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Abstract: In power systems, the single machine-infinite bus system is formalized as a second-order non-
linear differential equation. After accomplishing the phase space formulation of the second-order non-
linear swing equation, we are led to an ordinary differential equation.  After accounting for the noise 
influence, the Single Machine-Infinite Bus (SMIB) system assumes the structure of a Stochastic 
Differential Equation (SDE). This paper revisits the noisy state vector of the stochastic SMIB system 
from non-linear filtering perspectives. In the Fokker-Planck setting, we consider process noise and ignore  
observation noise. On the other hand, the non-linear filtering perspective accounts for the process noise 
as well as observation noise correction terms. Notably, the exact non-linear filtering exploits an appealing 
stochastic integro-differential equation formalism.  The stochastic partial differential equation arises in 
the higher-order and lower-order filtering.  Since the SMIB accounts for greater order of non-linearities, 
we wish to estimate the states of the SMIB system using higher-order filter. Subsequently, we compare 
the filtered state trajectories with celebrated extended Kalman filtering.  This paper fills a niche between 
non-linear filtering and power system dynamics as well as reveals a connection between the four 
formalisms. The four formalisms, which are the cornerstone in this paper, are non-linear ordinary 
differential equation, stochastic differential equation, stochastic partial-integro differential equation and 
stochastic partial differential equations.  

Keywords: Non-linear filtering, Machine-Infinite Bus (SMIB) system, Itô stochastic differential equation, 
stochastic partial differential equations

1. INTRODUCTION 

The Single Machine Infinite Bus system is well studied from 
the power system perspective. The stability of equilibrium 
point of the machine can be examined using swing equation 
in combination with the notion of the derivative of the 
Lyapunov function.   The Lyapunov function is a scalar non-
negative non-linear function of an n  dimensional state 
vector.  A second-order non-linear differential equation 
describes the machine swing equation. After accounting for 
correction terms stemming from the random perturbations 
associated with the single machine-infinite bus system, 
stochastic differential equation arises. The single machine-
infinite bus system is influenced by several perturbations, i.e. 
renewable energy generations, random loads, the stochastic 
perturbations of rotor speed, rotor vibrations due to electrical 
harmonics, mechanical asymmetry and aging, damping 
coefficient, exogenous voltage flicker in the power system 
etc. The resulting stochastic system is described by a vector 
Stochastic Differential Equation (SDE).  Generally, random 
perturbations are modelled as Gaussian white noise 
processes, generalized stochastic processes. (Mumford, 2000) 
argues stochastic differential equation descriptions in his 
philosophical paper in lieu of the deterministic setting for 
dynamical systems. The SDE description will refine 
stochastic stability conditions, estimation algorithms and 
control laws for dynamical systems.  The white noise-driven 

stochastic SMIB system and effect of the noise intensity on 
power systems are nicely explained in (Wei and Luo, 2009) 
and  see (Wang and Crow, 2013) as well. In their paper, first 
the Fokker-Planck equation for a stochastic SMIB system 
was developed and then numerical studies of the SMIB were 
demonstrated. The numerical experimentation is about the 
conditional probability density trajectory of the SMIB 
system, which utilizes a system of parameters and initial data.  
(Odun-ayo and Crow, 2013) analysed power system stability 
using stochastic energy function. (Qin and Li, 2014) added 
randomness in damping coefficient and explained a chaotic 
behaviour of power systems by choosing a set of noise 
intensities. To understand noise influence on   the erosion of 
safe basins in power systems, (Wei et al., 2010) will be a 
good source, see (Zhang et al., 2012) as well. The voltage 
analysis of the stochastic SMIB system is available in 
(Ghanavati et al., 2013; Cotilla-Sanchez et al., 2012) which is 
relatively quite scarce.   The non-linear perspective of the 
single machine-bus systems accounts for the process noise as 
well as observation noise correction terms. Note that the 
process noise as well as observation noise are independent 
random variables. On the other hand, the Fokker-Planck 
setting accounts for the process noise correction terms only.   

The intent of this paper is to develop non-linear filtering 
equations of the single machine-infinite bus system. After 
accounting for random perturbations in deterministic 
dynamics of the SMIB system, we arrive at a randomly 
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perturbed SMIB system.  The randomly perturbed SMIB 
system in combination with the active and reactive power 
noisy measurement system forms a non-linear filtering 
model.  In this paper, non-linear filtering perspectives of the 
single machine-infinite bus are the subject of investigations. 
Non-linear filtering perspectives of the multi-machine infinite 
bus system can be achieved using the component wise 
description involving coupling terms. Generally, there are 
three filtering models, which are popular in system theory: 
i.e.  linear stochastic differential equation coupled with non-
linear observation equation, non-linear stochastic differential 
equation coupled with linear observation equation and non-
linear stochastic differential equation coupled with non-linear 
observation equation. In this paper, we exploit non-linear 
stochastic differential equation coupled with non-linear 
observation equation. The non-linear filtering of this paper 
hinges on the filtering density evolution equation, which 
assumes the structure of a non-linear stochastic partial integro 
differential equation. In (Ghahremani and Kamwa, 2011) 
dynamic state estimation of power system by applying 
discrete-discrete Extended Kalman filter for power system 
dynamics. In (Wang and Crow, 2013; Hirpara and Sharma 
2015), the Fokker-Planck model is the subject of 
investigations. The Fokker-Planck model is a parabolic linear 
homogeneous equation of order two in partial differentiation 
for Markov processes. The Fokker-Planck equation is a 
special case of the filtering density evolution equation.  Thus, 
the results of this paper are more general and sharper version 
of the available results in literature. 

This paper is organized as follows: section 2 derives a theory 
of a stochastic single machine-infinite bus system.  Section 3 
discusses non-linear filtering equation for a stochastic SMIB 
system. Section 4 is about numerical simulations. Concluding 
remarks are given in section 5. 

2. STOCHASTIC SINGLE MACHINE-INFINITE BUS 
(SMIB) SYSTEM 

The swing equation of the single machine-infinite bus system   
is a second-order non-linear differential equation (Kundur 
1994; Chen et al., 2005), i.e.  
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Note that the term V  denotes the voltage magnitude of the 
infinite bus, M  and D are the combined inertia constant and 
the damping coefficient of the generator and turbine 

respectively. The power system parameters aE  and   are 
the transient emf and the rotor angle of the generator 
respectively.  The reactance X  is the sum of the generator 

transient reactance dX 
 and the line reactance .lX  The term 

mP  is the input mechanical power and 
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is the 

electrical power of cylindrical-pole synchronous generator. 
The schematic diagram of equation (1) is illustrated in figure 
(1) of the paper.  

 

Fig. 1. A stochastic single machine-infinite bus system. 

Here, we recast the swing equation that accounts for noise in 
the voltage magnitude of the infinite bus, ),1( 22V  and 

the input mechanical power with additive noise 11mP . 

Thus, we get  
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where 1 and 2  are the independent white Gaussian noise 

processes. That are added to the mechanical power and the 
voltage magnitude of the infinite bus respectively. The 
parameters  21,  are the noise intensities of the white noise 

processes. The mechanical power mP  is assumed to be 

constant. 
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For the notational clarity and consistence, we replace the 

terms 1  and 2  with )(1 tB  and )(2 tB  respectively. The 

terms 1( )B t  and 2 ( )B t  are two independent Brownian 

motion processes. In phase space formulations, we consider 

the state vector T
t yyy ),( 21 ,),( T where     is the 

angular velocity of   the rotor. Thus,  
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Furthermore, the above system can be re-stated as 
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Here, the term ),( tyf t  is the system non-linearity and the 

),( tyG t  is the process noise coefficient matrix. We denote a 

vector Brownian motion using the notation tB .             

 

Fig. 2. An SMIB system filtering diagram. 

Figure 2 shows the SMIB system filtering diagram. The 
parameters 1 2, , , , , , ,a mD M X E V P    are the system 

parameters of the stochastic system of the paper. 

3. NON-LINEAR FILTERING EQUATIONS FOR A 
STOCHASTIC SMIB SYSTEM 

This paper is intended to develop higher-order Kushner-
Stratonovich filtering for the stochastic system considered 
here. The filtering method exploits observation equations. 
Here, we wish to develop ‘filtering’ by taking  the active and 
reactive power measurements of the machine. Thus, the 
vector observation equation becomes 

,),( ttt ddttyhdz                                                           (4) 

where the observation vectors               
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The terms )(t  and   have interpretations as the 

observation noise and the intensity of the observation noise 
respectively. Note that equation (3) in combination with 
equation (4) becomes ‘the filtering model’ of the SMIB 
system. (Kalman, 1960) pioneered filtering for linear 
stochastic differential systems that shaped stochastic control 
theory.  The Kalman’s work on filtering theory was later 
extended to non-linear stochastic differential systems in 
combinations with non-linear observation equations.  That is 
credited to (Kushner, 1967), see a notable work of On 
stochastic differential equations for the non linear filtering 
problem M. Fujisaki, G. Kallianpur and H. Kunita as well.  
The non-linear filtering theory hinges on the filtering density 
evolution, a non-linear stochastic partial integro-differential 
equation. In this context, (Pugachev and Sinitsyn, 1987, pp. 
389) will be a good source, see (Jazwinski, 1970, pp. 178) as 
well, i.e.   

dp £ dtp)( ,))(()( 1 pdthdzthh t
T  

                 (5) 

where the filtering density ),( tYtypp  ,  ttzYt   0,  

and the operator £ (.) denotes the Kolmogorov-Fokker-Planck 

operator (Sharma,  2008).   H J Kushner developed the above 
density evolution equation in the Itô setting.  R L 
Stratonovich developed the filtering density evolution using 

stochastic differential equation with 
2

1
differential.   Note 

that stochastic differential equations with 
2

1
differential can 

be replaced with Itô equivalents.  For this reason, the above 
filtering density evolution is usually known as the Kushner-
Stratonovich equation. The term ‘Kushner-Stratonovich 
equation’ is coined in   filtering theory, see (Pugachev and 
Sinitsyn, 1987, pp. 377) for a greater historical and 
mathematical remark. Notably, the ‘Kushner-Stratonovich 
stochastic method’ for dynamical systems exploits the 
Kushner-Stratonovich equation, the exact stochastic 
evolutions of conditional mean and conditional variance. 
Making the use of the Kushner-Stratonovich equation, the 
definition of the differential of the conditional expectation of 
the scalar function )( tyd of an n dimensional state vector, 

we derive the exact stochastic evolutions of conditional mean 
and conditional variance, see (Jazwinski, 1970, pp. 182-184).  
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Since the procedure to arrive at the exact stochastic evolution 
is lengthy as well as that is quite known in stochastic
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processes literature, the details are omitted. The analytical 
and numerical solutions to exact stochastic evolutions are 
intractable.  We explore higher-order Kushner-Stratonovich 
filtering for non-linear stochastic differential systems. Here, 
we develop higher-order filtering equations up to the third-
order (Boutayeb et al. 1997; Sharma et al. 2006), i.e.  
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where 
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and the operator  E  is a conditional expectation operator, 
which is linear.  Note that the proof of the above coupled 
filtering equations utilizes the ‘Gaussianity’ for the random 
state vector (Park and Scheeres, 2007). The Liptser-Shiryaev 
filtering approach, see (Liptser and Shiryavev, 1977) an 
alternative interpretation of non-linear filtering theory,   
hinges on the notion of the stochastic evolution of conditional

characteristic function. The filtering density evolution 
equation is a consequence of the conditional characteristic 
function evolution equation.   The Appendix of the paper 
discusses conditional characteristic function evolution 
equation of the SMIB system as well. From equations (6)-(7) 
and equations (3)-(4), we get the following Kushner-
Stratonovich power system filtering equations, i.e. coupled 
conditional mean and conditional variance equations: 
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Extended Kalman Filtering (EKF) 

The extended Kalman filtering is a non-linear filtering 
method as well as ‘a special case’ of the above higher-order 
coupled filtering equations. Importantly, extended Kalman 
filtering accounts for state-independent diffusion coefficients 
in the conditional variance evolution equation. The 
component wise descriptions of the extended Kalman 
filtering equations are 
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Making the use of the above coupled extended Kalman 
filtering equations, i.e. equations (13)-(14), for the power 
system filtering model, i.e. equations (3)-(4), we get the 
following evolution equations:     
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Remark 1: Here, it is worth to remark about the exact, higher-
order and lower-order filtering.  The non-linear filtering 
theory is the consequence of the non-linear stochastic 
differential equation in combination with non-linear 
observation. The closed-form solution to non-linear filtering 
equations as well as their numerical solution become 
intractable.  

The approximations to system-non-linearity, measurement 
non-linearity and process noise coefficient about the 
conditional expectation as well as nearly Gaussian 
assumption are led to convenient forms of higher-order and 
lower-order non-linear filtering equations. For the general 
case, exact filtering equations assume the structure of non-
linear stochastic integro-differential equations.  Furthermore, 
after approximations and assumptions, we are led to non-
linear partial stochastic differential equations.  In this regard,   
Liptser and Shiryaev (1977) would be a good source.                               

4. NUMERICAL SIMULATIONS 

We consider the following first set of initial conditions and 
system parameters (Ghanavati et al., 2013) for the numerical 
simulations of the stochastic SMIB system:   

pu,15.0,pu/rad/sec03.0pu,2.1pu,0.1  da XDEV      
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Figures (3)-(4) demonstrate numerical simulations of the 
unperturbed and filtered trajectories of the rotor angle and 
angular velocity of machine. The solid line denotes the 
unperturbed trajectories of the rotor angle and angular 
velocity.  The dotted line denotes higher-order ‘filtered’ state 
trajectories.  These two solid and dotted line trajectories 
utilize the above set of system parameters and initial 
conditions with a relatively smaller damping 
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parameter, pu/rad/sec03.0D . The filtered state trajectories 

account for the random forcing term in the non-linear 
stochastic swing equation.  The filtered state trajectories are 
the most probable trajectories that account for observation 
corrections as well. On the other hand, the unperturbed 
trajectory does not. The filtered state trajectories are the 
consequence of the numerical simulation of stochastic 
differential equations (8)-(12) that can be regarded as the 
filtering equations of the non-linear stochastic swing 
equation.   As a result of these, the filtered state trajectory 
becomes closer to the actual state trajectory and respects 
stochasticity, a reality of dynamical systems.    Importantly, 
the difference between the filtered and the unperturbed 
trajectories is attributed to the observation noise and process 
noise correction terms.  

The extended Kalman filtering trajectories are displayed via 
the solid line and higher-order filtering equations are 
demonstrated in figures (5)-(6) via the dotted line.   
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Fig. 3. A comparison between unperturbed and filtered state 
trajectories.  
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Fig. 4. A comparison between unperturbed and filtered state 
trajectories.  
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Fig. 5. Conditional variance trajectories using the EKF and 
higher-order non-linear filtering. 
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Fig. 6. Conditional variance trajectories using the EKF and 
higher-order non-linear filtering. 

Now, we state the following second set of data:         
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,08.0pu,25.0pu,1.0,MW/MVA4 1  XXH l  

,06.0,02123.0
2

 rad/sec,8.376602 2  



s

s
H

M

    1000,pu,1rad/sec,2)0(rad,1)0( 21  mPyy       

.sec/rad1)0(sec,/rad0)0(,rad1)0( 22
22

2
12

2
11  PPP  

Note that   the second set of data is different from the first set 
of data in the sense that the second set accounts for the larger 
damping parameter pu/rad/sec1.0D   in contrast to the first 

set. The intent of choosing the second set of data is to achieve 
extensive numerical simulations in lieu of scanty numerical 
simulations of non-linear filtering equations. Figures (7)-(8)
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reveal that the difference between the state trajectories, which 
are the consequence of deterministic swing equation and 
stochastic swing equation, are larger. The difference between 
the two trajectories are attributed to the larger damping 
parameter. This suggests the fact that stochasticity 
considerations for the machine swing equation describing the 
larger damping machine dynamics are imperative.  
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Fig. 7. A comparison between unperturbed and filtered state 
trajectories.  
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Fig. 8. A comparison between unperturbed and filtered  
trajectories. 
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Fig. 9. Conditional variance trajectories using the EKF and 
higher-order non-linear filtering. 
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Fig. 10. Conditional variance trajectories using the EKF and 
higher-order non-linear filtering. 

The numerical simulations demonstrated in figures (5)-(6) 
and figures (9)-(10) suggest the superiority of non-linear 
filtering equations (8)-(12) in comparison to EKF equations 
(15)-(19). Generally, the filtering efficacy is adjudged by 
exploiting system parameters leading to bounded state 
trajectories.  As a result of this, the variance trajectories will 
be bounded for the specific set of parameters.  The variance 
trajectories of the both filters are bounded under two different 
sets of data. Thus, the both filters for the non-linear stochastic 
swing equation are useful. Furthermore, the proposed 
filtering of the non-linear swing equation is superior, since it 
offers less variance at time instants.  This paper recommends 
the non-filtering equations stated in (8)-(12) for analysing the 
stochasticity of the SMIB system in the conditional variance 
sense. Note that evolution of conditional variance, the non-
linear filtering equation (7), accounts for the observation 
noise correction term coupled with higher-order measurement 
non-linearities. On the other hand, evolution of conditional 
variance, EKF equation (14), accounts for the observation 
noise correction term coupled with lower-order measurement 
non-linearities.   

Remark 2:   The universality of the method of the paper is 
attributed to four formalisms of applied mathematics, 
ordinary differential equations, and stochastic differential 
equations, a parabolic linear partial differential equation, 
stochastic integro-differential equation and stochastic partial 
differential equation.  Here, the Authors explain how these 
four formalisms arise in the paper.  The phase space 
formulation of the deterministic non-linear stochastic swing 
equation assumes the ordinary differential equation 
formalism. After accounting for the random forcing term, we 
are led to a specific case of the non-linear Itô stochastic 
differential equation. 

Since this paper intends to achieve non-linear filtering of the 
stochastic swing equation that can be achieved using equation 
(5) of the paper as well as the succeeding equation.  Equation 
(5) and the succeeding equation assume the structure of non-
linear stochastic integro-differential equation. Furthermore, 
equation (7) of the paper is a consequence of equation (5) of 
the paper. Notably, equation (7) of the paper assumes the 
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structure of a stochastic partial differential equation in the 
general setting. In   a specific setting, equation (7) for the 
non-linear swing equation results coupled non-linear 
stochastic differential equations, i.e.(8)-(12). Thus, the above 
explains a connection between the four formalisms. 

5.  CONCLUSION 

The main achievement of this paper is to embed non-linear 
filtering perspectives into power system engineering. The 
non-linear filtering equations of the paper hinges on the 
Kushner-Stratonovich filtering for non-linear stochastic 
differential equations. The Kushner-Stratonovich filtering has 
ability to preserve qualitative characteristics of non-linear 
stochastic systems as well as non-linear observation 
equations.  

For the first-time, this paper achieves the non-linear filtering 
of the SMIB system by taking active and reactive power 
measurements of the synchronous generator in lieu of linear 
observation equations. As a result of this, we are led to a 
system of two non-linear filtering observation equations. That 
embeds stochastic corrections in the conditional variance 
evolution equations.  On the other hand, the stochastic 
correction term in the conditional variance equation vanishes 
for linear observation equations.  Thus, the results of this 
paper are sharper and refined.   

Finally, this paper demonstrates a connection between the 
notion of conditional characteristic function of stochastic 
processes and the parameters of the SMIB system in the 
sense of non-linear filtering equation,  see the appendix of 
the paper.   
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APPENDIX 

Since this paper is about the non-linear filtering of the 
stochastic single machine-infinite bus system, it is 
worthwhile to write the conditional characteristic function 
evolution equation in the   ‘non-filtering sense’.  The notion 
of characteristic function has found applications to sketch the 
proof of the Fokker-Planck equation as well as non-linear 
filtering density evolution equation. The stochastic evolution 
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The above stochastic evolution of the conditional expectation 
of the scalar function   is the central result of exact non-linear 
filtering.  In the component-wise description, the above 
evolution is recast as   
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stochastic evoluition of the conditional characteristic function 
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Since the conditional expectation operator  is a linear 

operator, we get  
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                                                                                          (A.2) 

For the stochastic SMIB system of the paper, the stochastic 
evolution of conditional characteristic function becomes a 
special case of equation (A.2), i.e.   
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