg. 

There are two cases to consider during motion. The first case 
is when , that is, the leg touches the ground. This case 
is known as the stance mode in which case the leg behaves as 
a revolute joint. In stance mode, the hip joint angle  is 
computed in terms of the knee angle	 , which is established 
by the CPGs. Thus, in this mode, the kinematic model has 

one degree of freedom (DOF). Moreover, only in stance 
mode will the body move. The second case is when , 
which is the time when the leg does not touch the ground. 
This mode is known as the swing mode. In this mode, the 
DOF is two, and the angles of both the hip and knee are 
calculated by two different CPGs. 

The simple kinematic equations are 

cos ,					 sin , 
and  

cos ,							 sin  

which are considered in the sagittal plane. Additionally, the 
lower body is parallel to the ground during the locomotion, as 
in the Test Bench, where the hip joint height is fixed. Since 
the stability during the locomotion is guaranteed, the dynamic 
equations are not needed (See Fig 2 below.) 

 

Fig.  2. The physical system and a closer view of the 
actuators of one leg of the Test Bench. 

3. A STRAGETRY TO COUPLE THE CPGs 

As stated previously, the CPG unit is responsible for 
generating the required angular signals for both joints. Such 
CPGs are furthered in mathematical equations and presented 
in general formulas (for details, see (Marbach, 2004; Van den 
Kieboom, 2009)). The sinusoidal signals are the appropriate 
function for locomotion control: 

   ftAx 2sin  

where , 	  and  are the amplitude, frequency and phase 
respectively. Differentiating  twice yields the system 

f
xvvx




2

1
,,    

Here, the amplitude is implicitly defined by the system. In 
fact, it relies on the initial conditions. Therefore, to force the 
system to lead to a limit cycle with the desired amplitude, a 
new term should be included in the system. For example, the 
new system of differential equations may look like 
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in which the parameters ,  and  are positive constants. In 
(1), the term  stands for the actual energy and the 
difference  denotes the error in the energy of the 
oscillator. Therefore, the newly added term may be 
considered the normalized energy. 
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To reach the strength of coupling CPGs, we consider a simple 
coupling strategy given in (Ijspeert and Cabelguen, 2006) is 
considered where each CPG sends a signal proportional to the 
states variables to every other CPG. More specifically, the 
system 
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will be considered. In (2),  and  are positive constants 

that determine how oscillator  influences oscillator		 . 
Specific forms of outputs can still occur by means of 
changing the numerical values of the parameters (Amrollah 
and Henaff, 2010). Depending on the values of  and  
the coupling weights of CPGs may be called uncoupled, 
unidirectional and bidirectional. The corresponding systems 
of differential equations are provided below: 
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and 
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System (3) is called uncoupled because the two CPGs 
occurring in the system work independently. On the other 
hand, in system (4), there is a signal transfer from the second 
CPG to the first one, and that transfer is one way. This is why 
it is called unidirectional. Finally, in system (5), each CPG 
gives reference to the other CPG. Therefore, it is called 
bidirectional coupling. In any case, the outputs are  
and , where  and , as defined in the kinematic 
model, represent the angular positions of the hip and knee, 
respectively. 

4. STABILITY ANALYSIS 

In this part, the stability analysis for each type of coupling 
given in the previous section will be discussed. For each case, 

a figure will be provided to illustrate the existence of a limit 
cycle. 

4.1 Uncouple Two CPGs 

As stated previously, uncoupled two CPGs consist of four 
differential equations given in (3). These four differential 
equations represent two independent CPGs. Therefore, it is 
sufficient to analyze one of them to understand the stability 
of the system. For (1), which is a nonlinear system, clearly 
the origin is the only fixed point and the linearized system at 
the fixed point has the Jacobian matrix  
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whose eigenvalues are , √ 4 / 2 . Since 
/ 0,  the fixed point is locally unstable. Let's consider 

(1) in polar coordinates: cos ,  sin . Then, (1) 
becomes  
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It is now obvious that all solutions with 0 0 tend to √  
as ⟶∞. Translating this into the ,  plane, it means that 

 increases as long as , and it decreases 
when . Thus, there is a stable limit cycle with 
radius √  and an unstable equilibrium point at the origin. In 
Fig 3, two solutions corresponding to different values of the 
parameters for the first CPG are shown. The limit cycle for 
one CPG can be observed in that figure.  

 

Fig. 3. Stable limit cycle of uncoupled single CPGs: Red 
curve correspond to the initial condition 
x1 0 ,v1 0 =(0.001, 0.001 ), and the blue solution 

corresponds to the initial condition 
x1 0 ,v1 0 = 0.007, 0.007 .  These different solutions 

correspond to the values τ=0.009,  α=0.03 and E1=0.000045. 

4.2 Unidirectional Two CPGs 

Unidirectional two CPGs consist of four differential 
equations given in (4). These four differential equations 
represent two dependent CPGs. It is clear that there is no 
equilibrium point for unidirectional two CPGs. To check 
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whether there is a periodic solution, the change of variables 
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are used. Then, in the new coordinate system, (4) becomes 
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Clearly, 	  is the periodic solution for the second 
CPG. The limit cycle for the first CPG can be observed in Fig 
4. Therefore, as in the case of uncoupled two CPGs, this 
system has a limit cycle. 

 

Fig.  4. Two trajectories of the first CPG in the case of 
unidirectional two CPGs: Red curve correspond to the initial 
condition x1 0 ,v1 0 ,x2 0 ,v2 0 =(0.01, 0.01,0.01, 0.01 ), 
and the blue solution corresponds to the initial condition 
x1 0 ,v1 0 ,x2 0 ,v2 0 = 0.05, 0.05,0.05, 0.05 . These 

different solutions correspond to the values 
τ=0.01,  α1=0.0001, α2=0.001, a12=b12=0.001 and E1=E2=0.00001 

4.3 Bidirectional Two CPGs   

The four differential equations in (5) represent two dependent 
CPGs. Note that for an equilibrium point the first and the 
third equations give 0 which leads to 

0 and 0. It is clear that  and  should 
have the same signs, and the equilibrium points are 

, 0, , 0  and , 0, , 0 . It should be 
mentioned here that, the points , 0, , 0  and 

, 0, , 0  are not equilibrium points. The Jacobian 
matrices at the fixed point are 
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Therefore, the eigenvalues for both equilibrium points are the 

roots of the characteristic equation 
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in which , , and 

.  The characteristic roots are   
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It is difficult to make the analysis in this. Thus, either one as 
to trust the simulation results only, which is not scientifically 
strong because of the errors that may occur during the 
computation, or one can consider special cases as we do here. 

Case 1:  . In that case, the eigenvalues are   
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 When 0; 
- If β<0, then there are complex eigenvalues with 

positive real part. Hence, the fixed points an 
unstable source. 

- If β=0, then the eigenvalues are purely 
imaginary, and the system will oscillate around 
the steady state. The fixed points are stable. 

- If β>0, the real parts of all eigenvalues are 
negative. So, the fixed points are asymptotically 
stable. 

These results are supported by Fig 5. 

 

Fig.  5. The eigenvalues against , when 0. 
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 When 0, as Fig 6 supports; 
- If β<0, then the eigenvalues are repeated and 

their real parts are positive. So, the fixed points 
are unstable. 

- If β=0, then the eigenvalues are repeated purely 
imaginary complex numbers. Thus, the fixed 
points are unstable. 

- If β>0, then the real parts of eigenvalues are 
negative. For  the fixed points are 
asymptotically stable and for  the 
eigenvalues are repeated which means that the 
fixed points are unstable. 

 
Fig. 6. The eigenvalues against , when 0. 

 When 0 as Fig 7 supports; 
- If β<0, then the eigenvalues have positive real 

parts. So, the fixed points are an unstable. 
- If β>0, the fixed points are stable for small 

values of  and unstable for large values of . 

 

Fig. 7. The eigenvalues against , when 0. 

Case 2:  . 

 When 0, with the help of the Figs 8, 9, 10 and 
11, one has; 
- If β1>0, β2>0, then the fixed points are stable. 
- If β1<0, β2>0, then the fixed points are stable 

for  close to zero, otherwise the fixed points 
are unstable. 

- If β1>0, β2<0, then the fixed points are 
unstable. 

- If β1<0, β2<0, then the fixed points are 
unstable. 

- If β1=0, then the fixed points are asymptotically 
stable for β2>0 and they are unstable for β2<0.  

- If β2=0, then the fixed points are asymptotically 
stable for β1>0 and they are unstable for β1<0. 

 

Fig. 8. The eigenvalues against , when 0 and 0. 

 
Fig. 9. The eigenvalues against , when 0 and 0. 

 
Fig. 10. The eigenvalues against , when 0  and 0. 

 

Fig. 11. The eigenvalues against , when 0 and 0 

 When 0, with the help of the Figs 12, 13, 14 
and 15, one has; 
- If β1>0, β2>0,  then the fixed points are 

asymptotically stable. 
- If β1<0, β2>0, then the fixed points are 

unstable. 
- If β1>0, β2<0, then the fixed points are stable. 
- If β1<0, β2<0, then the fixed points are 

unstable. 
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- If β1=0, then the fixed points are asymptotically 
stable for β2>0 and they are unstable for β2<0  

- If β2=0, then the fixed points are asymptotically 
stable for β1>0 and they are unstable for β1<0. 

 

Fig. 12. The eigenvalues against , when 0 and 0. 

 
Fig. 13. The eigenvalues against , when 0  and 0. 

 

Fig. 14. The eigenvalues against , when 0 and 0. 

 
Fig. 15. The eigenvalues against , when 0  and 0. 

 When 0, with the help of the Figs 16, 17, 18 
and 19, one has; 

- If β1>0, β2>0,  then the fixed points are stable 
for  close to zero, otherwise the fixed points 
are unstable. 

- If β1<0, β2>0, then the fixed points are 
unstable. 

- If β1>0, β2<0, then the fixed points are 
unstable. 

- If β1<0, β2<0, then the fixed points are 
unstable. 

- If β1=0, then the fixed points are stable for 
β2>0, or β2<0 when  close to zero, otherwise 
the fixed points are unstable. 

- If β2=0,  then the fixed points are unstable for 
β1<0, and β1>0. 

 
Fig. 16. The eigenvalues against , when 0  and 0. 

 
Fig. 17. The eigenvalues against , when 0 and 0. 

 
Fig. 18. The eigenvalues against , when 0  and 0. 
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Fig. 19. The eigenvalues against , when 0 and 0. 

5. OPTIMIZATION RESULTS 

It is important to mention here that each CPG produces 
angular patterns as outputs for each joint. To estimate gait 
generation, it is essential to compute the optimal parameter 
sets for each CPG. In other words, it is necessary to 
understand how the angular position of both joints will 
change in time in order to produce rhythmic patterns. The 
parameter sets in the cases of uncoupled, unidirectional and 
bidirectional two CPGs are , , , , , , 

, , , , , , ,  and 
, , , , , , , , , , respectively. The 

Genetic Algorithm (GA) will be used to find the values of the 
parameters that optimize the objective function given below. 
The different walking patterns rely on this cost function: 

       
 













n
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n

k
b nkkCkxCJ

1 1

2
2

2
121 /  (7) 

where , ∈ 0,1 	and	 1,  is the number of 
elements of the position vector that is simulated with the 
objective of establishing patterns in order to maximize the 
displacement or velocity. When 0,	 the energy 
consumption is ignored; hence, the displacement is 
maximized. Otherwise, when 0, the energy 
consumption is minimized ignoring the displacement. It is 
obvious that for 0, the minimum displacement is 
obtained when there is no locomotion. Therefore, throughout 
this study, it is assumed that 0. Moreover, the 
requirement 1 is used just to balance the energy 
consumption and the total displacement.  

The values of  and  are varied to clarify the relationship 
between the velocity and the energy constraints during CPG 
optimization. The second term in (6) is used to provide 
patterns, including smaller angular displacements for the legs. 
Consequently, this reduces the energy consumption. The 
ultimate goal here is to minimize the energy while altering 
the position (for more details on biological locomotion 
(Alexander, 1996; Nolfi and Floreano, 2000). 

The two constraints revealed here are 0 , 	  due to 
physical reasons. In the present study, a hybrid function is 
used during the optimization process which runs after the GA 
terminates for improving the value of the fitness function. 
The final point from GA is used as the initial point in either 
Pattern Search (PS) or fminsearch (FM) in MatLab. 

It is observed that in both cases of the uncoupled and 
unidirectional two CPGs, either the leg does not move or it 
takes only a few steps in an unusual manner. However, 
locomotion can be achieved with the bidirectional two CPGs, 
as shown in Figs 20, 21, 22, 23 and 24 for both cases 
, 0 and 0. 

 

Fig. 20. One leg animation for bidirectional two CPGs: This 
animation corresponds to the values 1.0695, 
1.2666,	 2.1157, 1.3610, 0.7478, 

2.2222, 1.9279, 3.4393, 3.2908, 
3.2794 when , 0. 

 

Fig. 21. Angles and displacement against time for 
bidirectional two CPGs when , 0: This solution 
corresponds to the same values in Fig 22. 

 

Fig. 22. One leg animation for bidirectional two CPGs: this 
animation corresponds to the values 0.9855, 
1.2981,	 2.0748, 1.3475, 0.7401, 

2.1861, 1.9234, 3.3872, 3.3011, 
3.2758 when 0. 
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Fig. 23. Outputs of bidirectional two CPGs when 0: 
This solution corresponds to the same values in Fig 24. 

 

Fig. 24. Displacement against time for bidirectional two 
CPGs when 0: This solution corresponds to the same 
values in Fig 24. 

In fact, these optimization results supply the conclusion given 
in the stability analysis. Tables 1-6 summarize the results of 
this optimization for the three cases under investigation: 
uncoupled, unidirectional and bidirectional two CPGs, 
respectively. In all cases, ,  and  denote the values of the 
cost function, total displacement and energy, respectively. 

Table 1. Optimization of uncoupled two CPGs when 
, 0. 

 

 

Table 2. Optimization of uncoupled two CPGs when . 

 
According to Tables 1 and 2, increasing optimization time or 
extending the region renders the leg unable to walk. 
Similarly, Tables 3 and 4 support the results given previously 
such that the leg is unable to walk normally. 

Table 3. Optimization of unidirectional two CPGs when 
, . 

 

Table 4. Optimization of unidirectional two CPGs when 
0. 

 

Table 5. Optimization of bidirectional Two CPGs when 
, . 

 

Table 6. Optimization of bidirectional Two CPGs when 
. 

 

In Tables 5 and 6, in contrast, the leg is able to move. When 
the fixed points are unstable, optimizing the bidirectional two 
CPGs cannot produce rhythmic patterns.  

Experiments relying on the value of ,  and  show that 
when the fixed points are stable, the velocity and 
displacement increase by increasing the values of  and . 
Moreover, when the angles are kept in the region 0, 6 /7 , 
to be more consistent with real life, the locomotion becomes 
better than the angles kept between 0, , as shown in Figs 
25 and 26. The parameters of the coupling weights are 
important in order to balance the disturbance during 
optimization. Moreover, when the parameters  and ∈
0,3 ,	the bidirectional two CPGs are definitely able to 

generate different RPs for one leg to move; these RPs 
generate different types of locomotion when the couple 
parameters 	and	 ∈ 2,3 	. It is certain that it is 
possible to generate the rhythmic patterns by optimizing the 
bidirectional two CPGs outside of the above regions. 
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Fig. 25. One leg animation in the case of Bidirectional two 
CPGs in 4 sec: This animation corresponds to the values 

0.9480, 0.1011,	 2.6940, 1.3219, 
0.1477, 2.0899, 2.4394, 

0.00005. 

 
Fig. 26. Outputs of CPGs and displacement against time for 
Bidirectional two CPGs in 4 secs: This solution corresponds 
to the same values in Fig 25. 

6. CONCLUSIONS 

This paper focuses on three cases of CPGs: uncoupled, 
unidirectional and bidirectional two CPGs. These couplings 
are used to produce rhythmic patterns for one leg with two 
degrees of freedom. When the optimization is performed in 
the first two cases, CPGs are unable to provide the basic 
locomotor rhythm patterns for the leg.  In contrast, by 
utilizing the bidirectional two CPGs, the results show far 
greater improvement than in the other cases. The 
bidirectional coupling yields the best performance level. 
Results also reveal that when  and  are close to zero and 
the fixed points are stable, the velocity and displacement 
increase. That is, changes in the CPG parameters may 
produce different results. Of course, not only the values of  
and  are important, but also in the bidirectional two CPGs, 
the couple weight  and  that drive the system to two 
diverging phases, which lead to obtain the conflicting 
perturbations, these perturbations are influenced by the 
energies  of bidirectional two CPGs. For instance, during 
the experiment, when the amplitude of the second CPG is 
very small, the coupling weight will be definitely week, in 
order to reach the strength of coupling CPGs to be 
independent from the amplitude of the emitting CPG, then, 
the bidirectional two CPGs are able to generate rhythmic 
patterns for the leg to move along x-direction in the stable 
region. The rhythmic motions rely on coupling weights  
and  and the values of both parameters  and . This study 
indicates that not only do CPGs in the spinal cord of humans 
influence human locomotion, they also take over the 

locomotion without any provided sensory feedback. To the 
extent that bidirectional two CPGs are the most effective 
essentials akin to real life-induced rhythmic patterns, it is 
reasonable for them to be considered pivotal features most 
conducive to locomotion. The results of the study warrant 
broader future applications of bidirectional two CPGs of the 
third type to account for a variety of upper limb locomotion. 
These results are important, then not only because of what 
they may contribute to the ongoing discussion of locomotion 
but also for the support that they give to bidirectional two 
CPGs as a critical aspect of locomotion. These results pave 
the way for further research into CPGs as potential 
controllers of upper limbs for different movements. 
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