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Abstract: This work addresses the stabilization and control problem of a class of input-output delayed 
unstable linear systems, i.e. n -order systems with one unstable pole and possibly one minimum phase 
zero. The problem is solved employing a modified version of the traditional PI , called the fPI    

controller, which incorporates a low-pass first order filter. This new scheme allows improving the 
existing results using the PI controller for high-order systems with time delay. The proposed control 
strategy is experimentally assessed through the temperature control of an unstable heat flow process. 
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

1. INTRODUCTION 

Time-delays often arise in a variety of dynamical systems 
such as chemical processing systems (Richard, 2003), 
transportation systems, communication systems, and power 
systems, among others (Franklin et al., 1995; Wang et al., 
1999). In some cases, time-delays are introduced by sensor 
and actuator devices (Xian et al., 2005; Liu et al., 2005). 
Moreover, time delay may be produced due to heat and mass 
transfer in chemical processes, high computing burden and 
hardware restrictions in digital processing systems, high 
inertia in heavy machinery systems, and communication lags 
in spacecraft and remote operation (Azorin et al., 2003). 

Control system designers may sometimes neglect relatively 
small delays in which the systems still satisfy design 
requirements. But time delay may cause instability, poor 
performance, and unwanted behavior in real applications and 
its effects cannot be underestimated. Therefore, it is 
necessary to take special attention to stability and controller 
design issues to handle systems with this feature. For the 
above reasons, there exists an increasing motivation for the 
study of the effects produced by time-delays in closed-loop 
dynamical systems (Hu and Lin, 2001; Trentelman et al., 
2001; Shamsuzzoha et al., 2007). It is also worth remarking 
that the design of a feedback control law becomes more 
complicated when, besides the time-delay, the system is 
open-loop unstable (Sipahi et al., 2011; Gu et al., 2003; Tiao-
Yang et al., 2016), among others. 

The control problem of time-delay systems has been studied 
from different perspectives. The simplest approach is to 
ignore the term linked to the delay   and to design a control 
strategy for the system without delay. It is important to note 

that the result will be satisfactory as long as the delay is small 
enough. When the delay magnitude is considerable, the 
operator e s  related to the time delay in the transfer function 
of the original system, can be approximated by a Taylor 
series expansion or through a Pade’s approximation, so the 
exponential term is represented by a rational function in the 
complex variable s  (Munz et al., 2009; Baranowski, 2016). 
However, when these techniques are used, the designed 
control law may not properly work when applied to the 
original system due to an inaccurate approximation. 

Another approach is to compensate for the effect of the time 
delays by removing the exponential term from the 
characteristic equation of the process. This technique was 
introduced by Smith (Smith, 1957) and is well-known as the 
Smith Predictor (SP). The idea is to estimate the future value 
of an internal signal before being affected by the input delay. 
This technique does not have a stabilization step,  restricting 
its application to open-loop stable plants. To deal with this 
disadvantage, some modifications of the original SP structure 
have been proposed, see for instance, (Palmor, 1996; 
Seshagiri et al., 2007; Kawnish and Choudhury, 2012), and 
for some particular family of unstable plants (Novella et al., 
2013; Marquez et al., 2012). 

On the other hand, the most common controllers in industrial 
applications are the PDPIP ,, and PID  controllers due to 
their simplicity (Xue et al., 2007). There have been a 
significant amount of researches on this kind of controllers in 
the literature, for example in (Xiu-Wei and Jian-Yue, 2013), 
based on Pontryagin’s results and using a generalization of 
the Hermite-Behler theorem construct the stabilizing PID  
region of a retarded-type time-delay systems. A complete 
analysis of these kind of controllers have been carried out in 
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(Silva et al., 2005), where the limits for the stabilization of 
first-order systems with time-delay are provided. A further-
step is given by (Yeroglu, 2015), where a methodology is 
provided to compute all stabilizing robust PI  and PID  
controllers for multiple time delay systems with parametric 
uncertainty structure, also all values of the controller 
parameters in the proposed stability region guarantee the 
robust stability of multiple time delay systems. In (Xiang et 
al., 2007), a frequency approach for the design 
of PIDPDPIP /// controllers focused on a specific class of 
second order systems with an unstable pole was introduced. 
Under a similar approach, in (Lee et al., 2010) a 
generalization for higher order systems with an unstable pole 
is provided. The generalization of this result is provided in 
(Hernandez-Perez et al., 2015) where delayed systems with 
possible complex conjugate poles are addressed. Recent 
works focuses on a more particular class of systems: for 
instance in (Novella et al., 2017), PIDPD /  controllers for 
the stabilization of high order delayed systems with two 
unstable poles are considered. It is important to note that, all 
previously cited works consider the use of PDPIP ,, or PID  
in their classical form (proporcional, integral and derivative 
term). In this sense, for example, in (Vazquez et al., 2017; 
Vazquez et al., 2017), a delayed recycle plants is considered. 
It is addressed the control problem of a class of linear high-
order unstable recycling systems with time delay in the direct 
and the recycling paths by means of a PIDPDPIP /// -like 
structure that produces a time delayed feedback for the 
stabilization of the corresponding closed-loop system. 

Therefore, although classical PID controllers are the most 
used in the industry, they have two disadvantages even 
without the presence of delays such as: the derivative term 
causes the controller to have implementation problems 
because from a transfer function point of view the controller 
is an improper function. Moreover, the derivative action is 
sensitive to noise produced by high frequencies, which also 
implies a relatively large gain. The amplified noise may 
cause the saturation of the actuator that may lead to an 
unexpected control action. It is desirable to limit the value of 
the gain or to leave aside the derivative action. Likewise, in 
the case of processes with large time-delays, the anticipatory 
action of the derivative term is no longer working since the 
linear approximation      teTteTte dt

d
dd   is only valid 

for small values of the derivative time constant T d . This 
causes that the control action reacts an instant of time later on 
the variable of interest, which affects the system 
performance. For this reason, it is common to avoid the 
derivative term of the control strategy and just keep using the 
proportional-integral action. 

Under this approach and in order to improve the results given 
in the literature concerning the stabilization of delayed 
systems using a conventional PI , in this work a modified 
version of the traditional PI control scheme, called the PI f  

controller, is proposed. The PI f  control is composed of a 

traditional PI  but adding as a third term a simple first order

filter, i.e.,  sk f , instead of the derivative term used in 

the traditional PID . From this modification it is possible to 
have some advantages such as help to reduce the noise that 
may be present in the system since it does not resort on a 
derivative term, also it allows the stabilization and control of 
the same family of systems considered in (Lee et al., 2010), 
but with the advantage that the delays tolerated by the fPI  

are larger than those tolerated by the traditional PI . 
Additionally, the fPI  controller can also deal with systems 

having one minimum phase zero (which are common in 
chemical processes such as Continuously Stirred Tank 
Reactors (CSTR) Bequette, 2003), a result which seems 
difficult to prove using a standard PI  controller. Moreover, 
the proposed control law keep the basic properties of a 
conventional PI  controller such as disturbance rejection and 
tracking of step references. This work reports necessary and 
sufficient conditions to stabilize a particular class of high-
order unstable systems with time delay by using a fPI  

controller and sufficient conditions when the system include 
one minimum phase zero. The stability conditions are 
expressed in terms of the maximum allowable time-delay 
magnitude. Moreover, a procedure is also provided for 
determining the parameter ranges of the fPI  controller. 

Finally, a remark is provided considering the case when the 
system contains complex poles. 

The proposed control strategy is experimentally assessed 
through the temperature control of an unstable heat flow 
process which is implemented by using a laboratory 
prototype. It is worth to note that the unstable system was 
emulated in the laboratory prototype by a recycle loop. This 
phenomenon also produces a delay time in the measurement 
of the sensors for the recording of the temperature which 
further complicates the problem. 

The paper is organized as follows: Section 2 presents the 
problem statement. Section 3 addresses the proposed control 
strategy, and establishes the necessary and sufficient 
condition to stabilize high-order unstable systems with time 
delay and one minimum phase zero using a fPI  controller. 

In Section 4, the proposed strategy is applied to a laboratory 
prototype. Some conclusions are given in Section 5. 

2. PROBLEM STATEMENT 

Consider the following class of single input-single output 
(SISO) linear time invariant systems (LTI) with delay in the 
input-output path, 
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with  ,  m  and 0 . Note that the above model has one 
unstable pole, q  stable poles and a time delay  . The 

objective is to provide necessary and sufficient conditions to 
stabilize this class of systems by means of a fPI  controller. 

Fig. 1 depicts a block diagram of the closed-loop system. 
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Fig. 1. Proposed control strategy fPI  in closed-loop with the 

system  1 . 

The following expression define the proposed fPI  control 

law, 
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with k p , k i  and 0 . Note that the fPI  control law 

produces an open-loop transfer function  sQ  represented by, 

     esGsHsQ s  (3) 

Notice that instead of adding a derivative term to the classical 
PI , in order to get a PID controller, in this work it is 
considered a first order filter where its cutoff frequency is not 
determined by the approximation of the derivative term. This 
is the reason why the control strategy has been called fPI  

controller. However, it is interesting  to note that even if the 
derivative term or its approximation is not explicitly included 
in (2), after elementary algebra, this expression can be 
rewritten as:       ssbsask , which indeed, is 

equivalent to a filtered PID  controller    scPID , or if 

it is necessary, it can be seen as a PID  with the derivative 
term numerically approximated.  

The proposed control scheme preserves the basic properties 
of the traditional PIDPI / ; however, it will be shown later 
that the considered strategy improves the stability conditions 
provided by the classical PI  controller and that has the 
ability to deal with systems having one minimum phase zero. 

3. PROPOSED CONTROL STRATEGY 

In this section necessary and sufficient conditions for 
stabilizing the close-loop system (1)-(2) are presented. The 
proof of the main result of this work is based on the well-
know Nyquist stability criterion that for the sake of 
completeness is recalled here. 

Theorem 1. (Nyquist stability criterion). A linear system is 
stable if and only if 0 PN , where P  is the number of 
poles in the right half complex plane and N  is the number of 
clockwise rotations to the point  j0,1  in the Nyquist 

diagram.  

Notice that if N  is negative, the rotations should be in the 
counterclockwise direction. In order to design the fPI  

control strategy, the following theorem is stated. 

 

 Theorem 2. Consider the class of high-order time-delay 
systems with one unstable pole (1). There exists a fPI   

controller given by (2) such that the corresponding closed-
loop system is stable if and only if, 
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Proof. This result can be demonstrated under the frequency 
domain framework. From (3), the open-loop frequency 
response is given by, 
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For the sake of simplicity consider the following definitions, 
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(6) 

The above equalities allow rewriting the open-loop transfer 
function (5) as follows, 
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(7) 

To begin with the analysis, let us consider first the particular 
case where 0ki . The next expressions give the magnitude 

 jM Q  and phase  jQ  for  (7)   
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(Necessity) Suppose that a PI f  controller in closed-loop 

with (1) produces an asymptotically stable system. Then, the 
Nyquist criterion is satisfied and therefore, there exists a 
counterclockwise rotation to the point  j0,1  in the 

complex plane. 

From (9) notice that,  
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It is clear that (10) could be a positive or negative function 
depending on the value of the involved parameters, however, 
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



  dQk
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 the function 

has only one change of sign as  . The existence of a 
counterclockwise rotation to the  j0,1  point allows 

concluding the next inequality  
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or equivalently, 
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Therefore, evaluating (10) at 0  yields, 
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from which the next inequality holds, 
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From the counterclockwise rotation assumption and the fact 
that (11) is satisfied for 0 , it is clear that for this 
frequency value the magnitude (8) should be a decreasing 
function. The above is equivalent to ask that, 
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After some manipulatons, inequality (13) produces,  
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In the interval   ,0  the above inequality is equivalent 

to,  
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Evaluating the right-hand-side of the above inequality for 
0  leads to the next condition, 
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Consider now the case 0ki  that corresponds to the analysis 

of the transfer function (7). The corresponding magnitude 
 jM Q  and phase expressions  jQ  are given by the 

next equations, 
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In the above expressions, if 0ik , then 
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ik 0 .  

Hence, applying a continuity argument on k i  it is always 

possible to choose a gain ik  small enough such that the 

inequalities (11) and (13) are fulfilled. From this fact, the 
expression (12) can be rewritten by using (14), such that the 
following relation, 
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is true. 

Due to the freedom in selecting the parameter   of the fPI  

controller given by (2), with 0 , the following 

expression is always fulfilled,   
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and allows obtaining the next bound on the time delay   in 
(17),  
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which corresponds to the bound (4). 

(Sufficiency) Suppose that (4) holds, then there exists an   
such that, 
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Let us introduce a parameter   such that 0  the 

following inequality holds 
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Therefore, there exists 0  such that, 
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On the other hand, since   
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it is possible to conclude that, 
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From (19), it follows that, 
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Substituting (22) into (20) produces,   
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Since   , then 0  and it is allows obtaining the 
next inequality, 
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Notice that the Nyquist diagram for a stable system has a 
counterclockwise rotation around the point )1,0( j . Note 

also that, 

   f

q

m m
ik kjQ

d

d












 10
0

111




   
(25) 

 

 
    

 
    

.
2

111
1

2

1

222222

1

222222

1
222222

222

22

2

0

 




















 










































q

m
m

q

m
m

q

m m
ff

p

ikQ

kk

k

jM

d

d


















 (26) 

Since, 0 , the sign of (26) is determined equivalently by 
the sign of the next function, 
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then, evaluating around 0 , it is produced the following 
expression, 

  .
111

1
222

2
0 











q

m m
fk





 (27) 

Moreover, rewriting inequality (24) yields, 
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From this last expression it is possible to choose fk  such 

that, 
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The above inequality allows obtaining the next inequalities, 
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If the magnitude  jM Q  is monotonically decreasing and 

that the phase  jQ  has a change of sign, then the 

existence of an counterclockwise rotation is established in the 
Nyquist diagram and the closed-loop stability is ensured. 

In a similar way as in the necessity part, notice that if  0ik , 

it is always possible to choose a gain ik  small enough such 

that  jM Q  is monotonically decreasing and  jQ  is an 

increasing function for 0 . 

3.1 Stabilizing control parameters 

Suppose that the condition (4) in Theorem 2 is satisfied. 
Therefore, there exists a fPI  controller that stabilizes 

systems (1). The fPI  parameters fk , ik  and pk  are 

obtained from the preceding developments. Note that from 
(17) it is possible to get, 
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Taking into account (21), the parameter fk  can be obtained 

from (29) as 
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Once the parameters fk  are chosen, the gain ik  should be 

selected small enough such that inequalities (11) and (13) are 
satisfied. Finally, to ensure the counterclockwise rotation to 
the point  j0,1 , the parameter pk  must satisfy,  
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where 
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2c  are the first two phase crossover frequencies 

solutions of the next equation, 
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and  
2,1icpk    are given by, 
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Remark 1. It is worth noting that the proposed fPI  controller 

not only maintains the basic properties of conventional 
PIDPI/  controllers regarding constant disturbance rejection 

and tracking of step references; besides, it exhibits two 
advantages. First, the stability condition is improved by the 

term 
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q

m
m

1
22

11


 compared with P  or PI controllers, i.e., 

the fPI  allows stabilizing systems with larger delays than 

the ones allowed by the conventional PIP /  controllers. 
Compared with PID  controller a second advantage is that 
the fPI  controller does not resort on derivative terms; the 

above feature eases its practical implementation. Finally, the 

fPI  controller is able to stabilize systems with one minimum 

phase zero, a problem that has not been addressed in past 
work by means of PIDPIP //  controllers. 

3.2 Particular case: Systems with one minimum phase zero 

Another advantage of the proposed fPI  controller is that it 

can deal with unstable delayed systems having one minimum 
phase zero. The following corollary gives bounds on the 
maximum allowable time delay for a stable closed-loop 
system. 

Corollary 1. Consider the class of high-order unstable time-
delayed systems with one minimum phase zero plane given 
by, 
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with 0 . There exists a fPI  controller defined by (2) 

such that the corresponding closed-loop system is stable if, 
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Proof. Suppose that condition (4) is satisfied. Choose the cut-
off frequency of the filter in the fPI  controller as   . 

Therefore, the open-loop response in the frequency domain 
corresponds to the next expression, 
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Using the definitions (6) allow writing (35) as follows,  
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First, consider the case when 0ik , the phase and 

magnitude of (36) are given by,  
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From this point, the proof of the corollary continues along the 
same path that the one followed in the the proof of the 
Theorem 2.  

Remark 2. It is worth of mention that the procedure for 
finding the stabilizing parameters of the fPI controller is the 

same as the one stated in Subsection 3.1.  

Remark 3. It is also worth studying the case where the pole-
zero cancellation proposed in Corollary 1 is not exact, i.e.,  

  . Under this condition the resulting phase expression 

 jQ *   is represented as, 
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Since    then,  
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 satisfied. It is also possible to prove that under the condition 
  , the decreasing property (13) holds. Therefore, if 

condition (4) is satisfied, then there exist fk , ik  and pk  

gains that stabilize system (1) in closed-loop with a fPI  

controller. 

3.3  fPI : A general approach to deal with delayed systems 

including possible complex conjugate poles. 

In order to generalize the result presented in this work, it is 
proposed to extend the control strategy to addressed delayed 
systems with possible complex conjugate poles and one 
minimum phase zero. 

Corollary 2. Considering a high-order unstable delayed 
system with possible complex conjugate poles and a single 
zero given by,  
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with 0 ,   2/1 nq ,   the damping relation and n the 

undamped natural frequency. Then, there exists a fPI  

controller defined by (2) such that the corresponding close-
loop system is stable if and only if 
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Notice that when 10   , it is dealing with a couple of 

complex conjugate poles. 

The proof of Corollary 2 can easily be inferred from the 
results presented in (Hernandez-Perez et al., 2015) and 
applying the same methodology as the one exposed in 
Theorem 2. 

4. EXPERIMENTAL EVALUATION 

The proposed fPI  control law is experimentally evaluated 

through the temperature control of an unstable heat flow 
process consisting of a delayed recycle thermal process. The 
process consist of the QUANSER Heat-Flow Experiment 
(HFE) laboratory prototype, which is modified by adding a 
recycle pipe segment; the later introduces positive feedback 
that leads to instability. 

4.1  QUANSER Heat-Flow Experimental (HFE) 

The QUANSER HFE consists of a fiberglass chamber whose 
measures are roughly cm50 cm15 cm10 . An electric 
heating resistance and a fan are located at one side of the 
chamber. The prototype has three temperature platinum 
transducers; two of them located in the fiberglass chamber 
and one in recycle tube. Moreover, the HFE has an amplifier 
that provides the energy required by the heating electric 
resistance and the fan . A control signal  VV 50   feeds the 

amplifier and regulates the energy provided to the heating 
electric resistance; a second control signal V6 feed another 

section of the amplifier and allows regulating the fan speed. 
The algorithms are coded using MatLab/Simulink and 
implemented in a Personal Computer (PC) endowed with a 
Sensoray data acquisition card model 626. Fig. 2 depicts the 
modified QUANSER HFE prototype with the recycling tube 
extension. 

 

Fig. 2. QUANSER Heat-Flow Experiment HFE. 

The tube extension has one heater and one fan that work with 
a constant voltage. The tube extension renders the whole 
thermal process unstable since the recycle trajectory adds a 
positive feedback to the original thermal process. The 
components in Fig. 2 are described in Table 1. 

Table  1. System Components of HFE.    

#ID  Component   #ID  Component 

1 Recycle tube 10 Tmp one Connector  C   

2 Fiberglass chamber 11 Temperature sensor 1 offset

3 Blower 12 Tmp two Connector  C  

4 Heater coil 13 Temperature sensor 2 offset

5 Temperature sensor 1 14 Tmp three Connector  C

6 Temperature sensor 2 15 Temperature sensor 3 offset
7 Temperature sensor 3 16 Fan spd Connector 
8 Switch 17 Fan Cmd Connector 
9 Power on/off 18 Heat Cmd Connector 

It is worth mentioning that the temperature sensors provide 
analog signals from V50   that are proportional to the 

temperature with a calibration constant of C20 . Moreover, 

the sensitivity of the sensors is C1.0 . Note also that the 
heat transport phenomenon introduces a time delay in the 
measurement provided by temperature sensor 3. The control 
goal is to regulate the temperature along of the fiberglass 
chamber by means of the heat dissipated by the electric 
resistance and assuming a constant air flow rate. Sensor 3 
measures this temperature. The control signal generated by 
means of the fPI  control law regulates the power provided 

to the electric resistance. The fan speed is kept constant at 
1350 RPM. 

4.2 Thermal HFE process modeling 

The model of the modified HFE process is considered as the 
feedback interconnection of two first order systems. The 
corresponding block diagram is shown in Fig. 3, where the 
transfer functions functions  sGh  and  sGr  models 
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respectively the forward and the feedback paths, where 0  
corresponds to the time-delay generated by the heat-transfer 
phenomenon.  

 

Fig. 3. Thermal HFE scheme with recycle and time-delay. 

The modified HFE process is identified by using the 
bumptest method. See reference (QUANSER-Innovate, 2014) 
for further details. The forward path transfer function  sGh  

is identified according to the next procedure: 

1.- Turn on the HFE and let the blower run for two minutes to 
ensure the temperature sensors are settled down and any 
excess heat is flushed out. If the HFE was recently run, then 
extend this time. 

2.- Set the HFE temperature to the actual room temperature, 

which is considered at C20 . If the temperature sensors do 
not match the actual temperature, then adjust its offset by 
using the temperature sensor offset connectors (see Fig. 2: 11, 
13 and 15 connectors). 

3.- Set the fan speed at RPM1350 . 

4.- The voltage supplied to the heater resistance is a step 
signal from 0  to V3 . 

The temperature time response and the voltage input signals 
obtained using the aforementioned procedure are illustrated 
in Fig. 4.  

 

Fig. 4. Output and input signal used for the bumptest method. 

The model obtained from this experiment corresponds to the 
next transfer function, 
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In order to identify the recycle phenomenon  sGr , it is 

assumed that the the dynamics of the direct path  sGh

reaches its stationary response (Fig. 4).  At that time the 
external recycle tube is connected to the process. It is 
important to mention that in order to identify  sGr , only one 

side of the recycle tube extension is connected to the 
fiberglass chamber; the sensor 3 is attached to this side. The 
temperature at the free side of the tube is measured using the 
sensor 2. The time evolution of the recycle temperature and 
the input voltage of the fan and heater are shown in Fig. 5. 

Fig. 5. Input and output signals for the recycle transfer 
function. 

The transfer function  sGr  corresponds to the next 

expression, 
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To illustrate the problem statement given in Section 2, a 
blocks reduction of Fig. 3 between  sGh  and  sGr  is 

carried out, resulting in a single transfer function  sGT  

given by, 
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Besides the recycle generated during the thermal process, a 
time delay of 2 seconds is considered in the temperature 
register of sensor 3. This delay takes place because the heat 
flow is transported along the fiberglass chamber of the 
process. This phenomena causes that the sensor measures the 
generated temperature a time period after the variation in the 
input voltage of the resistance appears. Therefore, from the 
identified transfer functions  sGh  and  sGr , it is possible to 

obtain the open loop transfer function of the modified HFE 
process including the time delay, 
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(44) 

4.3 Experimental Results: Temperature control 

Consider the model of the modified HFE process (44). The 
block diagram for the fPI  controller is shown in Fig. 6. 
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Fig. 6. Proposed fPI  control strategy. 

From Corollary 1, the stability condition is satisfied since, 
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As a first step, the free pole provided by the fPI  transfer 

function  sH  is located in the same position of the   zero 

of the modified HFE process such that 014.0 . According 

to (31), a stabilizing gain 4fk  is obtained in the range 

5.46.1  fk . The value 009.0ik  ensures that the 

magnitude and phase conditions are satisfied. Finally, solving 
(32) allows obtaining the range 84.047.0  pk  from which 

the value 48.0pk  is considered. Taking into acount (6) 

permits obtainig the transfer function of the proposed fPI  

controller, 
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Fig. 7 shows the time evolution of the temperature of the 
modified HFE process considering a reference signal of 

C60 .  

 

Fig. 7. Temperature evolution of the thermal process HFE. 
 
To evaluate the robustness of the control strategy against 
parametric uncertainties that are allways present on a real 
process, Fig. 8 shows a comparison between the simulation 
(mathematical model describing the HFE process given in 
(44)) and the modified HFE prototype laboratory. As it can 
be observed, the experimental response is similar to that of

the numerical simulation, since both initiate with a similar 

initial conditions around C20 . Moreover,  Fig. 8 also 
illustrates how the modified HFE process tracks a reference 

signal step change from C60  to C75 . 

Fig. 9 illustrates how the fPI  controller rejects a step 

disturbance applied at 450 seconds. This disturbance is 
produced by an obstruction of %70  of the heat flow passage 
in the fiberglass chamber. The process temperature returns to 
the desired reference at 800 seconds approximately.  Also, 
Fig. 9 presents a comparison between the real process and the 
simulation of the mathematical model (44). It is possible to 
observe that in the simulation signal an oscillation occurs 
when the perturbation acts, phenomenon that is not present 
on the real-time experiment. Both signals converge around   
750 seconds.  

 

Fig. 8. Reference tracking of the control temperature. 

Fig. 9. Disturbance rejection property of the process. 

Finally, the control signal related to this experiment is shown 
in Fig. 10. 

On the other hand, in order to prove the efficiency of the 
proposed control strategy, a comparison between the fPI  

controller and a classic PI  controller with a filtered 
derivative action  FDAPI  was done to show how the 

proposed controller provides a more appropriate transients 
response than the classical one.  
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Fig. 10. Control action. 

Fig. 11 illustrates the time evolution of both controllers 
(dotted line vs solid line) when they are applied to the 
mathematical model of the HFE thermal process in a 
numercial simulation. Both responses are compared with the 
laboratory prototype response (dashed line). 

 

Fig. 11. Disturbance rejection property of the process. 

Fig. 11 shows that the fPI  controller presents a better 

performance at the transient response since not only 
eliminates the noise but also provides a smoother response 
which is a desirable feature in any controller. 

Remark 4: The considered FDAPI   controller was design as, 

 



















N
Ts
Tks

s
k

ksH
d

ddi
p

1
1* , (45) 

where the control parameters are given as 00342.0dk ,  

429.571dT , 8N , 023.0ik  and 2352.0pk . It is 

important to highlight that the calculation of both, the tuning 
parameters as well as the stability conditions necessary to 
apply the classic PI  controller with filter, are not obvious. 
Therefore, further analysis would be required to specify the 
most accurate range of values for the tuning parameters. 
 

 

5.  CONCLUSION 

This work studies the stabilization problem of a class of high-
order unstable systems with time delay by using a novel 
control law called the fPI  controller. It consists of a 

standard PI  controller plus a first order low-pass filter. 
Necessary and sufficient conditions to stabilize a system 
consisting of one unstable pole, 1n  stable poles, time delay 
and possible one minimum phase zero are stated, and a 
procedure to tune the stabilizing gains pk , ik  and fk  is 

given. It is shown that the proposed fPI  controller improves 

the stability conditions of a standard PI  controller. 
Moreover, the proposed fPI  allows stabilizing the same 

family of unstable time delay systems than those tackled in 
(Lee et al., 2010) with a traditional PID  controller, however, 
it is worth noting that the proposed fPI  controller does not 

resort on a derivative term and then, it can easily be 
implemented as a proper transfer function. This allows to 
reduce the noise caused by the derivative term. Additionally, 
the fPI  controller is able to stabilize plants having one 

minimum phase zero, which is not a trivial task when using a 
standard PID  controller. The performance of the control 
strategy is evaluated by considering an unstable laboratory 
prototype, which consist in a thermal flow process endowed 
with a recycle path and a time-delay. These outcomes show 
an adequate performance of the fPI  controller in the 

implementation. 
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