
CEAI, Vol.20, No.3 pp. 99-108, 2018 Printed in Romania

Reconfigurable Hardware Technology: an Emerging Paradigm for Combined
Software-Hardware Fault-tolerance Implementation

Cs. Szász

Electrical Machines and Drives Department, Technical University of Cluj
(e-mail: Csaba.Szasz@emd.utcluj.ro).

Abstract: As is well known complex safety digital systems currently being designed and developed are
often difficult multidisciplinary undertakings. In order to achieve their operation even under extreme
conditions is important to strengthen it with fault-tolerant behaviors. One of the safest solutions is to
provide these digital systems both with software and hardware redundancy. This paper is dedicated to
emphasize the benefits and advantages of reconfigurable hardware technology application in combined
software-hardware redundancy strategies implementation. This technology it is considered as one of the
most challenging design paradigms in modern digital systems development. Arguments to support it in
fault-tolerant systems development are widely discussed, as well to exploit its fine-grained parallel and
distributed computing behaviors with huge re-routing abilities are suggested. An intuitive example of
how to design and implement combined software-hardware redundancy and achieve high level of fault-
tolerance is presented in detail. Beside the research related to the fault-tolerant digital systems
development recommendations and conclusions are formulated regarding the future of the reconfigurable
hardware technology paradigm in high reliability systems implementation.

Keywords: reconfigurable architectures, field programmable gate arrays, redundancy, software reliability,
fault tolerance.

1. INTRODUCTION

According to a general rule definition, a fault-tolerant system
is one that continues to operate safety and to properly
perform its prescribed tasks even in the presence of faults
occurring in hardware or software components. Fault-tolerant
systems research covers a wide spectrum of applications,
ranging from high reliability manufacturing systems, energy
distribution networks, nuclear power plants, transportation
systems, military/space systems, healthcare industry,
factories, telecommunication, defense systems, air traffic
control, and many more. Such systems usually are named
critical processes where the occurrence of faults may cause
inestimable damages and losses in human life or capital.
Nowadays due to increase of dependability and demand, the
complexity of digital systems has grown up exponentially.
To avoid unwanted errors or failure states, the reliability of
hardware and software should be improved with high
reliability behaviors and abilities. In vast majority of
applications fault-tolerance is achieved by using redundancy
implementation strategies (hardware, software, time, or
information redundancy). Therefore, redundancy is a very
common approach to improve reliability and a widely spread
technology of implementing fault-tolerant systems. However,
with the use of last generation microelectronic technologies
and available high performance software techniques many
applications do not need redundancy. On the other hand if the
cost of a failure is high enough, the use of redundancy is
inevitable and even increasing the design costs and
complexity of the systems becomes an attractive
option (Suleka, 2011; Chielle, 2016). During last few decades

the fault-tolerant systems design topic emerges as one of the
most important and challenging research field for electrical
engineers. A myriad of high quality research and scientific
literature has been published worldwide in this area.
Of course, there is not enough room to include a complete
survey of the entire topic or to perform an exhaustive
presentation. There only a short overview is presented
regarding the most relevant achievements that support the
objectives and goals of this paper. First of all, the necessity of
developing a generalized method to tolerate both hardware
and software fault has been outlined only in the recent past.
In (Giadomenico et al., 1995) it has been proposed a unique
approach for hardware and software fault tolerance. A similar
point of view is also shared in (Lyu, 1995; Yang 2017).
The paper (Levitin, 2006) presents the reliability and
performance analysis of both hardware and software systems,
in (Wattanapingskom et al., 2002) it is discussed the fault-
tolerant embedded system design and optimization. Fault-
tolerant system structures have been analyzed in the research
works (Belli et al., 1990; Wu et al., 1997). Cost expenses
calculation in modeling fault-tolerant software and hardware
are described in (Bondavialli et al., 1993; McAllister and
Scott, 1991). An improved fault-tolerant system using
checkpoints legacy code is presented in (Leach, 2008),
respectively a fault-tolerant system is using grid computing
technique in (Khan et al., 2010; Poledna, 1994). A novel
model for software reliability growth and optimal design of
N version software is introduced in (Teng and Rhan, 2002).
In (Yamachi, et al., 2006) has been developed a genetic
algorithm for solving N-version program design problem.
The recovery block concept in software fault-tolerance has

100 CONTROL ENGINEERING AND APPLIED INFORMATICS

been introduced by (Randell and Xu, 1995) and optimization
models for component based recovery blocks were proposed
in (Berman and Kumar, 1999). Optimal allocation of
redundant components for series and parallel connection has
been analyzed in (Belzence et al., 2011). Other important
contributions to modeling fault-tolerant systems and to
develop original hardware and software redundancy
techniques are also described in (Kumar et al., 1986; Valdes
and Zequeira, 2006). A general view for software fault-
tolerance implementation is introduced in (Lyn, 1995),
respectively in (Dugan and Lyu, 1995) are discussed methods
for fault-tolerance implementation with replication. In (Yang
and Meng, 2011) it is described a self-repairable system
using warm standby redundancy strategy. Various researchers
have developed software reliability models and software
debugging methods tested both theoretically and
experimentally (Lewis, 2011; Yamachi, et al., 2006, Sinca
and Szász, 2017; Sari and Akkaya, 2015). Each of the above
mentioned high quality researches addresses the key
problems of both hardware and software redundancy
implementation. Each one added something new and original
to the topic of fault-tolerant systems development for high
reliability applications. However, this paper it is dedicated to
outline the emergence of a novel fault-tolerance
implementation paradigm based on the hardware
reconfigurable technology. The originality of this
presentation lies on the recognition that this advent represents
not only a specific view point but a novel approach regarding
the combined software-hardware fault-tolerance
implementation in modern digital systems.

2. RECONFIGURABLE HARDWARE TECHNOLOGY
DESIGN PARADIGM

As is well known, traditional approaches of digital systems
design and development operates with logical descriptions of
the used components. In essence, these are implicit
descriptions contained in schematic diagrams, Boolean
equations, block diagrams, or wiring lists that form the
components of the design. By using these traditional design
methods a relatively clear distinction can be made between
hardware and software. In more recent years, with the advent
of programmable logic and associated technologies the
classical techniques gradually have been replaced with
hardware description languages (HDL). This approach
incorporates a high level of abstraction where the designs are
created in a lexical format that describes the essence of the
design in structural, functional, or behavioral form (Scarpino,
1997). When functional performance has been verified, the
logical description of the design is overlaid onto a hardware
implementation. At current level of microelectronic
technologies the programmable logic arrays are the most
adequate chips for such implementations. These are
prefabricated logical arrays within which electronic
interconnections may be either enabled or disabled according
to various user needs. Among these devices excels the FPGA
(Field Programmable Logic Array) processors, as the top
technical achievements in this field. Current trends in digital
systems design and development emphasize the
implementations using HDL and FPGA chips embedding
reconfigurable hardware technology. This approach affords to

designers more degree of freedom for efficient system
presentation, as well as for versatile implementation details.
Additionally, HDL is well suited for rapid design and
prototyping by blurring the traditional border between
software and hardware (Scarpino, 1997; Sharma, 2012). This
new design paradigm also posses the advantage of a huge
efficiency and provides the flexibility of general hardware
approach.

As it has been mentioned before, the top representing chips
of this technology are the FPGAs. They possess the ability of
parallelization and parallel computing, being ideally suited
for distributed tasks solving or network computing
applications. Toward, exploits the advantages of the fine-
grained instruction level parallelism as well coarse-grained
functional parallelism. Their immense computational
efficiency is matched by rich on-chip interconnectivity and
high bandwidth concurrent memory access, achieving huge
re-routing abilities that abstract the implementation
details (Husi et al., 2014; Rink and Castrillon, 2017; Du et
al., 2015). By allowing multi-grid computation, FPGAs are
ideal platform for fine-grained parallel computing,
representing the perfect solution with which to implement
highly concurrent control offering the huge advantages of
flexibility, low-power consumption, speed, adaptability, and
case of scale. The great majority of researchers and scientists
involved in microelectronic technologies development
generally agree that HDL combined with reconfigurable
hardware paradigm represents the future of circuit
and device design.

3. FAULT-TOLERANT HARDWARE DESIGN
PARADIGM

The fault-tolerant hardware design paradigm means the use
of additional hardware components or physical modules in
order to achieve fault-tolerance that are unnecessary for a
fault-free operation of the considered system. This solution
always means extra costs, size, and weight, but as
microelectronic components have become smaller and less
expensive the hardware redundancy design paradigm
becomes more practical (Shin, 2016).

In the related scientific literature there are distinguished three
basic form of hardware redundancy: passive, active, and
hybrid (as combination of the first two). Shortly defined,
passive redundancy achieves fault-tolerance by masking the
fault that occurs without requiring any action from the
operator’s side. Simply mask the faults and do not attempt to
provide for its detection. Active redundancy achieves fault-
tolerance by detecting the faults which occur, locates them,
and performs recovery actions in order to restore the initial
fault-free state of the system. Active redundancy is also
named as dynamic redundancy method. Of course, the hybrid
redundancy combines the advantages of both the passive and
active approaches (Sari and Akkaya, 2015; Rampratap 2016).

However, the most common form of passive hardware
redundancy is triple modular redundancy (TMR). There three
perfectly identical modules perform the same functions and
tasks inside the digital system with a majority decision
element determining the output of the system. If one of the

CONTROL ENGINEERING AND APPLIED INFORMATICS 101

modules enters into failure state the voter will mask the fault
by recognizing the result of the two remaining fault-free units
as correct (Johnson, 1989; Coulouris, 2011). In this article the
design method relying on the TMR strategy by using the
reconfigurable hardware technology paradigm will be
presented and discussed. For this reason it is considered the
block diagram shown in Fig. 1. There are three identical
FPGA-based development boards (Module_1, Module_2, and
Module_3) embedding hardware reconfigurable technology..
Each module delivers the processed results via its own output
bus labeled O1, O2, and O3 in the figure. These are input
signals of the voter element (or decision unit) which performs
a majority voting strategy over the inputs. Therefore, the
occurred fault remains masked inside system and the proper
result is released to the output of the voter element via the
bus labeled Y. If it is considered that all the hardware modules
operates correctly (without faulty) by emitting the signals
Oi (i=1÷3) to the inputs of the voter, the operation of the TMR
system it is described by the logical equation:

313221 OOOOOOY (1)

It is known that the reliability R(t) of a system is function of
time and it is expressed by the probability that the system will
operate correctly throughout the time interval [0, t], assuming
that was performing correctly without any faults or errors at
time t=0. In other words, reliability is the probability that the
system will not fail by a given time t, under a given set of
imposed operation conditions. In contrast, the probability of
failure by a given time t is referred to as the unreliability of
the system. However, considering the individual system
components or modules reliability it is possible to
mathematically deduce the system global reliability
coefficient.

Fig. 1. Block diagram of the reconfigurable technology-based
TMR implementation strategy.

By using the well known mathematical relations expressing
the global reliability of a system with n modules connected

in a serial configuration (Johnson, 1989),

n

j
j tRtR

1

))(1(1)((2)

respectively in parallel,

)()(
1

tRtR
n

j
j

 (3)

where Rj(t) means the reliability of each component module of
the system (j=1÷3), it is possible to calculate the global
reliability of the TMR digital system shown in Fig. 1. If the
reliability of a single FPGA-based hardware module is labeled
with RM, results the following equation:

)1(3 23
MMMTMR RRRR (4)

where are included all the possible operation modes of the
considered system (when all modules operates without any
fault, respectively the three situations when one module is in a
faulty state and the remaining two operates correctly).

Fig. 2. The TMR digital system operation mode (Sinca and
Szász, 2017).

A very convenient method to illustrate the TMR system
operation principle is to use waveform diagrams. For this

102 CONTROL ENGINEERING AND APPLIED INFORMATICS

reason in Fig. 2 it is plotted a set of simulation results
performed in Matlab/Simulink software
environment (Sinca and Szász, 2017). In the top of the figure
is shown the situation when all the three modules operates
without any fault. In this case the voter element receives the
I1, I2, and I3 input signals and passes to the output the same
digital signal (plotted on the right side of the diagram). Under
is the case when Module_2 enters into a failure state and the
voter element recognizes the result of the two remaining
fault-free units as correct (Sinca and Szász, 2017). A very
similar situation will be obtained corresponding to failure of
Module_3. Obviously, when two simultaneous error occurs
(both Module_2 and Module_3 are faulted) the topology is
unsuitable to detect or distinguish them. Therefore, the TMR
can’t handle such failure states and should be replaced with
other more reliable hardware redundant architectures. At the
same time, is necessary also to mention here that the
probability of instantaneous faults of two different modules is
low in practice.

4. FAULT-TOLERANT SOFTWARE DESIGN
PARADIGM

In general terms, software fault tolerance is the ability of
software to detect and recover from an unexpected faulty or
failure state. Software faults always are the result of human
designer errors in interpreting a specification or correctly
implementing an algorithm. Among the most commonly used
methods to design and implement fault-tolerant software
should be mentioned here the recovery blocks technique, the
self-checking method, and the N-version implementation
strategy. The recovery blocks method is a simple solution to
achieve fault-tolerance which operates with an arbitrator
confirming the results of various implementation of the same
algorithm (Lyn, 1995; Randell and Xu, 1990,). In this case
the entire system is constructed on fault-tolerant blocks and
the arbitrator determines the correctness of various blocks
operation mode. The recovery block method put emphasis on
the specification part of the problem by pressuring for
creation of different multiple functional alternatives for the
same application. One other suitable method to implement
fault-tolerance is the self-checking software. This is not a
rigorously described method in the literature which embeds
extra checks solutions as well as check-pointing and rollback
recovery methods added in high reliability systems. The
weak point of this method consists on its lack of rigor with
potential surprising events and effects.

Perhaps the most popular method to achieve software fault-
tolerance is the N-version software implementation strategy.
This solution is in fact the software application of the well
known N-way hardware redundancy. It means the
implementation of the same task with N modules, where each
module is made with N different solutions. They spread the
utilization of different software languages, application of
different software technologies, or programming the same
task by using different algorithms. In this way it is
encouraged the diversification as much possible, including
different toolsets, design strategies, or different software
environments. Independently developed software versions
also provide tolerance to software design faults. In this paper

a versatile solution to implement N-version software
redundancy is presented and discussed. Notwithstanding with
many other solutions presented in international references,
there it is emphasized a fault-tolerant software design
paradigm relying on theoretical basics and support of the
hardware reconfigurable technology. The main idea of this
proposal is shown below in Fig. 3.

Fig. 3. The N-version software redundancy implementation
strategy.

Before to discuss this implementation concept, let is assume
first that the hardware redundant digital system given in
Fig. 1 should execute a well-aimed user defined control task.
This task will be programmed by using an adequate
algorithm. In order to achieve a fault-tolerant software
implementation, here two very different software
technologies will be addressed. The first is the HDL
technology discussed above in the paragraph 2. This is
characterized by a high level of abstraction with designs
created in lexical format describing structural and functional
behaviors. The HDL was specially developed for
reconfigurable hardware technologies implementation and in
our case will be implemented in VHDL (VHSIC Hardware
Description Language) code. By following the N-version
software redundancy implementation concept, the same
control task is programmed via two independently developed
different algorithms (labeled Algorithm_1 and Algorithm_2 in
the figure). One algorithm will be uploaded on the FPGA-
based development board labeled here FPGA_1, the second
on FPGA_3. These algorithms are developed by using the
same Xilinx ISE software toolkit. With the purpose to
implement another redundancy level, the same control task
now will be programmed by using a second technology.
For this scope it is preferred the most evaluate MicroBlaze
technology embedded in the Xilinx Platform Studio EDK
(Embedded Development Kit) software
toolkit (Digilent Co., 2016). This provides a convenient
physical environment for embedded processing applications
by allowing the utilization of the MicroBlaze processor-based
technology and EDK/SDK (Software Development Kit)
environment. In essence, the MicroBlaze is a 32 bit

CONTROL ENGINEERING AND APPLIED INFORMATICS 103

Wishbone compatible full-featured and FPGA optimized
RISC (Reduced Instruction Set Computer) soft processor for
use in FPGA designs applications. This platform allows the
implementation of single-processor or two-processor based
systems in MicroBlaze technology by using the C/C++
language environment. Therefore, the control task developed
in this technology will be also uploaded on the development
board labeled FPGA_2. It is important to notice that at the
end a versatile N-version redundancy has been reached by
using two different software technologies (HDL and
MicroBlaze), two software environments (VHDL and C/C++
code), respectively two different types of algorithms
(Algorithm_1 and Algorithm_2). Jointly they form a high
performance software redundancy system, as well as
represent an original and modern approach of the fault-
tolerant software design paradigm.

5. RESULTS AND DISCUSSION

Having clarified the main theoretical aspects regarding the
used design paradigms, in-depth research efforts was directed
to experiment the fault-tolerant digital system embedding
combined software-hardware redundancy. In the first stage
the hardware redundant system has been implemented and
tested. A general view of the used laboratory setup is shown
in Fig. 4. There for the FPGA-based development boards
three stand-alone Spartan-3E Starter Kit units has been used.
The key features of a Spartan-3E Starter Kit board are as
follows: Xilinx XC3S500E Spartan-3E FPGA processor with
232 user I/O lines, Xilinx 4 Mbit Platform Flash, 64Mbyte
DDR SDRAM, 16Mbyte of parallel NOR Flash, 16Mbits of
SPI serial Flash, 2x16 character LCD, PS/2 mouse or
keyboard port, VGA display port, 10/100 Ethernet PHY, two
RS232 ports, 50MHz clock oscillator, Hirose FX2 expansion
connector, three Digilent 6-pin connectors, 4 channel D/A
converter, 2 channel A/D converter, rotary encoder with push-
button shaft, 8 LEDs, 4 slide switches, 4 push buttons
(Digilent Co., 2016). This configuration represents a versatile
development platform and allows the utilization of both the
Xilinx ISE software toolkit and the MicroBlaze processor-
based technology within frame of the Xilinx Embedded
Development Kit (EDK) software environment.

Fig. 4. Laboratory setup: the fault-tolerant digital system.

The FPGA-based development boards have been interfaced
then with a digital voter element. The one-bit digital voter
circuit configuration is shown at the top of Fig. 5 with its
input bits labeled O11, O21, O31, and the output bit Y1 (see

Fig. 1). This combinatory logic circuit implements a majority
decision strategy (Johnson, 1989). Because during the
experiments a 4-bit output bus was considered for each
board, finally a 4x 1-bit voter has been implemented as is
expressed in Fig. 5. Accurate test operations prove that the
designed hardware system operates properly and expresses
high reliability behaviors in case of an unpredictable board-
fault occurs

Fig. 5. The FPGA-based development boards interfacing to
the 4-bit digital voter.

The hardware experimentation effort was followed by fault-
tolerant software design and implementation using N-version
redundancy strategy. In the first step it has been considered
that the digital system executes a simple control task, for
example: generates on its output bus two π/2 degree delayed
variable frequency pulse trains (well suited for a two-phase
bipolar stepper motor control). For this particular situation it
has been applied the N-version software redundancy concept
presented in Fig. 3. In accordance with this, the Xilinx ISE
Toolkit software environment it is used to develop the
algorithms Algorithm_1 and Algorithm_2 in VHDL code.
The first algorithm will be uploaded on the development
board labeled FPGA_1, the second one on FPGA_3.
Obviously, the two algorithms implement the same control
task but in two different programming ways. A general view
of the implemented project by using the Xilinx ISE Toolkit is
shown in Fig. 6. There in the left-upper corner of the main
window are plotted the embedded project files, respectively
down of these are listed the mandatory steps required for the
full project implementation. The green color lighted of the
Generate Programming Files option indicate that the project
implementation was successful and a .bit extension file is
available to be uploaded and executed on the FPGA-based
development board.

In the right side of the Xilinx ISE Toolkit main window is
shown a piece of the implemented VHDL code for
Algorithm_1. There the Port entity lists the input/output pins
of the designed hardware circuit, respectively are declared all
the necessary signals used to interface this circuit to the
existing physical output buses of the board.

104 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 6. General view of the Xilinx ISE Toolkit main window: the control task VHDL code implementation (Algorithm_1).

This first algorithm uses the well known sequential circuit
scheme with two D flip-flops to generate the π/2 degree
delayed variable frequency pulse trains (Fig. 7). This output
frequency may be changed arbitrarily by using an adequate
integer range variable defined by the programmer inside the
VHDL source code.

Fig. 7. The π/2 degree delayed pulse trains generation
principle.

A small part of the source code written to handle the
discussed control task implementation it is also given in the
followings.

Delay_0:process(Frequency_Division(17))
begin
 if Frequency_Division(17)'event and Frequency_Division(17) =
'0' then
 Phase_1 <= not Phase_1;
 else
 Phase_1 <= Phase_1;
 end if;
end process;
 Out_Phase_1_0 <= Phase_1;

Delay_90:process(Frequency_Division(17))
begin
 if Frequency_Division(17)'event and Frequency_Division(17)='1'
then
 Phase_2 <= not Phase_2;
 else
 Phase_2 <= Phase_2;
end if;
end process;
 Out_Phase_1_90 <= Phase_2;

 Out_Phase_1 <= Out_Phase_1_0;
 Out_Phase_1N <= not Out_Phase_1_0;
 Out_Phase_2 <= Out_Phase_1_90;
 Out_Phase_2N <= not Out_Phase_1_90;

In this VHDL code the Frequency_Division(17) counter
means that the initial 50MHz Spartan-3E Starter Kit clock is
divided by 217, and the result represents the output frequency
of the two π/2 degree delayed pulse trains.

In order to increase the software redundancy of the system,
the Algorithm_2 implements the same control task in a
different manner. There the output signals frequency is
changed not by using an integer range variable but by tuning
the rotating encoder with push-button shaft provided by the
manufacturer among the hardware facilities of the Spartan-3E
Starter Kit development board. Part of the corresponding
algorithm in VHDL code which implements this strategy is
listed in the followings. As it has been mentioned before, the
Algorithm_2 will be uploaded on the FPGA_3 labeled
development board:

LEDs_display: process(Quartz)
begin
if Quartz'event and Quartz='1' then

CONTROL ENGINEERING AND APPLIED INFORMATICS 105

 if Encoder_event='1' then
 if Encoder_rotation='0' then
 if LEDs_state = "00000000" then LEDs_state <=
LEDs_state;
 else LEDs_state <= LEDs_state -1;
 end if;
else
 if LEDs_state = "11111111" then LEDs_state <= LEDs_state;
 else LEDs_state <= LEds_state +1;
 end if;
 end if;
end if;

if Encoder_Button_input='0' then LEds_drive <= LEds_state;
else LEDs_drive <= "00000000";
end if;
 LEDs <= LEDs_drive;
end if;
end process LEDs_display;

Frequency_Division_Process: process(Quartz)
begin
 if Quartz'event and Quartz = '1' then
 Frequency_Division <= Frequency_Division + 1;
 end if;
end process Frequency_Division_Process;
Period <= Conv_integer(LEDs_drive);
Out_Phase_1 <= Frequency_Division(Period);

It is well known that by rotating the encoder shaft two-
channel pulse trains are generated. The LEDs_state signal
counters the generated pulses and displays their binary code
value. This value it is used then to change the two π/2 degree
delayed output signals frequency.

Fig. 8. The π/2 degree delayed waveforms generated by
FPGA_1 and FPGA_3 boards (Sinca and Szász, 2017, May).

The experiments prove that both FPGA_1 uploaded with
Algorithm_1 and FPGA_3 uploaded with Algorithm_2
generates the same delayed two pulse trains plotted in Fig. 8.
This means that software fault-tolerance has been reached by
implementing two different program versions of the same
control task. The fault-tolerance level of the entire system
may be more substantially increased by adding another
different implementation version, now designed in frame of a
different software technology. Therefore, FPGA_2 will be
uploaded with the same Algorithm_1, but implemented now
in the Xilinx Platform Studio EDK technology using C/C++
source code. The main menu of this project developed in
frame of this software platform is captured in Fig. 9.

Fig. 9. General view of the Xilinx Platform Studio EDK main window: hardware configuration settings.

There it is possible to observe the main hardware
configuration settings of the FPGA_2 development board.
This embeds the MicroBlaze RISC processor with its data
and instruction local memory buses (dlmb and ilmb), their
controller circuits, the auxiliary clock circuits, respectively
the adequate interfacing circuits to the 4-bit output port (the
D0, D1, D2, and D4 bits) used for control signals generation.
All the memory addresses, spaces, or port configurations can
be arbitrarily programmed according to a wide range of user

needs. Additionally, it is also plotted on the figure the System
Assembly View, the Design Summary, and the Graphical
Design View menu of the digital system used to unburden the
designer development efforts. The hardware configuration
operations and settings mandatory might be followed by the
C/C++ code software development operations. For this
reason, after a successful hardware configuration design the
EDK toolkit automatically opens the Xilinx Platform Studio
SDK software module.

106 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 10. General view of the Xilinx of the Xilinx Platform Studio SDK main window: the C/C++ code software application
development and implementation.

Obviously, this new software component launching
represents the intrinsic next step of the
development (Fig. 10). On main window of this module are
plotted all the required software development steps in order
to generate the executable file (with extension .bit) which
will be uploaded at the end on the FPGA-based development
board’s memory. There are ranked all the folders and
adequate files step-by-step generated under the software
implementation process. In the middle is listed the main C
code of the control task which self-evidently is the same two
channel π/2 degree delayed variable frequency pulse trains
generator. With the main purpose to evidence the major
differences between the design and development technologies
used to implement the same control task, a small piece of the
edited .C source code has been cut out and listed below.
This is the same part corresponding to the VHDL code
presented in the first software version development and
implementation (delaying the two pulse trains with D latches
and arbitrarily setting the output pulses frequency).

Phase_1 = 0;
Phase_2 = 0;
clock_pulses = clock();
if (clock_pulses % 50000 == 0)
 {Phase_1 == Not(Phase_1);}
else Phase_1 = Phase_1;
Out_Phase_1_0 = Phase_1;
if (clock_pulses % 50000 == 0)
 {
 Phase_2 == Not(Phase_2);
 }
else Phase_2 = Phase_2;
Out_Phase_1_90 = Phase_2;
Out_Phase_1 = Out_Phase_1_0;
Out_Phase_1N = Not(Out_Phase_1_0);
Out_Phase_2 = Out_Phase_1_90;
Out_Phase_2N = Not(Out_Phase_1_90);
XGpio_DiscreteWrite(&D0,1,Out_Phase_1);
XGpio_DiscreteWrite(&D1,1,Out_Phase_1N);
XGpio_DiscreteWrite(&D2,1,Out_Phase_2);
XGpio_DiscreteWrite(&D3,1,Out_Phase_2N);

What is important to notice here is that with a careful setting
this source code generates on the FPGA_2 labeled board
outputs exactly the same waveforms plotted in Fig. 8,
corresponding to the cases when FPGA_1 was uploaded with
the Algorithm_1 and FPGA_3 with Algorithm_2. Therefore,
this last observation also means that the followed N-version
software redundancy implementation strategy was very
successfully. In this particular situation three different
software implementation versions have been reached for the
same control task. However, the simple fact that two very
different technologies have been used in this development
additionally increases the software fault-tolerance of the
system and outlines the originality of the design. Not least,
the use of the hardware reconfigurable technology during the
entire development process emphasizes the versatility and
high performance of this approach.

It is important to mention here that such a hardware platform
is more reliable than any of the three implemented separately
on the three identical hardware modules. This may be proved
in a relatively simple manner, because in case of the three
separately operating boards (meaning serial interconnection)
the equation (4) can be written as follow:

321 RRRRS . (5)

Assuming that on each board (or module) runs the same
algorithm implemented on the same software technology,
results that R1=R2=R3=RM and the relationship (5) becomes:

3
MS RR . (6)

By subtracting the equation (6) from (4) results that:

0)1(3 2 MMSTMR RRRR . (7)

CONTROL ENGINEERING AND APPLIED INFORMATICS 107

Therefore, RTMR>RS and the considered hardware platform
represents the most reliable solution. Of course, by using
different software implementation technologies may be
considered R1≠R2≠R3 but R1<R2<R3 and the general
reliability coefficient of the TMR system can be increased.

6. CONCLUSIONS

This article emphasizes the advantages and benefits of
hardware reconfigurable technology application in combined
software-hardware redundancy implementation. In particular
outlines the emergence of a novel design paradigm relying on
fine-grained parallel and distributed computing behaviors
with rapidly changing hardware functionality and huge re-
routing abilities according to various user needs.

The theoretical aspects discussed in the paper are supported
then via an intuitive implementation example of how to
design and develop combined software-hardware redundancy
and to achieve high-level of system fault-tolerance. At the
end of this development it can be concluded that the
hardware reconfigurable paradigm may represent one of the
best ways to introduce a new generation of fault-tolerant
systems. This technology combined with the last-generation
software solutions discussed in the paper covers full
predestination for this.

Another conclusion is that reconfigurable technology is quite
easy to “learn and adapt to” a specific fault-tolerant
application. It is required only simple software operations,
without the need of any change on the hardware architecture.
Therefore, represents a well fitted solution for a large scale of
different complexity fault-tolerant system developments.
Hence, it can be also concluded that at current level
microelectronics, the reconfigurable hardware technology is a
versatile and highly recommended solution for such
demanding applications.

REFERENCES

Belli F. and Jedrzeiowicz F., (1990). Fault-tolerant programs
and their reliability, IEEE Transactions on Reliability,
Vol. 16, No. 3, pp. 184-192.

Belzunce F., Marinez H., Ruiz J. (2011). On optimal
allocation of redundant components for series and parallel
of two dependent components. Journal of Statistical
Planning and Inference, Vol. 141, No. 9, pp. 3094-3104.

Berman O. and Kumar U. (1999). Optimization models for
recovery black schemes. European Journal of
Operational Research, Vol 115, No. 2. Pp. 368-379.

Bondavalli A., Giadomenico F., and Xu J. (1993). A cost-
effective and flexible scheme for software fault tolerance.
Journal of Computer Systems Science and Engineering,
Vol. 8, No. 4, pp. 234-244.

Chielle E., (2016). Selective Software-Implemented
Hardware Fault Tolerance Techniques to Detect Soft
Errors in Processors with Reduced Overheads, Porto
Alegre: Programa de PósGraduação em Microeletrônica.

Coulouris G., Dollimore J. and Kindberg T. (2001)
Distributed Systems: Concepts and Design, 4th Edition,
Pearson Education Ltd., New York.

Digilent Co, 2016. http://store.digilentinc.com/fpga-
programmable-logic/system-boards/

Dugan J.B. and Lyu m.R. (1995). Dependability modeling for
fault-tolerant software and systems. John Wiley & Sons
Ltd., pp. 109-138.

Du B.. et al. (2015). On-line Test of Control Flow Errors: A
new Debug Interface-based Approach, IEEE Transactions
on Computers, vol. PP, no. 99.

Giadomenico F., Bondavalli A., JXu J. (1995). Hardware and
Software fault tolerance: adaptive architectures in
distributed computing environments. TR. B415, IEI-CNR.

Husi G., Szász Cs., Hashimoto H. (2014). Application of
reconfigurable hardware technology in the development
and implementation of building automation systems.
Environmental Engineering and Management, Vol.
13/11, ISSN: 1582-9596, http://omicron.ch.tuiasi/EEMJ.

Johnson B.W. (1989). Design and Analysis of Fault-tolerant
Digital Systems, Addison-Wesley series in electrical and
computer engineering, ISBN: 0-201-07570-9.

Khan F.G., Qureshi K., and Nazir B. (2010). Performance
evaluation of fault tolerance techniques in grid computing
systems. Computer and Electrical Engineering, Vol. 36,
No. 6, pp. 1110-1122.

Kumar A., Agrawal M., and Garg S.C. (1986). Reliability
analysis of a two-unit redundant system with critical
human error. Micro. and Reliability, Vol. 26, pp. 867-871.

Leach R.J. (2008). Setting checkpoints in legacy code to
improve fault-tolerance, Journal of Systems and Software,
Vol. 81, No. 6, pp. 920-928.

Levitin G. (2006). Reliability and performance analysis of
hardware-software systems with fault-tolerant software
components. Reliability Engineering and System Safety,
Vol. 91, pp. 570-579.

Lewis E. (2001). A load-capacity interference model for
common mode failure in 1-out-of-2G system, IEEE
Transactions on Reliability, Vol. 50, pp. 47-53.

Lyu M.R. (1995). Software Fault Tolerance, John Wiley .
McAllister D.F. and Scott R.K. (1991). Cost modeling of

fault-tolerant software. Information and Software
Technology, Vol. 33, No. 8, pp. 594-603.

Poledna S. (1994). Replica determinism in distributed real-
time systems: A brief survey, Real-Time Systems 6(3), pp.
289-316.

Randell B., Xu J. (1995). The evolution of the recovery block
concept in Software Fault Tolerance, Whiley, pp. 1-2.

Rampratap T.Z., (2016). Modeling for Fault Tolerance in
Cloud Computing Environment, Journal of Computer
Sciences and Applications, Vol. 4, No. 1, 9-13, DOI:
10.12691/jcsa-4-1-2, http://pubs.sciepub.com/jcsa/4/1/2

Rink N., Castrillon J. (2017). Trading Fault Tolerance for
Performance in AN Encoding, CF’17 proceedings of the
Computing Frontiers Conference, pp. 183-190, ACM
New York, DOI:10.1145/3075564.3075565.

Sari A. and Akkaya M. (2015), Fault Tolerance Mechanisms
in Distributed Systems. Int. Journal of Communications,
Network and System Sciences, Vol. 8, pp. 471-482.
http://dx.doi.org/10.4236/ijcns.2015.812042.

Sharma U., (2012). A Novel Approach for Providing Fault
Tolerance to FPGA-Based Reconfigurable Systems,

108 CONTROL ENGINEERING AND APPLIED INFORMATICS

IACSIT Int. Journal of Engineering and Technology, Vol.
4, No. 6, DOI: 10.7763/IJET.2012.V4.492 pp. 821-825.

Scarpino F. (1997). VHDL and AHDL Digital System
Implementation. Prentice Hall, ISBN-10: 0138570876.

Shin B., (2016). Fault Tolerant Control and Localization for
Autonomous Driving: Systems and Architecture,
Technical Report No. UCB/EECS-2016-83,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS
-2016-83.html

Sulekha R. (2011). Thesis on Software and Hardware
Reliability of Fault Tolerant Systems, PhD Thesis,
Shobhit Institute of Technology and Engineering, A
Deemed-To-Be University Modipuran, Meerut- India.

Sinca R., Szász Cs. (2017, May). High-reliability Electronic
Systems Development and Implementation for Safety
Applications, Journal of Electrical and Electronics
Engineering, P-ISSN: 1844-6035, Vol. 10, nr. 1, pp. 73-
78.

Sinca R., Szász Cs. (2017). Fault-tolerant digital systems
development usinng triple modular redundancy, Int. Rev.
Appl. Sci. Eng. 8(2017) 1, 3-7, DOI:10.1556/1848.2017.8.

Teng X. and Pham H. (2002). A software reliability growth
model for N-version programming systems, IEEE
transactions on Reliability, vol. 51, No. 3, pp. 311-321.

Valdes J. and Zequeira R. (2006). On the optimal allocation
of two active redundancies in a two-component series
system. Operations Research Letters, 34/1, pp. 49-52.

Wattanapingskorn N. and Coit D.W. (2007). Fault-tolerant
embedded system design and optimization considering
reliability estimation uncertainry. Reliability Engineering
and System Safety, Vol. 92, No 4, pp. 184-192.

Wu Y., Wang Y., and Fernandez E.B. (1994). A uniform
approach to software and hardware fault tolerance.
Journal of Systems and Software, Vol. 29, pp. 117-127.

Yamachi H., Tsujimura Y., Kambayashi Y., and Yamamoto
H. (2006). Multi-objective genetic algorithm for solving
N-version program design problem. Reliability
Engineering and System Safety, 91()9. pp. 1083-1094.

Yang L., and Meng X. (2011). Reliability analysis of a warm
standby reparaible system with priority in use. Applied
mathematical Modelling, Vol. 35, No. 9, pp. 4295-4303.

Yang M., G. Hua, Y. Feng, J. Gong, (2017). Software Fault-
tolerance Techniques for Spacecraft Control, Wiley
Online Library, DOI: 10.1002/9781119107392.ch

