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1. INTRODUCTION

The Sliding Mode Control (SMC) technique was intro-
duced in the 1950s in the former Soviet Union as a vari-
able structure control system (Emelyanov (1967)); two
decades later, a book by Itkis (1976) and a survey paper
by Utkin (1977) were published in English. Since then,
several research studies were performed both from theo-
retical and practical perspectives, see for example DeCarlo
et al. (1988), Hung et al. (1993) and Utkin (1978), where
the fundamental principles of the SMC theory can be
found, see also Azar and Zhu (2015), Bandyopadhyay et al.
(2013), Bartolini et al. (2008), Fridman et al. (2012) and
Pisano and Usai (2011) where recent results on SMC are
summarized.

It is important to point out that a wide range of con-
trol problems in engineering have been treated using the
SMC framework, just to mention some of them: Young
et al. (1999) provides an overview of the problems arising
in the practical implementation of the SMC technique,
Bartolini et al. (2003) studies the SMC approach applied
to mechanical systems, Piltan and Sulaiman (2012) and
Othman et al. (2015) present a review of the application
of SMC to robotic manipulators, and to electrohydraulic
systems, respectively, Rossomando et al. (2014) applies the
SMC technique to tackle the trajectory tracking problem
in a mobile robot, Sefriti et al. (2012) propose a sliding
mode based control for the robust tracking of a electrically-
driven two-links robot manipulator, Rekioua et al. (2013)
and Gonzalez Montoya et al. (2016) deal with the control
of renewable energy generation systems via the SMC tech-
nique, Zhenga et al. (2014) and Khebbache and Tadjine
(2013) present the SMC approach applied to quadrotor
helicopters.

? Corresponding author.

One can see that the SMC technique has been studied
and applied, in distinct contexts, since its beginning to
the present day. One of the reasons of the great success
of the SMC approach is its robustness; with this kind
of controllers, the system states are forced to reach and
move through a predefined sliding surface, hence the
system dynamics are determined by this surface instead
of being influenced by uncertainties or disturbances. Once
the sliding surface and the switching function are chosen,
the dynamic performance of the system is fixed (Liu and
Li (2014)). Besides robustness, the sliding mode controllers
feature other remarkable properties such as accuracy and
easy tuning and implementation.

This control method has been examined for a wide spec-
trum of system types including nonlinear systems, multi-
input/multi-output systems, discrete-time models, large-
scale and infinite-dimensional systems, and stochastic sys-
tems (Hung et al. (1993)). Furthermore, the control ob-
jectives have been extended from stabilization to other
functions.

This paper concerns the stabilization via the SMC tech-
nique of a special class of nonlinear systems which are
affine in the control. As an application example, the reg-
ulation problem for a particular aerodynamic system is
addressed.

Interest for the modeling and control of aerodynamic sys-
tems has been present for many years in research projects
all around the world. Several researchers have studied
different aerodynamic systems with different approaches;
for instance Bouguerra et al. (2015) and Lopes et al. (2006)
study pedestal aerodynamic systems; in Bouguerra et al.
(2015) a fault tolerant control for a 2 DoF (Degrees of
Freedom) aerodynamic system is proposed while Lopes
et al. (2006) considers an aerodynamic system with 3 DoF
for which a predictive control is synthesized; Balas (2007)
focuses on the modeling and control of the position and the
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yaw angle of a quadrotor system; Schreck and Robinson
(2007) points out the difficulties to the exact computing
of aerodynamic forces, due to the lack of mathematical
models; Béjar et al. (2007) proposes an illustrative reading
about different aerodynamic platforms and control ap-
proaches. Optimization techniques applied to the design of
rotor blades and applications that consider aerodynamic
systems evolving at high altitude are reported in Leusink
et al. (2015) and in Mueller et al. (2004), respectively.

In this paper, a sliding mode controller for a particular
class of nonlinear control-affine systems is synthesized
and the results are applied to the Aerodynamic Angular
System (AAS), shown in Fig. 1 consisting of the elements
described below.

The pedestal (1) provides support to the AAS bar (2)
defining a planar angular motion with respect to the
pivot (3) where a viscous friction torque that opposes
the angular motion of the bar is assumed. Two actuators
(4) and (5) are located at the extremities of the bar
and generate the lift forces F1 and F2 thanks to the
aerodynamic effect of the corresponding propellers that
rotate with angular velocities ω1 and ω2, respectively.
These actuators correspond to direct current motors. The
pivots (6) and (7) at the bar ends, enable actuators to
remain upright continuously in such a way that the lift
forces will be vertical all the time. If the two aerodynamic
forces F1 and F2 have the same magnitude, the bar (2)
will remain horizontal; a difference between these two
aerodynamic forces will produce a torque with respect to
the pivot (3) and, consequently, the rotation of the bar (2).
As it is illustrated in Fig. 1, an offset (δ) is present in this
system, so the bar does not rotate about its geometrical
center; the bar rotation is, then, an asymmetrical motion.
An angular motion sensor is located on the pivot (3) to
measure the rotation angle of the bar (θ) and to deduce

its angular velocity (θ̇).
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Fig. 1. Aerodynamic Angular System diagram.

This paper is organized as follows: Section 2 is devoted to
the sliding mode control design for a class of nonlinear sys-
tems and sufficient conditions for the system stability are
provided; in Section 3 the regulation problem statement
for the AAS is provided, numerical results concerning the

regulation via the SMC are discussed and the effective-
ness of the proposed approach is pointed out; the paper
concludes and describes directions for the future work in
Section 4.

2. SLIDING MODE CONTROL

Consider a nth-order nonlinear system of the form: 1

ẋ = Ax+ f̄(x) +

m∑
i=1

ḡi(x)ui, (1)

where x ∈ Rn is the state vector and ui ∈ R, i = 1, ...,m
are the control inputs. In the linear part, matrix A ∈ Rn×n
is given by:

A =


0 1 0 · · · 0
0 0 1 0
...

...
. . .

0 0 0 1
−an −an−1 −an−2 · · · −a1

 ,
with constants a1, ..., an. The drift and control vector fields
f̄ and ḡi, respectively, are such that:

f̄(x) =


0
0
...
0

f(x)

 , ḡi(x) =


0
0
...
0

gi(x)

 ,
where f(x) and gi(x) are scalar nonlinear functions.

It is well known that the sliding mode control technique
drives the state of the system to a predefined surface
allowing the reaching of the equilibrium. In general, this
method consists of two elements: the switching rule and
the equivalent control.

The switching law constitutes a discontinuous control
which is applied in order to reach the sliding surface while
the equivalent control is continuous and aims keeping the
system state on the sliding surface. A sliding mode-based
technique to control a nonlinear system of the form (1) is
proposed in what follows. First of all, the switching part of
the sliding mode control will be derived.

Consider a sliding surface defined by

S = Kx = 0, K ∈ R1×n, (2)

where K is a row vector with constant elements.

The sliding surface is reached by the system state if the
condition

SṠ < 0

is fulfilled (see for instance Sira Ramı́rez (2015)); in view
of (2), this condition is rewritten as

KxKẋ < 0.

Introducing the system dynamics given by (1), one gets:

KxK(Ax+ f̄(x)) +

m∑
i=1

KxKḡi(x)ui < 0. (3)

1 In the following, the time dependence symbol (t) of dynamic
variables will be omitted for simplification.
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Inequality (3) is satisfied for a proper choice of ui for all
i = 1, ...,m.

Consider the following switching law:

uis =


−φ |KxK(Ax+f̄(x))|

KxKḡi(x) if S 6= 0 and KxKḡi(x) 6= 0,

0 else,

(4)
where φ is a positive constant. Then, by taking

ui = uis ,

inequality (3) is reduced to:

KxK(Ax+ f̄(x))−mφ
∣∣KxK(Ax+ f̄(x))

∣∣ < 0 (5)

that is satisfied for all

φ > 1/m.

Since |Kx|Kx = sgn(Kx), the switching control (4) can be
rewritten as follows:

uis =


−φsgn(Kx)

|K(Ax+f̄(x))|
Kḡi(x) if S 6= 0 and Kḡi(x) 6= 0,

0 else,

(6)

Remark 1. The robustness property against matched un-
certainties of the switching control can be ensured by a
proper choice of the controller gain φ. To see this, consider
a system of the form:

ẋ = Ax+ f̄(x) +

m∑
i=1

ḡi(x)(ui + ξi)

where ξi represents external disturbances or model uncer-
tainties which are unknown but bounded in magnitude:

|ξi| ≤ ξ̄i, i = 1, ...,m,

with ξ̄i known constant upper bounds.

Setting

η =
∣∣K(Ax+ f̄(x))

∣∣ ,
the reaching condition (RC) stated in (5) would be:

RC := KxK(Ax+f̄(x))−mφ |Kx| η+

m∑
i=1

KxKḡi(x)ξi < 0

Note that

RC ≤ |Kx| η −mφ |Kx| η +

m∑
i=1

|KxKḡi(x)ξi| ,

RC ≤ η −mφη +

m∑
i=1

|Kḡi(x)| ξ̄i,

then, the reaching condition is satisfied for

φ >
1

m
+

1

mη

m∑
i=1

|Kḡi(x)| ξ̄i.

Next, the equivalent control will be derived. To guarantee

that the system state remains on S during the sliding
phase, the following condition must be satisfied:

d

dt
S = 0 when S = 0. (7)

Note that

d

dt
S = Kẋ = K(Ax+ f̄(x)) +

m∑
i=1

Kḡi(x)ui.

Thus, condition (7) is satisfied by considering the following
equivalent control for i = 1, ...,m:

uieq =

−
1
m
K(Ax+f̄(x))
Kḡi(x) if S = 0 and Kḡi(x) 6= 0,

0 else.

(8)

So, the nonlinear system (1) can be controlled by the
sliding mode control defined by:

ui = uis + uieq , (9)

where uis and uieq are given by (6) and (8), respectively.

2.1 Stability analysis

The stability of the nonlinear system (1) under the sliding
mode controller (9) depends on two stages: the reaching
phase and the sliding mode. The stability of the closed loop
system is guaranteed if the reaching condition is satisfied
and the system remains stable on the sliding surface. The
stability during the reaching phase is verified since ṠS < 0
when S 6= 0, but it is necessary to guarantee the stability
during the sliding mode.

On the sliding surface, the equality:

S = Kx = 0

holds. Let us set

x =

[
xa
xn

]
, xa =

 x1

...
xn−1

 ,
and

K =
[
K̄ 1

]
, K̄ = [ k1 k2 · · · kn−1 ] .

Then, the equality Kx = 0 implies:

xn = −K̄xa. (10)

Regarding the above relation, the convergence of xa to
the zero equilibrium point can be proved trough the
convergence of xn.

From (1), one can obtain:

ẋn = −anx1 − an−1x2 − · · · − a1xn + f(x) +

m∑
i=1

gi(x)ui.

(11)
The control ui on the sliding surface corresponds to the
equivalent control (8), where:
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K(Ax+ f̄(x)) =[k1 · · · kn−11]


x2

...
xn

−anx1 − · · · − a1xn + f(x)


=k1x2 + · · ·+ kn−1xn − anx1 − an−1x2−

· · · − a1xn + f(x),

and

Kḡi(x) = gi(x).

Substituting the equivalent control into (11) yields:

ẋn =− k1x2 − · · · − kn−1xn

=− k1x2 − · · · − kn−1(−k1x1 − · · · − kn−1xn−1).

(12)

Consider the Lyapunov function

V (x) =
1

2
x2
n.

Note that
V̇ (x) = xnẋn,

which, in view of (10) and (12), can be written as

V̇ (x) = xTaΨxa,

where Ψ is the symmetric matrix defined in (13) (next

page). Then V̇ (x) < 0 is fulfilled for k1, · · · , kn−1 satisfying
Ψ < 0 and the system is stable during the sliding mode.

The above result is summarized in the following theorem.

Theorem 1. The nonlinear system (1) is stabilizable by the
sliding mode control (9) with φ > 1/m and

K = [k1 · · · kn−1 1],

where k1, k2, ..., kn−1 are such that the matrix inequality
Ψ < 0, with Ψ given in (13), is satisfied.

Remark 2. Note that for n = 1, the switching and the
equivalent control are given by:

uis =

−φsgn(x) |−a1x+f(x))|
gi(x) if S 6= 0 and gi(x) 6= 0,

0 else,

uieq =

−
1
m
−a1x+f(x)

gi(x) if S = 0 and gi(x) 6= 0,

0 else.

For n = 2, the condition on the controller gains is reduced
to −k3

1 < 0, i.e., k1 > 0, and, for n > 2, it corresponds
to a nonlinear matrix inequality which can be solved
using an appropriate computational package such that the
PENLAB of MATLAB.

3. PRACTICAL EXAMPLE: AERODYNAMIC
ANGULAR SYSTEM REGULATION

The effectiveness of the proposed approach is highlighted
through a practical example: the regulation problem for
the AAS described in Section 1.

3.1 AAS model

The regulation problem for this system consists on driving
the angle θ defined by the rotation of the bar (see Fig. 1)
to a predefined constant reference value θref by controlling
the lift forces F1 and F2. To achieve this goal, an accurate
model of the AAS is required.

In Mart́ınez Marbán (2015), a Lagrangian formulation is
used to obtain the following model that represents the one
degree of freedom dynamics of the AAS:

ẋ = Ax+ f̄(x) + ḡ1(x)u1 + ḡ2(x)u2, (14)

where

x =

[
x1

x2

]
=

[
θ

θ̇

]
, A =

[
0 1
0 α1

]
, f̄(x) =

[
0

f(x)

]
,

f(x) = α2 sin θ, ḡi(x) =

[
0

gi(x)

]
,

g1(x) = α3 sin θ + α4 cos θ, g2(x) = α3 sin θ − α4 cos θ.

The control inputs u1 and u2 correspond to the lift forces
generated from the left and right propellers, respectively,
and the constants αi, i = 1, ..., 4 are defined by the
parameters of the AAS.

Notice that this model constitutes a nonlinear system of
the form (1). To tackle the regulation problem stated
before, the results presented in Section 2 are applied.

3.2 Regulation task

In view of the application under consideration, the sliding
surface is defined as follows:

S = Kxs, (15)

where

xs =

[
x1 − x∗1
x2

]
=

[
θ − θref

θ̇

]
.

In view of (15), the reaching condition is given by:

KxsKẋs = KxsKẋ < 0. (16)

Then, from (16) and the system dynamics (14), the switch-
ing control (6) can be rewritten as:

uis =


−φsgn(Kxs)

|K(Ax+f̄(x))|
Kḡi(x) if S 6= 0 and Kḡi(x) 6= 0,

0 else.

(17)
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Ψ =



−k2
1kn−1

1
2k

2
1 − k1k2kn−1

1
2k1k2 − k1k3kn−1 · · · 1

2k1kn−2 − k1k
2
n−1

∗ k1k2 − k2
2kn−1

1
2k

2
2 − k2k3kn−1 + 1

2k1k3 · · · 1
2k2kn−2 − k2k

2
n−1 + 1

2k1kn−1

∗ ∗ k2k3 − k2
3kn−1 · · · 1

2k3kn−2 − k3k
2
n−1 + 1

2k2kn−1

...
...

...
. . .

...

∗ ∗ ∗ ∗ kn−2kn−1 − k3
n−1


, (13)

Following (8), the equivalent control is given by:

uieq =

−
1
2
K(Ax+f̄(x))
Kḡi(x) if S = 0 and Kḡi(x) 6= 0,

0 else.

(18)

It is concluded that the regulation problem for the AAS
modeled by (14) can be solved through the application of
the sliding mode control defined by (9) where uis and uieq
are given by (17) and (18), respectively.

Next, it will be shown that, for this study case, the stability
condition stated in Theorem 1 is reduced to k1 > 0.

Following the developments presented in Section 2, the
control gain vector is chosen as:

K = [ k1 1 ] .

Then, on the sliding surface,

S = Kxs = 0

implies
x2 = −k1(x1 − x∗1). (19)

The following equation is derived from the system dynam-
ics:

ẋ2 = α1x2 + f(x) + g1(x)u1 + g2(x)u2.

Substituting the equivalent control (acting during the
sliding mode) given by:

ui = uieq = −1

2

k1x2 + α1x2 + f(x)

gi(x)
, (20)

yields
ẋ2 = −k1x2.

Consider the Lyapunov function

V (x) =
1

2
x2

2,

observe that

V̇ (x) = x2ẋ2 = −k1x
2
2,

then V̇ (x) < 0 is satisfied for k1 > 0.

3.3 Numerical results

In terms of the model parameters, for K = [ k1 1 ], the
switching and the equivalent control can be written as

follows:

uis =

−φ
γ
gi

if S 6= 0 and gi 6= 0,

0 else,
(21)

with φ > 1/2 and

γ =sgn((k1(θ − θref ) + θ̇))
∣∣∣θ̇(k1 + α1) + f

∣∣∣ ,

uieq =

−
1
2
θ̇(k1+α1)+f

gi
if S = 0 and gi 6= 0,

0 else.

(22)

The numerical values of the proposed system parameters
are given in Table 1. It is worth noting that these values are
derived from physical characteristics of the system such as
lengths, masses and friction coefficients that will not suffer
variations while performing experiments once a prototype
is built.

Table 1. AAS parameters.

Parameter Value Units

α1 −0.01764 s−1

α2 0.4079 s−2

α3 −0.02352 (kgm)−1

α4 −1.435 (kgm)−1

In this section one can notice that the regulation task is
achieved for any controller gains such that φ > 1/2 and
k1 > 0; however, the response velocity and the controllers
size are directly related with the choice of φ and k1.

Fig. 2 shows the evolution of the state for θref = −5◦ and
gains φ = 25 and k1 = 0.2. As one can see, the position of
the AAS bar starts at the horizontal position with x1 = 0
and then reaches the reference value, the variable x2,
corresponding to the angular velocity of the bar, exhibits
the expected behavior: its magnitude increases allowing
the regulation task and once the reference value is reached,
it goes to zero. In this case, the angular velocity of the bar
takes negative values before reaching the stable condition
(x2 = 0) since the reference is negative too.

The behavior of the control inputs u1 and u2, under
the previous conditions (θref = −5◦ and gains φ = 25
and k1 = 0.2), is shown in Fig. 3 where the chatter
phenomenon, associated to this kind of strategy, is noted.

It is well known that the chattering problem in one of
the main drawbacks of applying the sliding mode control
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Fig. 2. Closed loop response of the AAS state with θref =
−5◦, φ = 25 and k1 = 0.2.

to real applications. From the control engineer’s point of
view, chattering is undesirable because it often causes
control inaccuracy, high heat loss in electric circuitry,
and high wear of moving mechanical parts (Wu et al.
(2014)). Considerable research has been devoted to the
chattering elimination/reduction problem; see for instance
Bartoszewicz (2000), Lee et al. (2009), and Bendaas and
Naceri (2013).

Theoretically, the ideal sliding mode implies infinite
switching frequency (Utkin and Lee (2006)) so that the
controlled variables can track a certain reference path to
achieve the desired dynamic response and steady-state
operation. However, in practice, an ideal sliding mode does
not exist because the switching frequency of the control
devices has a finite limit. In other words, there is no device
that can switch to an infinite frequency (Bendaas and
Naceri (2013)). Therefore one must implement a technique
that guarantees a finite and possibly constant switching
frequency. To do so, one can incorporate a constant ramp
or timing function directly into the controller or use an
adaptive hysteresis band (He et al. (2010), Tan et al.
(2005)), among other approaches.

In the case under consideration, the infinite frequency
chattering is triggered by the discontinuous term in the
switching control (21). Since it switches between two
structures during its operation, the control system un-
dergoes oscillation near the sliding surface. A commonly
used method to alleviate the chattering is to replace the
discontinuous function by an “smoothing” term, as will be
seen later in this section.

The next paragraphs are devoted to the numerical results
obtained for a positive value reference θref = 10◦ where
the effectiveness of the strategy as well as the effect of the
gains φ and k1 on its performance are highlighted.

Fig. 4 illustrates the evolution of the states x1 and x2 for
φ = 25 and k1 = 0.2; in the same way as for the case shown
in Fig. 2, x2 exhibits an expected behavior going through
increasing and decreasing positive values before reaching
zero that corresponds to the stable angular position of the
bar.

A smaller value of the φ gain generates a slower response as
it can be observed in Fig. 5, where stabilization is reached
approximately ten seconds after what is reached with a
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Fig. 3. Control behavior of the AAS with θref = −5◦,
φ = 25 and k1 = 0.2.
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Fig. 4. Closed loop response of the AAS state with θref =

10◦, φ = 25 and k1 = 0.2.

higher gain value; here φ = 1.3 is considered instead of 25,
the other parameters remain invariant.
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Fig. 5. Closed loop response of the AAS state with θref =
10◦, φ = 1.3 and k1 = 0.2.

The behavior of the control inputs for the two choices
illustrated previously are displayed in Fig. 6 where one
can see that when φ = 1.3 the controller takes about 10
seconds to start following the reference angle; however,
the controllers magnitude is smaller compared to the case
when φ = 25.
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Fig. 6. Control signals with θref = 10◦, k1 = 0.2, φ = 25
(top) and φ = 1.3 (bottom).

Concerning the k1 gain, Fig. 7 shows that the higher the
value of k1, the faster the system response. In this case,
φ = 1.3 and k1 was increased from 0.2 to 3.2 allowing the
convergence of the trajectories to the desired values in the
first few seconds.
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Fig. 7. Closed loop response of the AAS with θref = 10◦,
φ = 1.3 and k1 = 3.2; state behavior (top) and control
behavior (bottom).

The observed results regarding the transient response of
the system match the general idea that higher controller
gains lead to faster system responses. However, it is im-

portant to considerate tradeoffs between goals in control
design. “Some of the tradeoffs ... are intuitively obvious:
e.g., in mechanical systems, it takes larger actuator sig-
nals (forces, torques) to have faster responses...” (Boyd
(1991)).

In the case under consideration, the price paid for a higher
speed of the response is a considerable increase in the
controllers magnitude. In practice, the controllers size take
importance due to the presence of physical limitations of
the actuators in a real plant. Usually, it is required that
the control inputs satisfy certain constraints related to
its magnitude (|u| < umax) to be implemented, then, an
optimal trade-off between the required response velocity
and the controller size must be established.

As discussed previously, the discontinuity associated with
the nonlinear switching control is the main difficulty
in a practical implementation, especially in mechanical
systems. Usually, this has been avoided by “smoothing”
the discontinuity. After doing this, the state trajectories
no longer slide on the sliding surface, and instead they
evolve in the vicinity of the sliding surface: this is termed
as pseudo-sliding (Hamayun et al. (2016)).

The discontinuity can be avoided by using the following
approximation:

sgn(x) ≈ tanh(cx),

where c is a design scalar. Notice that as c → ∞, the
function tanh(cx) converges to the standard sign function.
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Fig. 8. Closed loop response of the AAS using a smooth
approximation of the discontinuity with c = 100,
θref = 10◦, φ = 1.3 and k1 = 0.2.

Fig. 8 shows that the chattering or infinite frequency
switching of the control signal has been eliminated by
replacing the term sgn(Kxs) by tanh(100Kxs) in the
switching control. Due to this approximation, the sliding
motion will be in the vicinity of the sliding surface. As it
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is illustrated in Fig. 8, the state behaves in the same way
that the response shown in Fig. 5.

4. CONCLUSIONS

In this paper a sliding mode control for a class of nonlinear
control-affine systems is proposed. The strategy allows
providing an efficient sliding mode control consisting of
two elements: a switching control law which guarantees
the system stability during the reaching phase, and an
equivalent control law which aims at keeping the system
state on the sliding surface once reached. The conditions
on the controller gains for the closed loop system stability
are formulated in terms of a nonlinear matrix inequality.
The efficacy of the proposed approach was illustrated
by tackling the regulation problem in the Aerodynamic
Angular System; with this approach, the bar position can
be driven to a prescribed angle through the manipulation
of the lift forces generated by the aerodynamic effect in the
system. An appropriate choice of the control gains allows
adjusting the convergence rate and the controllers size.

Future work will be oriented to the construction of the
Aerodynamic Angular System, to its electronic instrumen-
tation, to the establishment of communication between the
AAS and a computer and to perform several experimental
test to validate the theoretical results presented in this
paper. Besides, the trajectory tracking problem will be
addressed.
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