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Abstract: This paper deals with the design and implementation of two nonlinear control strategies to 
solve the path-tracking problem for an Autonomous Underwater Vehicle (AUV) under model 
uncertainties and external disturbances. First, the AUV model is transformed into the so-called regular 
form by an appropriate selection of state variables. Afterward, the trajectory tracking problem is treated 
under two different perspectives; on the one hand, the Block Backstepping Control (BBSC) design was 
employed, in this methodology, the system into the regular form is rewritten regarding the error tracking 
dynamics and then the control law is obtained through a Lyapunov function stability  analysis. The other 
method is based on the second order sliding mode technique known as Generalized Super-Twisting 
Algorithm (GSTA) which offers a way to ensure robustness to modeling errors and bounded external 
disturbances. Both control laws are designed to maintain a minimum margin of error in the trajectory 
tracking of the AUV even in the presence of damping and buoyancy disturbances. Finally, experimental 
results are also provided to illustrate the performances of the closed-loop system using proposed 
controllers. 
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1. INTRODUCTION 

Today, it has only been explored five percent of the ocean 
according to data from NOAA’s Office of Ocean Exploration 
and Research. Within the field of maritime exploration, 
autonomous underwater vehicles (AUVs) have positioned 
themselves as an adequate choice for this kind of tasks 
because of remarkable benefits of its small scale. 

In recent years, underwater vehicles have been widely used 
for the acquisition of physical variables of scientific interest 
in the deep sea, inspection of underwater structures, 
oceanographic mapping, maritime archaeology and so on. In 
general, the tasks mentioned require some level of autonomy 
of the vehicle, and that is why the interest in controlling the 
behavior of the underwater vehicle is so important.  In this 
sense, there are three relevant control actions to provide 
autonomy to the vehicle: point stabilization, trajectory 
tracking, and path following control (Encarnacao and 
Pascoal, 2001). 

Point stabilization refers to the problem of steering a vehicle 
to a final target point. Path following control aims at forcing 
a vehicle to converge to and follow a desired spatial path. 
Finally, Path tracking requires a vehicle to track a time-
parameterized reference curve (Lapierre et al., 2003). In this 
work, we focus on the latter case, where the design of an 
AUV path-tracking controller is not a trivial task due to its 

complex and highly nonlinear dynamics and unpredictable 
external perturbations such as the environmental force 
generated by the sea current fluctuation and the difficulty in  
accurately modelling the hydrodynamic effect. To control 
this type of vehicle have been proposed multiple control 
strategies: PD controllers (Hoang and Kreuzer, 2007), PID 
with nested saturations technique (Perrier and Canudas-De-
Wit, 1996), Optimal Control (Wadoo et al., 2012), Neural 
Networks (Kawano and Ura, 2002; Szymak, 2016). Some of 
the applications listed use the linearized model of the vehicle, 
considering strong restrictive assumptions to simplify the 
mathematical description, resulting in an impractical 
controller due to its low robustness against disturbances 
(Akakaya et al., 2009; Wang et al., 2009). For this reason, 
many researchers concentrated their interests on the 
applications of robust control for underwater vehicles. 

A broad class of controllers has been proposed for the path-
tracking problem, for example, in (Li et al., 2015a) an 
adaptive fuzzy PID controller for tracking paths divided into 
line segments is used. A nonlinear PD scheme for both set-
point regulation, as well as trajectory tracking for depth 
motion is proposed in (Campos et al., 2018). An adaptive 
tracking control capable of dealing with parametric 
uncertainties is shown in (Sahu and Subudhi, 2014). 
Moreover, in (Aguiar et al., 2007) a nonlinear Lyapunov-
based tracking robust control law against parametric 
disturbances is shown. The Backstepping technique is used in 
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(Xiang et al., 2011) and a modified version of this 
methodology is shown in (Liang et al., 2016). Moreover, the 
use of the Backstepping control (BSC) is extended in work 
presented by (Li et al., 2015b), where a 3-D trajectory 
tracking control strategy of an AUV is considered. Linear 
stability is employed to obtain an output control loop for 
station keeping at some the desired velocity. Then, a 
Backstepping technique on the velocity error function is 
proposed. Computer simulation shows the trajectory tracking 
results, however, robustness against uncertainties on the 
damping and mass matrices is missing. Besides, in (Sun et 
al., 2014) a Bioinspired filtered Backstepping with Sliding 
Mode control for AUV trajectory tracking is developed. In 
this work, the AUV model of 4 degrees of freedom (x, y, z, 
yaw) is considered, the Backstepping methodology is used to 
control the AUV velocity in the body-fixed frame. Then, a 
component of the Bioinspired model is introduced into the 
BSC to avoid the sharp speed jumps due to large tracking 
errors which lead to increase the thrusters power 
consumption considerably. The added component works as a 
filter that will soften the sharp speed jump effect and produce 
smaller torques to avoid thruster’s saturation. Afterward, the 
BSC law is used to design the sliding surface for Sliding 
Mode Control. In the designed controller, the signum 
function is replaced by an adaptive term to alleviate the 
chattering problem. Finally, simulation results show that the 
method of the filtered control minimizes the velocity error 
and, at the same time, the energy requirement in the thrusters 
is considerably reduced. 

Sliding Modes is another robust control technique used in 
underwater vehicle control. High Order Sliding Mode 
Control (HOSMC) for position tracking, dynamic positioning 
or station keeping of an AUV device is considered in 
(Salgado-Jimenez et al., 2011). It is shown that exponential 
position tracking and velocity can be attained, with no 
acceleration measurements and avoiding chattering 
aftereffects. Advantages of HOSMC are evaluated 
concerning a conventional PID and a model-based first order 
sliding mode control through a simulation study. Finally, in 
(Ismail and Putranti, 2015) a second-order sliding mode 
controller namely, Super Twisting Algorithm (STA) is used 
to solve the AUV trajectory tracking problem in the (x-y) 
plane. In the cited paper, a robust controller is constructed in 
two parts, the nominal STA, and the equivalent control. In the 
development of the equivalent control, the concept of 
dynamic region is introduced, which consists of including  a 
mathematical constraint  in  the form of a 2D region where 
the equivalent  control action is confined and consequently 
low energy consumption by the vehicle is achieved. The 
results are presented only in simulation.  

The main aim of this contribution is to present a comparative 
study between HOSMC and BSC as two of the most popular 
nonlinear robust control techniques used in trajectory 
tracking of UAVs. A sliding mode control of second order 
namely Generalized Super-Twisting Algorithm (GSTA) 
introduced by (Moreno, 2009) is adapted for trajectory 
tracking of an AUV and demonstrated its robustness under 
parameter uncertainties and external bounded disturbances 
through simulation and then validated by experimental results 

for the first time. The GSTA methodology ensures robustness 
to modelling errors and external disturbances while reducing 
the chattering phenomenon caused by all first order sliding-
mode based controllers. Moreover, the GSTA includes a 
linear version of the algorithm, the standard STA, and a STA 
with extra linear correction terms, that improves robustness 
and convergence velocity. In a second time, a Backstepping 
technique is considered. Contrary to other approaches, it is 
shown that working with the trajectory tracking error will 
allow reducing the Lyapunov stability analysis to two back 
steps only. As a consequence, the BSC law is easily obtained 
through a Lyapunov function analysis and the number of 
control gains is reduced to two parameters. Moreover, 
robustness against non-modelled dynamics (added mass and 
damping) is explicitly considered. Finally, the stability 
analysis of both control laws is proven by Lyapunov 
arguments. Besides the popularity of GSTA and backsteeping 
as effective tools for robust control of non linear control one 
may emphasize the contribution of the present work as 
follows: 1) A systematic way to find the gains of the GSTA 
controller by solving a Linear Matrix Inequality (LMI) is 
given, 2) In order to have a complete robust stability analysis 
the perturbed case is considered which is very often case for 
the GSTA but not for the Backstepping algorithm, this issue 
was instrumental  for being able to have a proper comparison 
between both control techniques, and 3) The performances 
and robustness have been evaluated in real time experiments. 

The paper is organized as follows: In section II, the AUV 
model considered in this work is shown. Two control laws 
for trajectories tracking of the AUV based on the error are 
described in section III. In Section IV, an experimental 
evaluation of the performance of both controllers for 
trajectory tracking under damping and buoyancy disturbances 
is presented. Finally, in Section V conclusions and future 
work are presented. 

2. DYNAMIC MODEL 

The dynamic model of underwater vehicles has been 
described in several articles (see for instance (Fossen, 1994, 
2002; Prestero, 2001; Kinsey et al., 2006)). 

The dynamics of an underwater vehicle involves two frames 
of reference: the body-fixed frame and the earth-fixed frame 
(see Fig. 1). Considering the generalized inertial forces, the 
hydrodynamic effects, the gravity and buoyancy 
contributions as well as the forces of the actuators (i.e., 
thrusters), the dynamic model of an under water vehicle in 
matrix form, using the SNAME notation and the 
representation introduced by Fossen (1994), can be written as 
follows:  

Mν+C ν ν+D ν ν+g η =τ+ωe(t)              (1) 

η=J η ν 

Where ν= u,v,w,p,q,r T is the state vector of velocity relative 
to the body-fixed frame and η= x,y,z,ϕ,θ,ψ T  represents the 
vector of position and orientation relative to the earth-fixed 
frame. From equation (1), the matrix of spatial transformation 
between the inertial frame and the frame of the rigid body can 
be represented as J η ∈R6×6. M∈R6×6   is the inertia matrix 
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where the effects of mass are included, C ν ∈R6×6 is the 
Coriolis-centripetal matrix, D ν ∈ R6×6  represents the 
hydrodynamic damping matrix, g η ∈R6 is the vector of 
gravitational/buoyancy forces and moments. Finally, τ∈R6 is 
the control vector acting on the underwater vehicle and 
ωe t ∈R6 defines the vector of external disturbances. 

 

Fig. 1. An underwater vehicle with the inertial-fixed frame 
(OI, xI , yI , zI ) and the body-fixed frame (Ob , xb , yb , zb ). 

The presented formulation of the AUV dynamics is expressed 
in the body-fixed frame and can be transformed to the earth-
fixed frame by using the kinematic transformations of the 
state variables and the model parameters as follows: 

Mη η =J-T η MJ-1 η  

Cη ν,η =J-T η C ν -M  J-1 η J η J-1(η)	 

Dη ν,η =J-T η D(ν)J-1 η  

gη η =J-T η g(η) 

τη=J-T η τ 

The system (1) can, therefore, be represented in the earth-
fixed frame as: 

Mη η η+Cη ν,η η+Dη ν,η η+gη η  = τη η +ωη t         (2) 

Hydrodynamic loads dominate the AUV dynamics, and it is 
difficult to accurately measure or estimate the hydrodynamic 
coefficients that are valid for all vehicle operating conditions. 
As such, the system dynamics are not exactly known. 
Therefore, the system dynamics f(η,ν) given in (2) can be 
written as the sum of estimated dynamics f η, ν  and the 
unknown dynamics f η, ν  as follows: 

f η,ν =f η,ν +f(η,ν) (3) 

Where: 

f η,ν =Mη η η+Cη ν,η η+Dη ν,η η+gη η  (4) 

f η,ν =Mη η η+Cη ν,η η+D ν,η η+gη η  (5) 

Moreover, the matrices of the unknown dynamics vector 
f η,ν  are defined as 	Mη=Mη-Mη, Cη=Cη-Cη, Dη=Dη-Dη, and 

gη=gη-gη. 

Rewriting the system (2) into the estimated and unknown 
dynamics given by (3), we have: 

Mη η η+Cη ν,η η+Dη ν,η η+gη η =  τη η +ω t   (6) 

where ω t =ωη t -f η,ν . 

3. CONTROLLER DESIGN 

In this section, the design of two types of controllers for the 
AUV is addressed. The first section describes the 
methodology to implement a controller based on the GSTA.  
The second section describes the procedure to construct the 
Block Backstepping Control law. Both are based on the 
trajectory tracking error. 

3.1 Controller based on GSTA 

The Super-Twisting algorithm is derived from the theory of 
sliding mode control. The main advantage of the Super- 
Twisting algorithm is its insensitivity to disturbance, in other 
words, the behaviour of the nominal design and disturbed, is 
the same. Due to the high frequency of the signum function 
used under this theory, an undesirable phenomenon known as 
chattering occurs. Where the introduction of the Super-
Twisting algorithm, described as a sliding mode controller of 
the second order, reduce the impact of this phenomenon 
considerably. For the application of Super-Twisting 
controller, it is required to propose a sliding surface σ with 
relative degree one and minimum phase (Shtessel et al., 
2014). 

From (6) we introduce the next state variables: 

x1=η 

x2=η 

Rewriting the model as follows: 

																												x1=x2  

x2=F x +G x u+ω t  (7) 

Where: 

					  F x =-Mη η -1 Cη ν,η η+Dη ν,η η+gη(η)  

						 G x =Mη η -1J-T η  

														u=τη η  

At this point, it is possible to describe a control law to force 
the state x  to follow the desired trajectory 

x1
d t = xd t ,yd t  ,zd t ,ϕd t ,θd t ,ψd t

T
 using the 

technique of inverse dynamics control. Now, it is necessary 
to make the following assumptions: 

Assumption 1. The first and second derivatives of the desired 
trajectories are bounded. 
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Assumption 2. The perturbation ω t  is a Lipschitz 
continuous signal. 

Assumption 3. The roll, pitch, and yaw angles are limited 

to	 -
π

2
<ϕ<

π

2
, -

π

2
<θ<

π

2
 and	 -π<ψ<π . 

According to assumptions 1 and 2, the external disturbance 
terms ω t  are bounded 

‖ωi t ‖2≤δi, i=1,6. (8) 

also, satisfy the following inequality: 

                            ‖ωi t ‖2≤Li, i=1,6.  

According to assumption 3, the matrix G x  is not singular, 
therefore, its inverse exists. 

The Super Twisting controller acts on the dynamics of the 
error. From (7) it is possible to propose a sliding surface 
depending on the error that forces the sliding mode in the 
manifold as follows: 

σ=e+Λ ·e (9) 

where e=x1
d-x1, e=x2

d-x2=x1
d-x1  

and Λ=  diag(λ1,λ2,λ3,λ4,λ5,λ6)∈R6×6 is a diagonal positive 
definite matrix. 

Remark 1: The proposed sliding surface σ is a minimum 
phase and has relative degree one. 

The proposed control law is shown below: 

u=JTMη η x1
d+Λe-F x -υGSTA  (10) 

Where the Super-Twisting controller, υGSTA, is defined as 
follows: 

 υGSTA=-K1ϕ1 σ +λ+φ 

φ=-K2ϕ2 τ  (11) 

With: 

ϕ1 σ =|σ|
1
2sgn σ +σ 

(12) 

 ϕ2 σ =
1

2
sgn σ +

3

2
|σ|

1
2sgn σ +σ 

(13) 

The gains matrices K1=diag(k11,k12,k13,k14,k15,k16) and 
K2=diag(k21,k22,k23,k24,k25,k26) are definite positive. 

3.1.1 Stability Analysis  

In order to formalize the analysis of AUV robust path 
tracking based on sliding mode control theory let us give the 
following. 

Theorem 1. Consider the system (6) and the Generalized 
Super-Twisting Algorithm with perturbation terms (11) in 
closed loop error dynamics given by (14). Suppose that the 
perturbation terms of the system (16) are globally bounded by 
some positive constants	δ , … , δ . Then the gains K1 and K2 
can be selected high enough so that the origin is an 
equilibrium point that is strongly globally asymptotically 

stable, and all trajectories converge in finite time to the 
origin. 

Proof. From (9) and (10), the closed loop dynamics is given 
by: 

σ=-K1ϕ1 σ -K2 ϕ2 σ τ dτ
t

0
+ω t  

  

(14) 

Let: 

s1i=σi 

s2i=-k2i ϕ2 σi τ dτ+ωi t
t

0
 

ωi t =βi t  

Then (14) can be rewritten in scalar form i 1,6  as: 

s1i=-k1i |s1i|
1
2sgn s1i +s1i +s2i 

s2i=-k2i
1

2
sgn s1i +

3

2
|s1i|

1
2sgn s1i +s1i +βi t  

Without loss of generality, we can represent the system with 
simplified notation: 

s1=-k1 |s1|
1
2sgn s1 +s1 +s2 

(15) 

					s2=-k2
1

2
sgn s1 +

3

2
|s1|

1
2sgn s1 +s1 +β t  

Noting that ϕ2 s1 =ϕ1
' s1 ϕ1 s1  and selecting the vector 

χ= ϕ1 s1 ,s2  and	ρ=
β t

ϕ1
' (s1)

, it is possible to rewrite the system 

(1) as follows: 

χ=ϕ1
' (s1) Aχ+Bρ  (16) 

where the matrices are defined as follows:  

A=
-k1 1
-k2 0

,  B= 0
1

 
(17) 

Case I. Unperturbed system: Consider the unperturbed 
system (1), choosing the Lyapunov candidate function (CLF) 
as follows: 

V=χTPχ (18) 

where P is a positive definite matrix which satisfies the 
Lyapunov equation: 

ATP+PA=-Q (19) 

where Q is any given positive definite matrix and let λm 
denote the smallest eigenvalue of Q. 

Note that the proposed Lyapunov candidate function is a 
continuous, positive definite and differentiable function 
which satisfies the next form: 

λmin P ‖χ‖2
2≤V s ≤λmax P ‖χ‖2

2 (20) 
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Where ‖χ‖2
2=|s1|+2|s1|

3
2+s1

2+s2
2 is the Euclidean norm of χ and 

noting that: 

|ϕ(s1)|≤‖χ‖2≥
V

1
2 χ

λmin

1
2 P

 

The time derivative of  V along the trajectories of the system 
is: 

V Χ =2χTPχ 

											=ϕ1
' s1 χT ATP+PA χ 

											=-ϕ1
' s1 χTQχ 

										 ≤-ϕ1
' s1 λm‖χ‖2

2 

											≤- 1+
1

2|s1|
1
2

λm‖χ‖2 

											≤-λm‖χ‖2-
λm

2

‖χ‖2

|s|
1
2

 

											≤-α1V-
α2

2
√V 

where  

α1=
λm

λmax P
;            α2=

λmλmin 

1
2 (P)

λmax(P)
 

Note that V is continuously decreasing function and we can 
conclude that the equilibrium point is reached both 
exponentially and in finite time. 

Since the solution of its analog differential equation: 

	v=-α1v-α2v
1
2 ,   v 0 ≥0 

(21) 

is given by: 

v t = exp -α1t v 0
1
2+
α2

α1
1- exp

α1

2
t

2

 
 

(22) 

Moreover, using the comparison principle, the solution 
converges exponentially and in finite time to the origin as 
stated before. Finally, si=0 in finite time and according to (9), 
this implies that limt→∞ e =0 and limt→∞ e =0. 

Remark 2: Note that the system (16) in the absence of 
disturbances, the necessary and sufficient condition for 
convergence is that the matrix A be Hurwitz. This equates to 
the condition k1>0 and k2>0. 

Case II. Perturbed system: Consider the perturbed system 
(16) with the Lyapunov candidate function defined as (18). It 
is assumed that the transformed perturbation satisfy the sector 
condition (Moreno, 2009), it means: 

 

 

ω ρ,χ = -ρ2 ρ,χ +ρ t,χ L21
T +L21

T χ-χTL22
T L21

T χ  ≥0       (23) 

and considering that the upper and lower bounds of the 
perturbation are symmetric, it can be chosen as L21

T =-L22
T =LC 

where C= 1 0 . Then, we have: 

ω ρ,χ =-ρ2 ρ,χ +χTL22
T L21

T χ (24) 

=-ρ2 ρ,χ +L2χ
T
CTCχ≥0 (25) 

To design purposes, it is important to note that the gain 
matrix A can be rewritten as: 

A=A0-K0C0 (26) 

where 

A0= 0 1
0 0

,    K0=
k1

k2
,   C0= 1 0 	 (27) 

The time derivative of V along the trajectories of the system 
is defined as follows: 

V Χ =2χTPχ 

											=ϕ1
' s1 χT ATP+PA χ+χTPBρ+ρTBTχ  

											=-ϕ1
' s1

χ
ρ

T ATP+PA PB
BTP 0

χ
ρ  

											≤-ϕ1
' s1

χ
ρ

T ATP+PA PB
BTP 0

χ
ρ +ω ρ,χ  

										=-ϕ1
' s1

χ
ρ

T ATP+PA+L2CTC PB
BTP -1

χ
ρ  

          =-ϕ1
' s1

χ
ρ

T ATP+PA+L2CTC+αP PB
BTP -1

χ
ρ  

			         -ϕ1
' s1 αχTPχ 

=-ϕ1
' s1

χ
ρ

T

W K0,P|α,L
χ
ρ -αχTPχ   

where: 

W K0,P|α,L =	
W11 W12

W21 W22
 

with: 

W11=A0
TP+PA0+L2CTC-C0

TK0
TP-PK0C0+αP 

W12=PB 

W21=BTP 

W22=-1 

Assuming that K0 is selected in such way that exists P>0 and 
α>0 providing  W K0,P|α,L ≤0. The time derivative of  V 
can be expressed as follows: 

V Χ ≤-αϕ1
' s1 χTPχ (28) 

=
α

2|s1|
1
2

V-αV 
(29) 
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≤-
αλmin

1
2 P

2
V

1
2-αV 

(30) 

The time derivative of V	definite negative condition is 
reached by selecting the positive gains k  and k  high 
enough in order to satisfy the condition W K0,P|α,L ≤0. 
Therefore V converges to zero and following the same 
arguments stated in the unperturbed case, si=0 in finite time 

and according to (9), this implies that lim
t→∞

e=0 and lim
t→∞

e=0. 

Remark 3: The matrix W K0,P|α,L <0 is a Bilinear Matrix 
Inequality due to the product of P and K0. In order to solve 
this problem as a Linear Matrix Inequality (LMI) it can be 
introduced the following matrix: 

Y=PK0 (31) 

The matrix W can be rewritten in the next form: 

W=
-C0

TYT-YC0+αP

A0
TP+PA0+L2CTC

PB

BTP -1

 

(32) 

This representation of W can be seen as LMI on P and Y. 
Note that it is needed to know the bound of the disturbance 
and a fixed positive constant value α>0 in order to solve the 
LMI (32) and be able to find the gains of the GSTA 
controller trough the following relationship: 

K0=P-1Y (33) 

3.2 Backstepping Controller 

The Backstepping controller design technique for robust path 
tracking has received a lot of contributions (see for instance 
(Encarnacao and Pascoal (2001); Lapierre et al.(2003);Wang 
et al. (2009); Xiang et al. (2011); Liang et al.(2016); Aguiar 
and Hespanha (2007); Wu and Karkoub(2014))). For 
completeness, let us give an adapted version of it by the 
following. 

Corollary 1. Consider the system (6) transformed into (7). 
Let e1=x1

d-x1 and e2=x2-x1
d-Γe1 the tracking errors and the 

gain diagonal positive definite matrices 
Γ=diag γ1,γ2,γ3,γ4,γ5,γ6 ∈R6×6	and  

Υ= diag υ1,υ2,υ3,υ4,υ5,υ6 ∈R6×6.  

If Assumptions A1-A3 are satisfied and proposing the 
following backstepping controller: 

u=G x -1 x1
d+e1-F x -Γ e2+Γe1 -Υe2  (34) 

Then, the tracking errors e and e 	converge to zero 

asymptotically, with V e1,e2 =
1

2
e1

Te1+
1

2
e2

Te2 as a Lyapunov 

function. 

Moreover, the norm of the error ‖e‖ has an ultimately 
bounded performance when the system (7) under 
perturbations is considered and then the practical stability is 
proved. 

Proof. Consider the undisturbed dynamic model shown in 
(7), i.e.,	ω t =0, defining the tracking errors as: 

e1=x1
d-x1 

e1=x1
d-x2 (35) 

We define the Lyapunov candidate functions as follows: 

V1 e1 =
1

2
e1

Te1 
(36) 

Differentiating the function (36) with respect to time and 
substituting (35):  

V1 e1 =e1
Te1=e1

T x1
d-x2  (37) 

Taking x2 as the virtual control x2
v and choosing: 

x2
v=x1

d+Γe1 (38) 

Substituting in (37), we have: 

V1 e1 =-e1
TΓe1 (39) 

Choosing Γ=ΓT>0	this ensures the first state stabilization. 
Then, for stabilizing the second state, we need to define an 
error between the virtual control and the second state as 
follows: 

e2=x2-x2
v (40) 

Rewriting the system depending on the errors, we obtain: 

e1=-Γe1-e2 

e2=Γ Γe1+e2 -x1
d+F x +G x u (41) 

The following CLF is proposed: 

V2 e1,e2 =V1 e1 +
1

2
e2

Te2 
(42) 

The derivative of the function (42) over time along the 
trajectories of the system (41) is given by: 

V2=-e1Γe1-e1
Te2+e2

T F x +G x u+Γ Γe1+e2 -x1
d  (43) 

Now, introducing the control law (34) into (43) it follows 
that: 

V2=-e1
TΓe1-e2

TΥe2 (44) 

There is a suitable choice of gain matrices Γ and Υ that makes 
(44) a negative definite function. Using standard Lyapunov 
arguments, the tracking errors e  and e  converge to zero 
asymptotically.   

Perturbed case. The injection of the control law (34) into the 
error system (41) considering external disturbances, leads to 
the following closed-loop system: 

e1=-Γe1-e2 

e2=e1-Υe2+ω t  (45) 
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The closed-loop system (45) can be represented as 

d

dt

e1
e2

=
-Γ -I6×6

I6×6 -Υ
e1
e2

+ 0
1
ω t  

(46) 

The error dynamics (46) can be expressed in compact form as 

e=Ae+Bρ (47) 

Where e= e1,e2
T and ρ=ω t . 

From (46), it is easy to see that it is always possible to select 
Γ and Υ such that the eigenvalues of A can be placed 
arbitrarily. Assuming that Γ and Υ are chosen in such a way 
that the eigenvalues of A are in the LHP, it is always possible 
to find a positive definite matrix P such that 

ATP+PA=-Q 

for any given positive definite matrix Q. Let λmQ denote the 
smallest eigenvalue of 	Q. Defining a Lyapunov function as 
follows: 

V e =eTPe	 (48) 

and evaluating V e  along the trajectories of the system (47) 

	V e ≤eT PA+ATP e+2eTPBρ (49) 

										≤-eTQe+2‖PB‖‖e‖δ (50) 

									 ≤-λmQ‖e‖2+2‖PB‖‖e‖δ (51) 

										≤-‖e‖ λmQ‖e‖+2‖PB‖‖e‖δ  (52) 

Therefore, after a sufficiently long time, the norm of 
the estimation error is bounded by 

 

‖e‖≤μ	 (53) 

Where 

μ=
2‖PB‖δ
λmQ 

 
(54) 

Thus from equation (54), it can be concluded that the norm of 
the error ‖e‖ is ultimately bounded and the bounds can be 
lowered by appropriate choice of control parameters Γ and	Υ. 
Thus, the practical stability of the system is proved in the 
sense of Corless and Leitmann (1981). 

3.2 Platform Description and Practical Considerations 

LIRMIA III (see Fig. 2) is the AUV developed at the UMI-
LAFMIA CINVESTAV Laboratory in Mexico. This vehicle 
is 60	cm 70	cm 30	cm in dimension with a weight of 
35.8	kg. An acrylic cylinder contains the computer system 
and electronics. The AUV is equipped with an inertial 
measurement unit (IMU), a compass for heading, a pressure 
sensor which is used for depth measurement and two cameras 
on front and bottom of the vehicle. The propulsion system 
consists of four thrusters, two heave thrusters, and two yaw 
thrusters. This configuration implies that the roll motion is 
not actuated.  

 

Fig. 2. Underwater Vehicle LIRMIA III. 

LIRMIA III includes an embedded system which consists of 
a computer (NUC Intel 4th generation, Core i5-4250U 
processor, 8GB of DDR3L RAM) that is connected to an 
external modem through which the submarine's operating 
system can be accessed remotely. The internal computer runs 
on the Windows 10 operating system. The system receives 
data from the AUV sensors, then the data is used by the 
controller to calculate the torque of the motors and finally, 
the control signal is sent to the thrusters. The execution time, 
the data provided by the sensors as well as the torque of the 
thrusters are monitored by an external computer. The control 
algorithm was developed using Visual Studio 2012 and runs 
with a sampling period of Ts=180ms. 

Since the prototype is designed to operate at low speed, it is 
assumed that the Coriolis matrix does not contribute to 
vehicle dynamics, i.e., C ν,η ≈0.  

In addition, it is considered that M and Dη(ν,η) are diagonal 
matrices as suggested by Fossen (1994).   

In the previous section, the dynamics of an underwater 
vehicle in its full six degrees of freedom is introduced. In this 
paper, the proposed controllers will target two degrees of 
freedom due to the limitations we have in terms of sensors 
and actuators. For example, in the translational motion, we 
only can control the depth (z) of the underwater vehicle 
because the AUV does not have a sensor to measure its 
position in the plane (x-y). Since in lots of applications we 
need the vehicle to be close to θ=0 (pitch) and ϕ=0 (roll), 
which is possible thanks to the design of the vehicle, 
therefore we have decided to control only the yaw motion 
(Campos et al. (2017)). Based on the assumptions listed 
above, the nonlinear model (7) is simplified and following 
the procedure given at the beginning of the section the 
control laws shown in (10) and (34) can be rewritten as 
follows, 

uψBS= Iz[ψ
d+e1

ψ-γ6 e2
ψ+γ6e1

ψ -υ6e2
ψ-

Nr

Iz
ψ] 

(55) 

 uψST=Iz ψ
d-λ6e1

ψ-k16ϕ1 φ2 -k26 ϕ2 σ2 τ dτ
t

0
 (56) 

where uψBS  and uψST are the yaw Backstepping and GSTA 
controllers. ψ is the yaw measurement provided by the IMU
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sensor while ψ is the time derivative of yaw. Iz is the inertia 
moment of the AUV, e1

ψ=ψd-ψ, and e1
ψ=ψd-ψ are the yaw 

error and its time derivative while e2
ψ=ψ-ψd-γ6e1

ψ as defined in 

corollary 1. Finally, ϕ1 σψ  and ϕ2 σψ are the scalar GSTA 
function given by equations (12) and (13) with σφ=e1

ψ+λ
6
e1
ψ 

and the positive scalar controller gains γ6,υ6, λ6 , k16, and k26. 

In turn, the control laws for the immersion test are described 
as follows: 

uzBS=m[zd+e1
z-γ3 e2

z+γ3e1
z  –υ3e2

z-
1

m
(WB-zwz)] 

 

(57) 

uzST=m zd-λ3e1
z-k13ϕ1 σ2 -k23 ϕ2 σ2

t

0
 

(58) 

Where u 	 and uzST are the yaw Backstepping and GSTA 
controllers. Here, m stands for the vehicle mass, while 
WB=(B-mg) represents the relationship between vehicle 
weight and buoyancy (B . e1

z=zd-z and e1
z=zd-z are the depth 

error variable and its time derivative while e2
z=z-zd-γ3e1

z is the 
error defined in corollary 1. Finally, ϕ1 σz  and ϕ2 σz  are 
the scalar GSTA functions given by equations (12) and (13) 
with σz=e1

z+λ3e1
z and the positive scalar controllers gains 

γ3,υ3,λ3,k13 and k23. 

An important fact to note is that in the sliding mode 
controller design, the contribution of the matrices D ν, η  
and g η  are considered as disturbances, for that reason, the 
terms of these matrices do not appear in the control laws as in 
the case of BBSC design. 

Remark 4: The simplified control laws (55)-(58) were tested 
only in the real time experiments, while in simulation test, the 
control laws given by equations (10) and (34) was applied to 
the AUV’s model of 6 degrees of freedom (for more details 
of the AUV mathematical model Fossen (1994). 

4. SIMULATION RESULTS  

To demonstrate the feasibility of the developed controllers 
(10) and (34), we performed several computer simulation 
tests with the six degrees of freedom LIRMIA III AUV 
model. The control parameters are K1, K2 and Λ for the 
GSTA and the set of parameters Γ and Υ for the BBSC were 
obtained under the constraints obtained in proofs of Theorem 
1 and Corollary 1 and heuristically tuned (see Table 1). 

Table 1.  Control gains used for the simulation tests. 

Gain Value 
Λ diag(2,2,2,2,2,2)
K1 5L 
K2 10L 
L diag(10,10,10,12,12,12) 
Γ diag(7,7,7,10,10,10)
Υ diag(2,2,2,2,2,2)

 

Fig. 3. Tracking a sinusoidal profile for the control of Euler 
angles  (red),  (green) and  (black). 

 

Fig. 4. Comparison between the Super-Twisting (red line) 
and Backstepping (green line) controller. Trajectory tracking 
with external disturbance test. 

In Fig. 3 the orientation controller performance of the UAV is 
tested, a sinusoidal profile defined as 
ϕd t =0.2 sin 2πt , θd t =0.5 sin 2πt , ψd t =0.1sin(2πt)  is 

introduced in those states. In this test, the disturbances vector 
upert= 0,0,0,20,20,20  introduced at time t∈[1,2] is considered 
in the orientation control. From the Fig. 3 it is observed that 
the GSTA controller has a substantial advantage over the 
Backstepping methodology when the system is under 
disturbances.  

To test the performance of the position controller, we 
introduce a three-dimensional spiral function given by the 
expression: 

x
y
z

=
sin(2t)

cos 2t -1
t

 

A constant disturbance is introduced directly on the control at 
a time t∈[1,2] of form upert=[30,20,25,0,0,0].  

In Fig. 4, it is presented as a comparison between BBSC 
(green line) and GSTA (red line) controllers for the defined 
trajectory tracking (blue line). For this simulation, the GSTA
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gains remain the same as in the previous case. The BBSC 
gains are modified as follows Γ=diag 20,20,20,10,10,10 , 
while the disturbance is defined as upert=[10,10,10,0,0,0]. 
Figure 4 shows that the disturbance has a considerable effect 
on the BBSC despite the fact that the disturbance is 
numerically smaller than in the case of GSTA controller. 

5. REAL-TIME EXPERIMENTAL RESULTS  

To demonstrate the practical feasibility of the developed 
controllers, we applied the controllers described by equations 
(55), (56), (57) and (58) for yaw and depth tracking 
trajectories to LIRMIA III. The primary objective of the 
control laws is to follow a reference trajectory in depth and 
yaw at the same time despite external disturbances. The 
reference signal for the yaw control law is 

ψd t =50sin 2πft +100 with the frequency f=
1

20s
 and the 

tracking trajectory for the depth controller is given by the 

following expressions zd t =2+
1

2
sin 2πft  with the frequency 

f=
1

20s
 and the next function: 

zd t =

1 15⁄ t                      if t<60              
  4                            if 60≤t<70   
- 3 40⁄ t-70 +4        if 70≤t<90    

2.5                             if 90≤t<100  
- 3 40⁄ t-100 +2.5 if 100≤t<120

1                                 if 120≤t<130
1 3 20⁄ t-150             if 130≤t<150

 

(59) 

Three types of disturbance test are considered. In the first 
scenario, the yaw and immersion controllers (independently 
tested) are disturbed by hand. Second, in the path tracking 
test an acrylic sheet is installed on the side of the structure of 
the AUV in order to add damping to the system, especially in 
the yaw dynamics. Finally, buoyancy is added to the vehicle 
to introduce a considerable disturbance and modify heave 
dynamics. 

It is important to highlight that in the whole set of 
experiments, both controllers were tuned heuristically but 
always considering the constrains given by the stability 
proofs shown above. The process of tuning the controller 
gains was divided into two main but simple steps for each 
methodology. For example, the tuning procedure for the 
depth Backstepping controller it was the following: 

Choosing a constant reference, υ  is fixed at a value almost 
zero, and α3 is increased until the closed loop system 
oscillates. 

Then, the gain α3 is decreased respect of its last value, and 
the gain υ3 is increased until reach the desired constant value 
without controller oscillations. 

For the tuning of the depth controller using GSTA, it could 
be seen as a nonlinear PI controller, where we can follow the 
same methodology used for the BBSC, the procedure is 
enclosed as follows: 

We fix the values λ3=1 and k23=0.0001 and the gain k13 is 
increased until the controller reaches the desired value and 
starts to oscillate. 

Decrease a fraction of k13 and then increase the value of k23 
slightly until the oscillation in steady state decrease. 

Due to the large sample period and in order to prevent the 
chattering effect in the control signal of the GSTA, it is 
suggested to keep the gain k23 in a small value. After tuning 
the controllers for a constant reference, the control laws were 
tested for a trajectory tracking task without considering 
external disturbances, where the values of the gains were 
improved until reach a good performance and can be seen in 
Table 2. Finally, the gains found with the previous procedure 
were unchanged during the robustness tests. 

Table 2.  Control gains used for the experiments. 

Gain Value 
γ3 5.0 

υ3 4.0 
λ3 1.0
k13 2.0
k23 0.01
γ6 8.0 
υ6 4.0 
λ6 1.0
k16 0.9
k26 0.02

5.1  Path tracking test on uncoupled dynamics  

In this stage, the yaw and depth controllers were 
independently tested and externally disturbed. In Figure 5, 
the tracking of a sinusoidal signal for yaw displacements is 
shown. Both control laws, BBSC and GSTA, can follow the 
reference signal after a relatively short adaptation time. It is 
clear that experiments started from different initial conditions 
due to experimental restrictions. It is worth mentioning that 
GSTA control law has shown better performance at least in 
two aspects, the error (figure not shown here for space 
reasons) is of lower magnitude, and second, it can 
compensate external disturbances faster than BBSC control 
and with a lower overshot, see Fig. 5. 

In turn, in Figure 6, controller performances when dealing 
with a sinusoidal profile tracking of depth are shown. In this 
case, the convergence to the reference signal is almost 
identical for GSTA and BBSC. After external disturbances, 
both controllers return to the commanded signal, however, 
the BBSC controller has an offset in its signal.  

In order to evaluate the trajectory tracking performance of the 
GSTA and BBSC methodologies, it is computed the Root 
Mean Square Error (RMSE) for z and ψ motions which are 
summarized in Table 3. From the Table 3, it is possible to 
observe that the GSTA controller has better numerical results 
than the Backstepping controller.  

Table 3.  Root Mean Square Error performance for 
sinusoidal function tracking test. 

Controller RMSE deg  RMSE m  
Backstepping 6.2846 0.7890 
Sliding Modes 2.9294 0.6479 
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Fig. 5. Yaw angle reference tracking test. Super-Twisting 
(red) and Backstepping (green) controllers performance.  

 

Fig. 6. Tracking immersion test. Super-Twisting (red) and 
Backstepping (green) controllers performance. 

5.2 Tracking in presence of disturbance damping  

A more challenging test consisted of installing a large 
(74.5cm x 20 cm) rigid acrylic sheet on one side of the AUV 
to add damping to the system (yaw motion), this plate is 
proportional to the length of the submarine and increases the 
rotational damping along the z axis of about 125%. Yaw and 
depth controllers follow a reference signal at the same time. 

In Figures 7 and 8 the performance of the proposed controller 
is observed. From Fig. 7, damping effect added by the side 
sheet is observed, but even with this disturbance, both 
controllers can follow the sinusoidal trajectory. Moreover, 
Fig. 8 shows the profile tracking where the GSTA has an 
exact convergence. Otherwise, the spiral formed by the two 
movements together is shown in Fig. 9. The RMSE for yaw 
and depth during the test with damping test is shown in Table 
4. 

Finally, Figures 10 and 11 show the tracking errors and the 
corresponding controllers outputs. 

 

Fig. 7. Path tracking with yaw damping test. Super-Twisting 
(red) and Backstepping (green) controllers following 
reference (blue). 

 

Fig. 8. Immersion test adding damping to Yaw. Super-
Twisting (red) and Backstepping (green) controllers 
performance.  

 

Fig. 9. Trajectory tracking with combined movements in 
	and z. 
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Fig. 10. Tracking error in damping test. Super-Twisting (red) 
and Backstepping (green) errors. 

 

Fig. 11. Controller outputs in damping test. (a) yaw BBSC, 
(b) yaw GSTA, (c) depth with BBSC and (d) depth with 
GSTA.  

Table 4.  Root Mean Square Error for tracking test with a 
disturbance in damping parameters. 

Controller RMSE deg  RMSE m  
Backstepping 8.1504 0.1442 
Sliding Modes 9.7041 0.0548 

5.2  Tracking in presence of disturbance buoyancy   

In contrast to the previous test, buoyancy is added to the 
vehicle greatly hindering immersion test. In this scenario, 
three floating balls with 8 cm of diameter were attached to 
the vehicle which increases the buoyancy around of 200%. 
Fig. 12 shows the tracking controller performance, BBSC 
presents oscillations while GSTA converges in a short time. 
In Fig. 13, the BBSC has superior performance to GSTA in 
the trajectory tracking, this is reasonable since the GSTA 
controller, the terms of buoyancy in the model are not 
considered and therefore not compensated appropriately in 
the proposed control law.  The RMSE behavior for the 
trajectory tracking test with buoyancy disturbance is shown 
in Table 5. From the Table 5, it can be observed that GSTA 
has better performance than BBSC, but this methodology has 
lower tracking error than GSTA controller. 

Finally, Figures 14 and 15 show the tracking errors and the 
corresponding controllers outputs. One may notice that 
control efforts are similar in the previously cases with both 

GSTA and BBSC control laws. Nevertheless, the control 
effort is much more demanding in the case of BBSC control 
law when considering depth regulation or depth tracking. 
Remark that no undesirable chattering effects due to GSTA 
control technique are observed.  

Table 5.  Root Mean Square Error for tracking test with a 
disturbance in buoyancy parameters. 

Controller RMSE deg  RMSE m  
Backstepping 9.2645 0.2263 
Sliding Modes 6.6338 0.5744 

 

Fig. 12. Path tracking with buoyancy test. Super-Twisting 
(red) and Backstepping (green) controllers following 
reference (blue).  

 

Fig. 13. Immersion with buoyancy test. Super-Twisting (red) 
and Backstepping (green) controllers performance.  

 

Fig. 14. Tracking error in buoyancy test. Super-Twisting 
(red) and Backstepping (green) errors.  
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Fig. 15. Controller outputs in buoyancy test. (a) yaw BBSC, 
(b) yaw GSTA, (c) depth with BBSC and (d) depth with 
GSTA.  

6. CONCLUSIONS AND FINAL REMARKS 

6.1 Conclusions   

This article describes two controllers that were presented to 
solve the problem of trajectory tracking for an autonomous 
underwater vehicle under model uncertainties and external 
disturbances. For the controller description, the nonlinear 
model of UAV is used. Nonlinear control techniques used 
were Block-Backstepping and Higher-Order Sliding Modes 
with Generalized Super-Twisting Algorithm. As a matter of 
comparison, real-time control experiments have shown better 
performances when considering the Sliding Modes Control 
paradigm.  

6.1 Ongoing work   

In this work, the tracking problem of trajectories involving 
coordinated displacements on both yaw and depth were 
considered. Trajectory tracking in pitch and displacements in 
Y are a subject of our future research work. The theoretical 
and real-time results given in this paper are promising to deal 
with more complex trajectory tracking problems where 
Sliding Mode Control might take a prominent place. 
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