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Abstract: The influencing factors associated with the efficient operation of power systems are minimum 
fuel cost and losses in the transmission line. Optimal Power Dispatch (OPD) problem is treated to 
minimize instantaneous operating cost, incremental cost, and transmission line losses considering various 
network operating constraint. Newly developed Nature-inspired optimization algorithms approach are 
proposed in this analysis with robust parameter selections. The results of most popular Genetic Algorithm 
(GA) and based on swarm behavior Particle Swarm Optimization (PSO) are compared with four Nature-
inspired metaheuristic algorithms of Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination 
Algorithm (FPA), and Firefly Algorithm (FA). The quadratic cost function of power generation and 
penalty function to account for inequality constraints on dependent variables are added for solving OPD 
problem.  A common algorithms evaluation parameters such as population size and generation limit are 
designated on an equal scale. Explicit parameters for each algorithm are tuned properly for optimal 
operations. The algorithms are tested on IEEE-26 and IEEE-30 system. Analysis Outcomes obtained 
showcase the efficiency of each algorithms parametric turning improvement. 
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1. INTRODUCTION 

Scheduling and operational future growths of power system 
networks and defining the best scenario of existing systems is 
the essential backbone of fully deregulated power sector as 
commodity enterprises. Optimal power dispatch (OPD) 
problem is dealing with the lowest cost of fuel and loss 
delivery of power produced by organizing the production cost 
at all power plant working on the system (Saadat, 1999). It’s 
an optimization problem with aims to reduce total operational 
cost, and transmission losses, but the minimum loss problem, 
the economic dispatch problems are solved by optimal power 
flow (OPF) program. The OPD with minimum generation 
cost requires that the optimization algorithm calculation 
balance the entire power flow at the same time combining 
with economic dispatch problem (Wood and Wallenberg, 
1996).  The main purpose of optimal power dispatch is to 
identify the optimal set of control variables for minimization 
of the given objective function in our case fuel cost, 
incremental fuel cost and line losses while satisfying a series 
of system constraints over the entire dispatching period. 
Control variables contain discrete variables and continue 
variables, besides that power network composed equality 
constraints and inequality constraints. Therefore when 
regarded as an optimization problem, optimal power dispatch 
is complex nonlinear optimization problem that requires 
algorithms with the capability of exploration and exploitation 
for searching in global search space for optimal results. With 
these in mind, it’s significant to explore and compare 
optimization algorithms for academia and industrial. 

From another point of view is improving economy and 
security of power system are achieved by minimizing the 
total active power transmission losses and operate with 

minimum cost. Numerous classical practices such as gradient 
search technique, non-linear programming, mix-integer linear 
programming, Newton’s approach, Jacobian matrix and 
interior point, are applied to find optimal result of non-linear 
OPD problems (Deeb and Shahidehpour, 1988; Grudinin, 
1998; Granville, 1994; Lee et al., 1984; Narayan, 1999). 
Quadratic programming previously played important role in 
OPD approach (Nanda, 1989). Some of the previous 
problems are solved by a mathematical technique that takes 
the advantage of network run structure of the problem 
(Carvalho et al., 1998). Artificial intelligence approach such 
as an artificial neural network (ANN), chaotic krill herd 
algorithm (CKHA), and Fuzzy logic (FL) play a vital role in 
OPD problem solution with different objective function and 
constraints (Gutierrez-Martinez et al., 2011; Mukherjee, 
2016; Ramesh, 1997). Currently, heuristic and metaheuristic 
based on swam, evolutionary, and nature-inspired algorithms 
take the center stage of OPD solutions with robustness in the 
optimal solution. Particle swarm optimization (POS) and 
hybrid PSO (Ahmet et al., 2016; AlRashidi and El-Hawary, 
2009; Esmin et al., 2005; Yoshida et al., 2000), an improved 
particle swarm optimization algorithm using eagle strategy 
for optimal power dispatch is presented in (Hamza and 
Çetinkaya, 2017), while binary PSO is used in distribution 
grid network reconfiguration for loss minimization and 
voltage profile improvement in (Abdullahi et al., 2016).  
Genetic algorithms (GA), modified GA, and Adaptive GA 
(Devaraj, 2007; Wu et al., 1998), Cuckoo Search (CS), and 
Modified CS (Chetan, 2015; Nguyen, 2016; Thang, 2016), 
Cuckoo Search also play vital role in multi-machine power 
system stabilization analysis apart from OPD problem 
(Rangasamy, 2014). Bat Algorithm (BA) and modified BA 
(Biswal et al., 2013; Latif et al., 2016), Flower Pollination 
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algorithm (FPA) and modified FPA (Kumar, 20015; 
Regalado, 2015), hybridization of FPA and feedforward 
neural network proved to be efficient in forecasting load flow 
in smart grid environment for security assessment (Shehu and 
Çetinkaya, 2018). Firefly Algorithm (FA) (Herbadji et al., 
2013; Hendrawati et al., 2015; Lin et al., 2015) have been 
employed in solving OPD and related power system problem 
with satisfactory results. The economics aspect of a power 
dispatch optimization problem with nature-inspired 
algorithms are treated in (Mimoun, 2013) the idea is based on 
hybrid FFA and Ant Colony Optimization for a practical 
strategy for faster convergence, the finding proved the ability 
of FFA of solution search. 

A Multi-objective Adaptive clonal selection (ACS) an 
artificial intelligence based algorithm for solving OPD with 
load uncertainty to minimized fuel cost, loss, and L-index are 
presented in (Srinivasa, 2016), non-dominated sorting 
procedure has been applied to preserved distributed Pareto 
optimal set, the procedure is verified on IEEE-30 bus system, 
the results are compared with related literature and found 
multi-objective ACS is fit to the problem solutions. In 
(Ahmet et al., 2016), fuel cost is reflected as a cost function 
four heuristic algorithms i.e. PSO, GA, ABC, and DE are 
employed. Valve point effect and a penalty function are 
added to control active power generated violations for 
effective fuel cost results. Finally, the authors concluded that 
GA possesses fast iteration speed, with minimum fuel cost 
for DE. CS based solution to OPD is presented in (Nguyen, 
2016), the objective is to abate total fuel cost, CS is improved 
to combines teaching-learning based optimization to enhance 
the presentation of Cuckoo eggs, the technique was tested on 
IEEE-30 and IEEE-57 bus system. BA is proposed In 
(Biswal, 2013) to solve OPD problems combined cost 
function dispatch in 3 unit and 6 unit system, the results are 
matched with PSO, BA proved to have superior 
computational time. Regalado et al. (2015) presented FPA 
and compared with CS to solve OPD problem on IEEE-30 
bus system, authors conclude FPA achieved best fuel cost 
and time to reach a global best result. 

(Herbadji et al., 2013) applied FFA on IEEE-30 bus system, 
the author considers fuel cost and emission as the cost 
function to be minimized, the author compared the results of 
FA with PSO and GA are found to be in synchronization.  

In this approach, multi-objective functions of fuel cost, the 
incremental fuel cost of each generator, and total real power 
loss are minimized using improved nature-inspired based 
optimization algorithms considering various network 
operating constraint, in an improved parameter setting. 
Penalty factor is added to account for line flow limit, bus 
voltages, and active generator real power violation. The 
objectives of this paper are to compare and investigate, test 
and measure the effectiveness, efficiency, and robustness of 
mainstream nature-inspired metaheuristic based algorithms in 
term of OPD best solutions, systematic convergence on 
power systems limits and applications, reducing operational 
cost and system security. The base case employed PSO and 
GA which are well matured and developed in power system 
applications especially in convergence and best solution, with 
newly developing CS, BA, FPA, and FA to identify 

robustness, and feebleness on IEEE-26 and IEEE-30 bus 
network. The paper is structured in five sections, section one 
introduction of the problems and general introduction, section 
two present problems formulation, while in section three 
summary overview of nature-inspired algorithms are 
reviewed, in section four test system and results are 
discussed, the final conclusion is presented in section five. 
The simulation analysis was carried out in Matlab 
environment.  

2. PROBLEM FORMULATION 

OPD is formulated to reduce fuel cost to the minimum, 
incremental cost and generated power loss is an optimizations 
problems with multi-objective function. Generally, the 
objective functions are express as: 

ܨ		.݊݅ܯ ൌ ଵ݂ ൅ ଶ݂ ൅ ଷ݂                                               (1) 

Where ଵ݂ is fuel cost function 

 ଶ݂ is incremental fuel cost function 

 ଷ݂ is power loss function 

2.1 Fuel cost minimization  

Total fuel cost function employed a quadratic convex curve 
function, minimum fuel cost guarantee how efficiently the 
power plant generators are operated.   

ଵ݂ ൌ ∑ ௜ߛ ௚ܲ௜
ଶ ൅ ௜ߚ

௡௚
௜ୀଵ ௚ܲ௜ ൅  ௣௘௡                                          (2)ܭ

Where ߛ௜, ,௜ߚ  .௜ are cost coefficients for generators fuelߙ
Penalty factor Kpen are calculated depending if there exist 
possible equality or inequality constraints violation, the 
amount are added to fuel cost coefficient. The penalty 
function can transform a constrained problem into an 
unconstrained one. The solution which violates a constraint 
are punished and are regarded as infeasible solutions, thereby 
protecting algorithms feasible solution during the selection 
process, as a result, no much time is spent by the 
optimization algorithm looking for optimal solutions and 
improve the efficiency of optimization.  In a situation where 
all the constraints are not violated the penalty factor is zero.   

௣௘௡ܭ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ
௜ሺܨܮ ௜ܲ െ ௜ܲ

ାሻଶ		,			݂݅	 ௜ܲ ൐ ௜ܲ
ା

௜ሺܨܮ ௜ܲ െ ௜ܲ
ିሻଶ		,			݂݅	 ௜ܲ ൏ ௜ܲ

ି

ݎ݋
௜ܸሺ ௜ܸ െ ௜ܸ

ାሻଶ		,			݂݅	 ௜ܸ ൏ ௜ܸ
ା

௜ܸሺ ௜ܸ െ ௜ܸ
ିሻଶ		,			݂݅	 ௜ܸ ൏ ௜ܸ

ି

݁ݏ݅ݓݎ݄݁ݐ݋			,		0

                                                 (3) 

2.2 Incremental fuel cost minimization 

A functions parameter measuring how expensive the next 
generated power demand will be after generator requested 
supply.  

ଶ݂ ൌ 	 ௜ߛ2 ௚ܲ௜ ൅ ௜ߚ ൅  ௣௘௡                         (4)ܭ

2.3 Active power loss  

Minimum transmission losses secure and guarantee minimum 
cost to efficiently operate power system, the distance at 
which generators are located in the load center determine 
how much losses are inherent in the system network.  
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௡௟
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2.4 Equality and Inequality constraints 

Operating constraints allow the optimization to guarantee the 
optimal component dispatch of generation is within the 
allowable limit, in reality forcing the transmission system 
into limit violation may put the system in danger. The 
equality constraints are given in (6). 
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∗
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∗
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The inequality constraint of line flow of transmission line is 
given in (8), is the transmission capacity between bus i and j              
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ଶݕ஼௜௝൧

∗
ൟ ൑ ௜௝ܨܮ

ା            (8) 

The second inequality constraints associated with generators 
bus voltages, real and reactive power limit, shunt VAR 
reactive power injection, regulating transformer tap setting 
between lower and upper boundaries are given in (9). 
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The above constraints constitute the security of the optimal 
dispatch operation, the nonlinearity of the constraints in 
optimizations necessitate applying penalty factor in the 
objective function, to account the violation which is also a 
cost.     

3. NATURE-INSPIRED METAHEURISTICS 
OPTIMIZATION ALGORITHMS 

The year 1960s and 1970s are two key periods covering the 
growth of evolutionary algorithms, John Holland and his 
associates at the University of Michigan conceptualized  GA.  
He later considered the adaptive system which is first to 
applied crossover and recombination operations for 
demonstrating systems that lead to the development of GA 
(Melanie, 1995). Within year intervals, Kenneth De Jong 
write thesis showing the perspective and supremacy of GA 
for objective functions with noisy, multimodal, or even 
discontinuous (Holland, 1975; De Jong, 1975). Majority of 
classical algorithms are deterministic, in case of stochastic 
algorithms most types are heuristic and metaheuristic, with 
small differences heuristics mean finding solution by 
guessing of many trials, on the other hand, metaheuristic 
algorithms means finding advanced level solutions beyond 
good solutions, and these algorithms usually execute well 
than simple heuristics (Yang, 2014). In practice metaheuristic 
algorithms custom certain trade-offs of randomization and 
local search, Randomization offers worthy chance of 
algorithms deviation at local optimum trap to search on a 
global level (Yang, 2010). Intensification and diversification, 
are two key constituents of all metaheuristic optimizations 
programs. Diversification is to produce different output so 
that search space is explored on a global optimum. 

Intensification allowed exploiting search focus in the region 
of local space that a good solution is within reach (Yang and 
Deb, 2010). This two major component guarantee emergence 
of the best solutions, whereas diversification through 
randomization evades the best fitness confined to the local 
region, and this increases the diversity of solutions. 
Metaheuristic algorithms can be categorized as based on 
population and trajectory-based. In the case, of GA which is 
population-based since the certain set of strings are utilized; 
while PSO, the firefly algorithm (FFA), and cuckoo search 
(CS), which all use multiple agents or particles (Yang and 
Deb, 2009; Yang and Gandomi 2012). Some selected list of 
Nature-Inspired metaheuristic optimization Algorithms; PSO, 
GA, CS, BA, FPA, FFA, are applied on IEEE-26 and IEEE-
30 bus power system, are briefly reviewed. 

3.1 Particle swarm optimization PSO  

PSO is first presented by Kennedy and Eberhart in 1995 
(Kennedy and Eberhart, 1995), motivated by social behavior 
of birds flocking and fish schooling. The algorithm was 
established numerous analysis and simulation of many 
simplified works, and establish to be vigorously efficient for 
solving nonlinear continuous problems, and PSO is attractive 
because very few parameters are entailed for its applicability 
(Shi and Eberhart, 1999). The swarm intelligence based 
algorithms exploit inhabitants of particles that sail through 
hyperspace problem, iteration velocity of each particle are 
randomly adjusted best on neighborhood historical best 
solutions (Eberhart and Kennedy, 1995). The details 
overview and comprehensive survey on the power system 
application of PSO are presented in (Yamille et al., 2008), the 
paper present technical requirement such as type, particles 
formulation, and efficient fitness functions.  

3.2 Genetic Algorithm GA 

The famous and popular evolutionary algorithms are based 
on the mechanism of Darwin principle of evolution, natural 
assortment and regular genetics, (Melanie, 1995).                 
An inhabitant's based algorithms of which search process is 
performed by transforming a set of individual point to 
another in the search space. The three genetic operator of GA 
is crossover, mutation, and selection (Yang, 2010). 
GA is applied in an extensive range of engineering 
applications with ability deal with complex problems in any 
directions, domain. For GA to avoid being a trap in local 
optima, good formulation of the fitness function and care full 
selection of importance parameter are necessary.  

3.3 Cuckoo Search CS 

The emerging CS algorithm is an optimization search 
algorithms formulated and developed by (Yang and Deb, 
2009), their approach mimic brooding parasitic character of 
cuckoo species in a mixture with Levy flight of some bird 
and fruit flies behavior (Yang and Deb, 2009). Fittest 
selection and adaptation to the environment allowed the CS 
algorithm converge to the best optimal values. Yang and Deb 
described CS in three simple ways: each cuckoo lays a single 
egg at once randomly in a chosen nest; in a random selected 
best nest generation’s process will continue; with the secure 
amount of available host nest, intruding egg can discover by 
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the host with probability	݌௔ ∈ ሾ0, 1ሿ. With following 
assumption nest owner usually identify the egg, there after 
destroy the egg or abandon the nest (Yang and Deb, 2010).  
CS algorithm always maintained stable distance between 
local and global search by	݌௔. Local search can be express 
mathematically. 

௜ݔ
௧ାଵ ൌ ௜ݔ

௧ ൅ ݏߙ ⊗ ሺ݌௔ െ ⊗ሻߩ ሺݔ௝
௧ െ ௞ݔ

௧ሻ                         (10) 

Where ݔ௝
௧and ݔ௞

௧  are different solutions from random the 
arrangement, ߩ is a random number,  ݏ is a step size, and ⊗ 
is an entry wise vector product. While global search using 
levy walk are represented by. 

௜ݔ
௧ାଵ ൌ ௜ݔ

௧ ൅ ,ݏሺܮߙ  ሻ           (11)ߣ

And that of levy walk are given in (12) 
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This algorithm can easily be fit into a power system with the 
fixed generator at random bus, with probability the best 
power be generated with minimum fuel cost and transmission 
losses. 

3.4 Bat Algorithms BA 

A nature-inspired metaheuristic BA was developed by Yang 
in 2010 basically on echolocation manners of bats, the 
echolocation fitness allowed the bat to easily prey, 
distinguished diverse insect and, obstructions in total 
darkness (Yang, 2010). For simplicity as proposed by (Yang, 
2010) three idealized rule define BA are followed (Yang and 
Gandomi, 2012; Yang, 2010; Yang, X.S. 2011):  

 Echolocation: detect and differentiate food and 
obstructions. 

 Bats are fly with random velocity at a secure 
frequency with different wavelength and loudness to 
hunt for food.  

 Bat loudness is varied in many ways from maximum 
to minimum. 

Based on rule above virtual movement of bat are express in 
terms of position ݕ௜and their velocity ݏ௜ with new the solution 
given by ݐ time step. 

௜݂ ൌ ௠݂ ൅ ሺ ௠݂௔௫ െ ௠݂௜௡ሻ(13)           ߚ 
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Such that ߚ ∈ ሾ0, 1ሿ  is selected from ca onstant distribution 
with stochastic vector properties.  Here ࢟∗ is a global optimal 
best solution, n bats. With echolocation and related characters 
allowed BA algorithm to perfectly works in multi-objective 
optimization,  especially in power system where darkness 
represent transmission distance with bat using echolocation to 
prey generator power delivery. 

 

 

3.5   Flower Pollination Algorithm FPA 

Another recent emerging nature-inspired based optimization 
algorithm is FPA developed by Yang in 2012, enthused by 
pollination process of flower, which is the transfer of pollen 
that is linked to natural bio habitant (Yang, 2012). Two 
important characters of flower pollination are abiotic and 
biotic, with 90 % biotic pollination and the rest abiotic 
require no pollinators. For FPA to solve multi-objective 
optimization problem such as power system dispatch a 
random weighted sum is added to combine a number of 
objectives so to become composite sole objective (Yang et 
al., 2013). The FPA algorithm can express in four rules for 
updating equations mathematically; Rule 1 global pollination 
and (Rule 3) flower constancy is express in equation (18) 

௜ݔ
௧ାଵ ൌ ௜ݔ

௧ ൅ ∗ሻሺ݃ߣሺܮߛ െ ௜ݔ
௧ሻ                                   (16) 

Where ݔ௜
௧ is i solution vector xi at iteration t, and ݃∗ is the 

present best solution, γ is a scaling factor of step size control, 
L(λ) is a step-size parameter. Rule 2 and Rule 3 both are local 
fertilization are express in (17). 

௜ݔ
௧ାଵ ൌ ௜ݔ

௧൅∈ ሺݔ௝
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Where ݔ௝
௧and ݔ௞

௧  are pollen from diverse flowers with similar 
plant species. If ݔ௝

௧and ݔ௞
௧  are from exact species and 

population this become local search with ∈ൌ ሾ0, 1ሿ uniformly 
drawn. 

Rule 4 is switching probability control between local and 
global pollination of value	݌ ∈ ሾ0, 1ሿ. 

3.6 Firefly Algorithm FA 

Established by Yang in late 2007 then appeared in 2008, FA 
is efficient and intelligent swam centered on flashing 
sequence (Yang, 2010). The bioluminescence process emit 
flashing light, for now the exact functions of such signaling is 
under investigation, common knowledge of flashes 
application is in  breeding partners attraction or food prey, it 
also works as guiding tool against fireflies predators, this 
implies optimization of FA depend on unique flashes of light 
(Lewis and Cratsley, 2008; Yang, 2009). In simple term FA 
flows three ideal rules: 

 Fireflies behave in a unisex manner to attract one 
another. 

 The direct relationship between attractiveness and 
brightness exist.  

 The firefly brightness depends upon objective 
functions landscape. 

The intensity I of fireflies possess a direct relationship to 
brightness and to the attractiveness. For best optimization to 
the simple scenario, firefly brightness I at a specific and 
precise position x is represented as		ܫሺݔሻ 	∝ ሺݔሻ, the 
attractiveness ߚ vary with distance ݎ௜௝ between firefly ݅ and 
firefly ݆. according to inverse square law ܫሺݎሻ varies so that 
becomes. 

ሻݎሺܫ  ൌ
ூೞ
௥మ

                                                                            (18) 
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Is is the light source intensity, for a channel having static light 
absorption coefficient γ, the light intensity I diverge with the 
distance r. that is 

ሻݎሺܫ	 ൌ  ଴݁ିఊ௥,                                                                   (19)ܫ

So ܫ଴ is the unique light concentration at zero r to avoid the 

singularity at the xpression			
ூೞ
௥మ

 , the combine effect can be 

approximated in (20). 

ሻݎሺܫ ൌ ଴݁ିఊ௥ܫ
మ
                                                                    (20) 

Attractiveness ߚ is directly proportional to adjacent firefly is 
define in equation () 

ሻݎሺߚ ൌ ଴݁ିఊ௥ߚ	
మ
                         (21) 

The remoteness of two fireflies i and j at xi and xj is the 
rectangular space in (22), k is the kth component of the three-
dimensional coordinate xi of ith firefly. 
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For two dimension space  
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ଶ
                                         (23) 

The drive of firefly i attracting brighter j is determined by                                                                                                       
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Where ݀݊ܽݎ is randomisation generator,  ߙ randomization 
control parameter, ݔ௜

௧ is the previous value. In summary, the 
intensity of firefly is directly related to their brightness and to 
attractiveness, relative to power system the attractiveness is 
how the network operate efficiently at minimum fuel cost 
with low level losses 

4. TEST SYSTEMS AND RESULTS 

In this approach robustness, efficiency and feebleness of new 
emerging Nature-Inspired based optimization algorithm of 
CS, BA, FPA, and FA are compared against well-developed 
PSO and GA for OPD problems investigation. In our 
proposed approach IEEE-26 and IEEE-30 bus system are 
verified on, penalty function is included in case of limit 
violation. In the optimization procedure initials independent 
variable is assigned randomly to perform power flow using 
Newton–Raphson, and then set depended on variable 
automatically. The optimal solution is achieved using 
respective algorithm setting parameters, the procedure is 
shown in Fig. 1. The algorithms first initialized with random 
values and power flow solution is applied to those values.  
The constraints condition are check if a violation exists 
penalty function is applied. Otherwise, new random values 
are generated with different values. Without any violation, 
fuel cost and incremental fuel cost are calculated with the 
minimum loss for the next step. The best fitness candidate is 
selected, optimization algorithm operators are applied to 
obtained global best value for each one of the algorithms, the 
procedure is repeated until the maximum iteration or 
convergence of the algorithm is reached. Optimization

common parameters controls are generation number and 
population size, other parameters explicitly stated, these 
parameter sets are obtained after several runs of course due to 
randomization a better result becomes worst result in some 
run. Population size = 60, Generation six =200,  

PSO: Inertia weight = [0.4, 0.9], Acceleration factor = [2, 2].  

GA: Roulette function, with scatted crossover, mutation 
function is a constraint, crossover fraction is positive scalar 
(0.8).  

CS: probability of discovering nest ݌௔ ൌ 0.25 step-size 
scaling factor α= 0.01, Lévy exponent λ = 1.5.  

BA: Loudness A= 0.9, pulse emission rate r = 0.8. 

FFA: probability switch p = 0.8. 

FA: absorption coefficient of light γ = 1, attractiveness β= 
0.8, randomization α = 0.9. 

The optimal power dispatch result for 26 bus data are 
presented in Table 1, and for 30 bus data are presented in 
Table 2. To avoid premature result interpretation, several 
simulations run are carrying out with fixed tuned parameters.  
In both cases, the total fuel cost shows a direct relationship 
with the total minimum loss and incremental fuel cost 
obtained for all the algorithms for GA in Table 1. Fuel cost 
(15118 $/h), incremental fuel cost (30.186 $/h), total losses 
(12.161 MW) are relatively higher than PSO, CS, BA, FPA, 
and FA even though GA has a minimum simulation time to 
approach convergence. Fig. 2 depict IEEE-26 bus fuel cost 
convergence curve of both the algorithms, in this scenario 
BA picks optimal convergence value initially (15116.966 
$/h) then the rest algorithms.  

Table 2. Shows BA algorithm returning higher optimal 
operation fuel cost of (801.971 $/h), incremental fuel cost (9. 
861 $/h), and total losses (9.479 MW), then PSO, GA, CS, 
FPA, and FA algorithms but superseded by CS algorithm 
intern of maximum simulation time. Fig. 3 depicted IEEE-30 
bus fuel cost convergence curve, GA algorithm converge at 
51 iterations and stop with optimum values of (801.844 $/h) 
while the others algorithm continues to iterate to the 
maximum selected iteration of 200, that is why the simulation 
time of GA is minimum in both cases. The result from both 
tables there is no best algorithm with minimum real and 
reactive power combination, BA has the minimum slack real 
power of 439.565 MW, follows by GA 440.315 MW, CS 
441.387 MW, and FA 441.403 MW for the case of IEEE-26. 
PSO, CS, and FA have minimum slack reactive power. For 
IEEE-30 case fluctuated combination of real and reactive 
power combination are observed, with BA possessing 
highest.  The voltages profile shows in Fig. 4 for 26 bus 
system, and Figure 5 for 30 bus system are in tandem with 
voltage security of constraint for both the algorithm without 
violation. The figures guarantee voltage stability of our 
approach. The voltage range observed for 26 bus range is 
0.9690 pu minimum and a maximum of 1.0250 pu. For the 
case of 30 bus system bus voltages stable at optimal values of 
0.9957 pu to 1.0820 pu.  
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Proposed Algorithm : 
Optimal_Power_Dispatch (Max_Iterations, Max_Solutions) 
   Parameters List: 
      Num_Iteration: generation counter;  ܰ݊݋݅ݐݑ݈݋ܵ_݉ݑ:  solution counter;  
     Best_solution: value for best solution;  Min_Fitneess: fitness for best solution 
     SOLUTIONS array that holds current generation of solutions 
     Generate_Solutions():Sub-function that generate new solutions depending  
                                         on the optimization algorithm 
     Newton_Raphson(): Sub-function that performs power flow analysis using N-R 
     Violations():Sub-function that checks the constraint violations 
     Optimization_Operators():Sub-function that breeds the new solutions  
01 INITIALISE Num_Iteration =1; ܰ1= ݊݋݅ݐݑ݈݋ܵ_݉ݑ;  
02 SET ܱܱܵܵܰܫܷܶܮ =Generate_Solutions(); 
03 LOOP WHILE Num_Iteration <= Max_Iterations 
04  SET Num_Iteration= Num_Iteration+1 
05  LOOP WHILE ܰ݊݋݅ݐݑ݈݋ܵ_݉ݑ <= Max_Solutions 
06   SET Solution= ܱܱܵܵܰܫܷܶܮሾܰ݊݋݅ݐݑ݈݋ܵ_݉ݑሿ 
07   RUN Newton_Raphson() 
08   IF Violation() 
09    IF IS Generator_Violations 
10     Apply_Panalty() 
11     GOTO Line 15 
12    END IF 
13    GOTO Line 04 
14   END IF 
15   SET ݏݏ݁݊ݐ݅ܨ ൌ  ሺሻ݊݋݅ݐܿ݊ݑ݂	݁ݒ݅ݐ݆ܾܿ݁݋
16   IF ݏݏ݁݊ݐ݅ܨ  < Min_Fitneess;  
17    SET  Min_Fitneess= ݏݏ݁݊ݐ݅ܨ 
18    Best_solution= Solution 
19   END IF 
20   SET ܰ1+ ݊݋݅ݐݑ݈݋ܵ_݉ݑܰ = ݊݋݅ݐݑ݈݋ܵ_݉ݑ 
21  END LOOP 
22  SET ܱܱܵܵܰܫܷܶܮ =Generate_Solutions(); 
23  RUN  Optimization_Operators(); 
24 RETURN Best_solution 
25 END LOOP 

Fig. 1. Proposed pseudocode algorithms. 

Table 1. IEEE-26 bus system optimized comparison results. 

26 bus PSO GA CS BA FPA FA 

௚ܲଵ 441.408 440.315 441.387 439.565 442.087 441.403 

௚ܲଶ 177.229 175.325 177.267 178.159 175.289 177.248 

௚ܲଷ 260.367 253.956 260.360 263.093 261.198 260.368 

௚ܲସ 134.419 131.843 134.435 129.241 135.680 134.437 

௚ܲହ 171.557 182.004 171.545 169.970 171.050 171.544 

௚ܲଶ଺ 90.130 91.718 90.099 95.015 89.819 90.111 
 15116.206 15118.000 15116.206 15116.799 15116.26 15116.206 (h/$)   ܥܨ
 (h/$)   ܥܫ 30.167 30.186 30.167 30.177 30.167 30.167 
 12.110 12.161 12.111 12.044 12.123 12.111 (MW) ܮܶ
Time (s) 302.07 76.77 590.04 291.87 307.23 307.61 

Table 2. IEEE-30 bus system optimized comparison results. 

30 bus PSO GA CS BA FPA FA 

௚ܲଵ 176.732 176.678 176.731 177.957 176.619 176.729 

௚ܲଶ 48.828 48.836 48.828 48.466 49.019 48.829 

௚ܲଷ 21.470 21.463 21.473 21.001 21.333 21.472 

௚଼ܲ 21.643 21.681 21.650 19.621 21.971 21.650 

௚ܲଵଵ 12.101 12.096 12.091 13.106 11.834 12.094 

௚ܲଵଷ 12.000 12.015 12.000 12.726 12.000 12.000 
 801.843 801.844 801.843 801.971 801.848 801.843 (h/$)   ܥܨ
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30 bus PSO GA CS BA FPA FA 
(h/$)   ܥܫ 9.615 9.616 9.612 9. 861 9.618 9.625 
 9.376 9.372 9.376 9.479 9.377 9.376 (MW) ܮܶ
Time (s) 261.48 67.65 527.51 288.48 262.58 264.36 

 

Fig. 2. Convergence curve of 26 bus fuel cost.  

 

Fig. 3. Convergence curve of 30 bus fuel cost.

 

Fig. 4. Voltage profile IEEE-26 bus. 

 

Fig. 5. Voltage profile IEEE-30 bus. 
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5. CONCLUSIONS 

The paper investigates the ability to emerge nature-inspired 
based algorithm of CS, BA, FPA, and FA against well-
developed metaheuristic swam intelligence PSO and 
evolutionary GA algorithms application for solving OPD 
problem. CS, BA, FPA, and FA compete favorably against 
PSO and GA even though with little or similar variation in 
objective function result. The result indicates GA has 
minimum iteration time due to earlier convergence, CS 
exhibit good result with maximum iteration time due to the 
utilization of Lévy process rather than random walk, while 
PSO, FPA, and FA maintain similar attribute of minimum 
cost, losses, and iteration. BA shows special attribute of 
earlier global convergence, this is due to key features of 
echolocation frequency turning, auto-zooming of solution 
region and couple with parameter control during iteration. 
The uniqueness of results among the algorithms shows a 
strong dedication to parametric turning capabilities. Finally, 
for the case of IEEE-26 bus system CS, BA, FPA, and FA 
perform well together with PSO in minimizing fuel cost, 
incremental fuel cost,  and transmission losses, although GA 
converges first. For the case of IEEE-30 bus system, all the 
algorithms proved efficient in solving OPD problem with the 
almost similar result, but BA shows the slightly higher value 
of fuel cost.  
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APPENDIX 

   Appendix A. IEEE-26 coefficient of generators unit  

No  ߙ ߚ ߛ ௚ܲ௜
ି  ௚ܲ௜

ା  

1 0.007 7 240 100 500 
2 0.0095 10 200 50 200 
3 0.009 8.5 220 80 300 
4 0.009 11 200 50 150 
5 0.008 10.5 220 50 200 
26 0.0075 12 190 50 120 
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    Appendix B. IEEE-30 coefficient of generators unit  

No  ߙ ߚ ߛ ௚ܲ௜
ି  ௚ܲ௜

ା  

1 0.02 2 0 50 200 
2 0.0175 1.75 0 20 80 
3 0.0625 1 0 15 50 
8 0.00834 3.25 0 10 35 
11 0.025 3 0 10 40 
13 0.025 3 0 12 40 

NOMENCLATURE 

 ௜௝ Voltage angle difference between buses ith and jthߠ

Ը Component of the real part 
Ա Component of the imaginary part 
  ஼௜௝ Shunt admittance between buses ith and jthݕ
݊݃ Generator number in the system  
݈݊  Transmission line number 
௜ܨܮ   MVA capacity of line the between buses ith and jth 
 Conductance of branch k  ࢑ࢍ
௜ܻ௝ Admittance between buses ith and jth 

௝ܸ Voltage at bus jth 

௜ܸ  Voltage at bus ith 

௜ܸ
ି Lower voltage at bus i 

௜ܸ
ା Upper voltage at bus i 

௜ܲ   Real power at bus ith  
௚ܲ௜ Real output power bus ith 

௚ܲ௜
ି  Lower limit of real power at bus ith 

௚ܲ௜
ା  Upper limit of power at bus ith 

ௗܲ௜ Real power at bus i 

ܳௗ௜ Reactive power at bus i 
ܳ௚௜ Reactive output power bus ith 

ܳ௚௜
ି  Minimum of reactive power limit at bus ith 

ܳ௚௜
ା  Maximum of reactive power limit at bus ith 

ܳ௖௜ Reactive power supply by shunt at bus ith 
ܳ௖௜
ି  Minimum Reactive power by shunt at bus ith 

ܳ௖௜
ି  Maximum Reactive power by shunt at bus ith 

௜ܶ  Transformers tap setting at line ith 

௜ܶ
ି Lower transformer tap setting 

௜ܶ
ା Upper transformer tap setting 

 


