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Abstract: Model Reference Adaptive Control (MRAC) strategies find application in flight control 
because of changes in dynamics of flight conditions. This paper demonstrates an application of Fractional 
Order Adjustment Rule MRAC (FOAR-MRAC) with the modification of model error dead zone for 
adaptive control of Twin Rotor Multi-input multi-output System (TRMS). Here, we implement FOAR-
MRAC structure with feedforward and feedback MIT rules by using a fractional order integrator. 
Previously, Vinagre et al. have reported that MIT with fractional order integrator can improve tracking 
performance of MRAC. In the current experimental study, we modified model approximation error by 
using a piecewise linear, near-zero dead zone function and manage stability of adaptation process in 
practical application. Accordingly, when the control system response approximates to response of 
reference model, adaptation process is interrupted. This modification improves quasi-stabilization of 
updating rule by omitting low level errors and contributes to applicability of MRAC in real applications. 
An adaptive PID rotor control system is developed by integrating the proposed FOAR-MRAC structure. 
Simulation and experimental results, obtained for TRMS setup, are presented to show effectiveness of the 
proposed method. 

Keywords: Adaptive PID controller, model reference adaptive control, fractional order integrator, DC 
rotor control, TRMS 



1. INTRODUCTION 

Model reference adaptive control has been traced back to 
sixties. Originally, model reference approach was developed 
around 1960 (Osburn et al., 1961) and considered a decade 
later by Landau (Landau, 1979).  Afterwards, MRAC method 
has become a fundamental topic of adaptive control and 
extensively studied in many works (Astrom and Wittenmark, 
1995; Vinagre et al., 2002). MRAC is known as an effective 
and straightforward approach to implement. It was shown 
that MRAC can improve robust performance in case of 
parameter variations, noise and uncertain dynamics 
(Bernardo et al., 2013). For this reasons MRAC has been 
widely utilized in practical applications. For instance, real-
coded genetic algorithm was implemented in tuning of a 
modified MRAC structure for hybrid tank control application 
(Mohideen et al., 2013). MRAC was modified for the speed 
estimation of the induction motor drive (Ravi et al., 2012). 
Guo and Parsa implemented MRAC for control of five-phase 
interior-permanent-magnet motor drives (Guo and Parsa, 
2012). MRAC structure was also used for distributed control 
applications: A distributed adaptive protocol was proposed 
for the system without disturbances by adopting the MRAC 
(Liu and Jia, 2012). A distributed model reference adaptive 
control architecture was developed to achieve cooperative 
tracking of uncertain dynamical multi-agent systems, where 
the reference model serves as a virtual leader for the group 
(Peng et al., 2013). There are also comparative case studies 

that implement MRAC and compare with the control 
performance of other methods.(Duka et al., 2007; Abraham et 
al., 2016). As a consequence, MRAC strategy was considered 
particularly for the control applications where system 
dynamics can alter by changing environmental condition. For 
instance, a solution for fault-tolerant tracking control for 
near-space-vehicle dynamics was proposed (Jiang et al., 
2010). Sadeghzadeh et al. discussed testing trajectory  and  
the  experimental  flight  testing  results  with  both  Gain-
Scheduled-PID and  MRAC for  fault/damage  (Sadeghzadeh 
et al., 2011). In order to address the control of an air-
breathing hypersonic flight vehicle (AHFV) with actuator 
saturation, a model reference adaptive switching control 
approach was suggested (Dong et al., 2010). 

In general, flight control systems should deal with nonlinear 
aerodynamics and variability of flight conditions, altitude, 
payload and weather conditions. Reference model based 
adaptive control systems provide self-tuning of control 
systems and it can contribute to robust performance of flight 
control systems under varying conditions (Alagoz et al., 
2013). Considering instantaneously changing dynamics of 
flight conditions, MRAC has significance in flight control 
applications because of a real-time tuning of controller 
according to a reference model response that allows online 
adaptation to this condition. Meta-heuristic optimization 
methods can find satisfactory solutions in simulations 
(Alagoz et al., 2013; Tran and Wang, 2016), these methods 
perform repetitive set and trail sessions in order to update 
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controller coefficients. Hence, meta-heuristic methods need 
further development to be used in real-time tuning 
applications. In particular, MRAC structure is useful for real 
control systems, where online adjustment of control 
parameters are required during changing control dynamics. A 
popular implementation of MRAC employs well known MIT 
rule that is based on descending of model approximation 
error regarding to gradient directions of cost function. 
Essentially, this mechanism leads to real-time tuning of 
control system without a need for distinct set and trail actions 
during operation. 

Nowadays, there is a growing trend for utilization of 
fractional calculus in solution of science and engineering 
problems (Petras, 2011). Specifically, the control engineering 
has been widely benefited from advantages of fractional 
calculus. Many works have shown that fractional order 
controllers and system models can enhance control system 
performance (Oustaloup, 1991a, 1995, 1999; Podlubny 
1999a, 1999b; Chen, 2004; Petras, 1999, 2011; Valerio, 
2012; Monje, 2004, 2010; Yeroglu and Ates, 2014; Yeroglu 
and Kavuran, 2014). In this fashion, Vinagre et al. have 
improved the performance of conventional MRAC structure 
in a theoretical study by performing fractional order 
integration in MIT rule (Vinagre et al., 2002). For 
experimental illustration, MRAC with fractional order 
feedback MIT rule was implemented on a low-cost ARM 
microcontroller for coaxial rotor control application (Kavuran 
et al., 2016). In the current study, we implement forward and 
backward MIT rules and investigate contribution of dead 
zone error modification for control of TRMS platform. 

This paper presents an experimental study on TRMS, which 
demonstrates implementation of FOAR-MRAC structure for 
adaptive rotor control. The study discusses solutions to 
improve real-time control performance of FOAR-MRAC 
structure, which implements feedforward and feedback MIT 
rule. In order to manage approximation of control system 
response to the response of reference model, we used a near-
zero dead zone for model approximation error. This 
modification enables to establish adaptation process in two 
states: (i) adaptation active and (ii) adaptation interrupted. 
When control system does not yield response similar to 
reference model, the system goes into the adaptation active 
state and updates gain parameters of the control system. It 
interrupts the adaptation process, again, in the case that 
control system response approximates to the reference model. 
Accordingly, adaptation process activates when responses of 
the control system and reference model are different from 
each other. This also prevents complications resulting from 
continuously updating of parameters. We also show that this 
modification contributes to updating rule of FOAR-MRAC 
by omitting low level errors and makes the adaptation process 
more robust against the noise and disturbance of practical 
systems. Rotor control generally needs PID control action to 
obtain a satisfactory time response. The proposed FOAR-
MRAC is integrated to closed loop PID control system of DC 
rotor to develop an adaptive PID control. Conventional 
FOAR-MRAC structure provides only adaptive proportional 
control actions, however we observed that control of TRMS 

requires the utilization of PID control actions. TRMS 
simulation and experimental results obtained for FOAR-
MRAC, conventional MRAC are compared and results are 
discussed. 

2. METHODOLOGY 

2.1. Preliminaries of Fractional Calculus 

Fractional order derivative operator is an extension of integer 
order one. The first discussions on a fractional-order 
derivative (FOD) trace back to 17th century with a 
speculation between L’Hospital and Leibniz (Ricardo et al., 
2010; Leibnitz, 1962). However, underpinning works in the 
field were carried out in the last century by suggestion of 
popular definitions e.g. Grünwald-Letnikov, Riemann-
Liouville and Caputo definitions. The Caputo definition was 
given as, (Petras, 2011; Sierociuk et al., 2013), 
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where, the operator a tD  represents fractional order 

derivative operator. Parameters a  and t  denote the lower 
and upper bounds, and parameter R   stands for the 
fractional-order. (.)  is Euler’s gamma function.  Laplace 

transform of fractional order derivative was used in transfer 
function modelling and it was expressed as 

( ( )) ( )L D f t s F s   for zero initial conditions. According to 

Equation (1), one can see that fractional order derivative is 
not localized and it spreads backwards in time to all previous 
values of function. Due to inclusion of all previous values in 
function in time, realization of ideal fractional order 
derivative consumes a great deal of computation resources as 
time goes by. To reduce computation complexity, integer 
order approximate models of fractional order models have 
been developed and widely utilized in realization of 
fractional order system models in applications. For control 
applications, due to providing a satisfactory low frequency 
region approximation to fractional order derivative operators, 
Continued Fraction Expansion (CFE) approximation method 
is commonly used in practice. In this study, we implemented 
the fourth order integer order approximate model of 
fractional order derivatives by using following CFE 
expansion (Chen et al., 2004), 
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2.2. Adaptive PID Control by FOAR-MRAC with Error Dead 
Zone Modification 

Conventional MRAC structure was proposed for gain 
adaptive control applications. The adaptation mechanism of 
MRAC is based on gradient descent optimization, which was 
also known as MIT rule. The model approximation error is 
defined as, 

mp yye                                                               (3) 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     103 

     

 

where 
my  is the reference model output, and 

py  is the 

control system output. Approximation of this error to zero 
enforces the control system adapt itself according to response 
of reference model. The reference model is commonly chosen 
as a theoretical model providing a desired control 
performance (Kavuran et al., 2016). MRAC method can 
perform adaptation under the assumption of that system 
parameters deviate more slowly than the adaptation 
parameter of MRAC because of the quasi-stationary 
treatment of derivatives (Vinagre et al., 2002). In order to 
improve quasi-stationary settle of adaptation parameters in 
practical applications, we employed a dead zone error 
function as in Fig. 1. This function interrupts adaptation 
process when an acceptable adaptation to reference model is 
achieved. 

 

Fig. 1. Schematic diagram of MRAC, with dead-zone error 
modification. 

In practice, fully equalization of control system to a reference 
model may not be always possible, and it may prevent 
stabilization of adaptation parameters. Instability of 
adaptation parameters results in decrease of control 
performance. On the other hand, dead zone modified error is 
also needed for the reduction of negative effects of noise and 
instantaneous parameter fluctuations on the adaptation 
process (Lavretsky, 2009). The dead zone function to modify 
model approximation error signal is expressed by means of 
piecewise linear function as following, 
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Fig. 2(a) depicts piecewise linear dead zone function. 
Parameter ze  specifies the width of error dead zone, where 

adaptation process should be interrupted. When the reference 
model and control system outputs are similar enough to each 
other, de  takes the value of zero because the amplitude of 

model approximation error ( )e t  is less than ze  threshold. If 

the reference model output and control system output begin 
to discriminate, de  takes the value of ( )e t  at linear part, and 

FOAR-MRAC system performs adaptation process until the 
( )e t  decreases into dead zone ranges.  

Parameter ze  defines a threshold for the transition between 

activation and interruption states of adaptation process. 
Activation or interruption of adaptation process is depicted 

according to the magnitude of model approximation error in 
Fig. 2 (b) and (c). Adaptation process enforces the decrease 
of ( )e t  by performing MIT rule and hence it is in tendency of 

driving the system towards interruption of adaptation process 
in time.  
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Fig 2. (a) Piecewise linear dead zone function for the 
modification of model approximation error; (b) State 
transition of adaptation process; (c) An illustration of 
activation or interruption of adaptation process according to 
magnitude of model approximation error. 

Whenever responses of reference model and control system 
differ, it increases amplitude of ( )e t  over ze  and FOAR-

MRAC goes in adaptation active state. Thus, it ensures 
approximation of control system response to reference model 
response by minimizing a convex cost function ( J ) via MIT 
rule. Besides, the dead zone around zero reduces misleading 
effect of random system noise as long as noise magnitude is 
less than ze . Therefore, presetting of ze  should be done 

according to requirements of control applications.  

Major advantage of error dead zone modification comes from 
that it is very helpful to overcome complications encountered 
in real applications. Because, this modification indeed 
introduces a tolerance range for control system perturbation 
and thus it prevents disturbance of control performance by 
continual parameter updating of adaptation process. It 
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triggers adaptation process only when the discrepancy 
between real control system and reference model exceeds a 
tolerable range that is configured by the threshold ze . The 

cost function to be minimized was given as, 

21
( ) ( )

2 dJ e                                  (5) 

According to (5), MIT adjustment rule was expressed as,  
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Equation (6) allows to update adaptation parameter ( ) in 
the direction reducing the cost function. Later, Vinagre et al. 
modified the conventional MRAC structure by using 
fractional order integrator as, 
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, the adaptation parameter   was 

obtained as, 

 d mD e y               (8) 

Fig. 3 illustrates feedforward and feedback MIT rule 
implementation of FOAR-MRAC for rotor control 
application. The figure also includes the dead zone block that 
is connected to model approximation error. By feedforward 
and feedback MIT rule, control signal from PID controller is 
modified as, 

1 2( ) ( ) ( )cu t u t y t                  (9) 

where, 1  parameter is for feedforward adaptation and 2  

parameter is for feedback adaptation of the control system. 
The temporal evaluation of 1  and 2  adaptation parameters 

were written to minimize the cost function as the following,  
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Reference model is assumed to be a first order system in the 

form of m

m

b

s a
. When the PID controller is considered in 

Fig. 3, one can write sensitivity derivatives as,  
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Here, ( )PID s  represents transfer function of PID controller 

defined as ( ) /p i dPID s k k s k s   . The solutions for the 

update rules of parameters 1  and 2  with dead zone error 

modification can be written as follows, 
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Fig. 3. Block diagram of proposed FOAR-MRAC structure 
for TRMS rotor control. 

Equations (14) and (15) imply the interruption of adaptation 
process, in the case that real control system response and 
reference model response are similar enough. Consequently, 
the condition ( ) ze t e  contributes to stabilization of 

adaptation parameters 1( )t  and 2 ( )t . For ( ) ze t e , 

adaptation process takes place according to solutions of 

1( ) ( ) ( / )( ) ( )m
p i d c p

m

a
t k k s k s u y e t

s s a

     


 and 

2 ( ) ( ) ( )m
p

m

a
t y e t

s s a

 


. In conventional FOAR-MRAC 

structure, it was written as 1( ) ( ) ( )m
c

m

a
t u e t

s s a
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

 and it 

is limited to a proportional gain control (Vinagre et al., 2002). 
Since, rotor control needs to support of integrator and 
derivative control actions to present a desired flight control 
performance, FOAR-MRAC structure should work in 
conjunction with conventional PID control systems (Kavuran 
et al., 2016). This integration also brings advantage of easily 
transformation of conventional PID control system into 
adaptive PID control systems. 
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3. SIMULATION STUDY 

The TRMS is an experimental system that has been 
developed for flight control simulation. It is a two-rotor 
system which manoeuvres by vertical and horizontal rotors, 
(Tao et al., 2010). Fig. 4 shows a picture of TRMS 
experimental system. The motion of the shaft can be 
controlled by the input voltages that adjust the rotational 
speed of these two propellers driven by DC electric motors. 
The pitch rotor has a control on vertical angle of the shaft, 
and the yaw rotor controls the horizontal angle of the shaft. A 
pendulum counterweight is attached to the propeller shaft to 
adjust the angular momentum of the pitch rotor motion on the 
vertical plane (Alagoz et al., 2013).  

 

 

 

 

 

 

Fig. 4. Representation of TRMS system 

The positioning control of vertical rotor speed introduces a 
nonlinear control problem (Ahammad and Purwar, 2009).  In 
our simulations, we used nonlinear dynamical model of pitch 
rotor, which considers the friction momentum, the gravity 
momentum, the gyroscopic momentum and the cross reaction 
momentum. Dynamic model of the pitch rotor was given as 
follows, (Bernardo et al., 2013; Mohideen et al., 2013; Song 
et al., 2013). 
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where   is the pitch angle and D  represents angular 

velocity around the vertical axis. The parameter 1  is output 

torque of pitch rotors and u  is voltage applied to the 

electrical motor. Remaining parameters of the TRMS are 
given in Table 1 (Song et al., 2013). The function ( )f x  

represents nonlinearity.  

TRMS simulations were performed via Matlab/Simulink 
environment. Fig. 5 shows pitch angle responses of TRMS 
system for a multi-sinusoidal input signal given by, 

0.4 0.1sin(2 0.05 ) 0.1sin(2 0.02 )cu t t           (17) 

In simulations, 4   and 0.03ze   were configured for the 

proposed FOAR-MRAC structure. Fig. 5(a) shows the 
response obtained by conventional MRAC structure by 

setting 1.0  . Fig. 5(b) shows FOAR-MRAC structure by 
setting 1.55  . Fractional integrator for 1.55   was 
implemented by CFE method according to (2) as follows, 

4 3 2

1.55
4 3 2

0.8792 35.4895 538.257

878.5345 228.5983
1/

228.5983 878.5345 538.257

35.4895 0.8792

s s s

s
s

s s s

s

  
 


 

 

        (18) 

Table 1.  Parameters of TRMS model. 

Symbols Definitions Values 

 1B  
Friction momentum function 
parameter of vertical axis 

6x10-3 
Nms/rad 

 1I  
Moment of inertia of pitch 
rotor 

6,8x10-2 
kg,m2 

 1b  Static characteristic parameter 0,0924 

 1a  Static characteristic parameter 0,0135 

 1  Momentum of pitch rotor  1
1

11 10

k
u

T s T  


 1k  Gain of pitch motor 1,1 

 10T  Denominator of pitch motor 1,2 

 11T  Denominator of pitch motor 1,1 
 

For PID controller, 0.05pk  , 2dk   and 0.9ik   

coefficients, were used in the simulation. These PID 
coefficients were not well-tuned coefficients for PID control 
in order to show performance improvement provided by 
adaptation process. Results in Fig. 5 reveal that FOAR-
MRAC with dead zone error modification can improve 
reference model tracking performance. Fig. 6 (a) and (b) 
demonstrate that FOAR-MRAC structure with 1.55   can 
speed up adaptation process. As shown in figures, adaptation 
parameters of FOAR-MRAC structure ( 1.55  ) settle 
faster to higher value than those of conventional MRAC 
structure ( 1.0  ). Fig. 7 shows dead zone modified error 
signal of FOAR-MRAC structure for 0.03ze   and 

1.55  . After acceptable adaptation is achieved, the dead 
zone function assigns zero value to error signal in order to 
interrupt adaptation process. This also improves quasi-
stationary change of adaptation parameters and reduces 
negative effects of noise and distortion on the adaptation 
process. In order to demonstrate this effect, we applied a 
square wave reference signal to FOAR-MRAC structure. 
Figs. 8 and 9 compare the simulation results at the presence 
and absence of dead zone modified error.  

As seen in figures, since a desired model approximation to 
reference model was achieved, FOAR-MRAC with error 
dead zone interrupts adaptation process at about 300 sec. 
However, FOAR-MRAC without error dead zone continued 
adaptation process and it consistently increases adaptation 
parameters. This leads to overshoots in the response of 
FOAR-MRAC without error dead zone as seen in Fig. 8(a). 
Rotor control for multi-rotor systems particularly requires 
smooth and low overshoot control to maintain flight stability 
and reduces energy consumption (Alagoz et al., 2013). In this 



Yaw  
Rotor 

Pitch  
Rotor 
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manner, error dead zone modification to FOAR-MRAC 
structure allows low overshoot control of adaption process 
and improves rotor control performance. Fig. 10 shows 
simulation results when input disturbance was applied to 
TRMS. Disturbance signal was composed of random signal 
with a bias level. As seen in figures, since a desired model 
approximation to reference model was achieved, FOAR-
MRAC with error dead zone interrupts adaptation process at 
about 200 sec. However, after disturbance started at 300 sec, 
the proposed FOAR-MRAC reactivates adaptation process so 
that the response of control system slightly diverges from 
reference model response and it increases the model 
approximation error ( )e t . After adapting new working 

condition, ( )e t  reduces to below of threshold ze  and it 

interrupts again adaptation process and performs in normal 
PID control mode. 

(a) 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Fig. 5. Pitch angle response of TRMS for (a) 1.0   and (b) 
1.55  . 
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Fig. 6. a) Temporal evolution of 1  for 1.0   and 

1.55  ; b) Temporal evolution of 2  for 1.0   and 

1.55  . 

 

 

 

 

 

 

 

 

Fig. 7. Error with dead zone for integer and fractional cases. 
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Fig. 8. a) Step response FOAR-MRAC with and without dead 
zone modified error; b) Model approximation error signal 
with dead zone and without dead zone.  
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Fig. 9. Temporal evolution 1  and 2  for FOAR-MRAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Simulation results of FOAR-MRAC without dead 
zone under input disturbance applied to TRMS.  

4. EXPERIMENTAL STUDY 

For experimental demonstration of proposed FOAR-MRAC 
structure, we conducted experiment study on the TRMS 
experimental setup shown in Fig. 11(a), which was produced 
by Feedback Inc. Fig. 11(b) illustrates real time Simulink 
control model of TRMS including the proposed FOAR-
MRAC structure. The control system was implemented in 
adaptive controller block and the real time data acquisitions 
for control operations were performed by “Advantech PCI 

1711” interface cards installed in the computer. The 
experiments were carried out in indoor conditions. Fig. 12 
shows pitch angle responses of TRMS system for a multi-
sinusoidal input signal given by (17). As in the simulation, 
we configured  4   in the experiment study. However, we 

set 0.04ze   due to the noise and disturbance of 

experimental setup. A PID controller with 0.1pk  , 2dk   

and 0.6ik   coefficients are used in the experimental study. 

Fig. 12 shows the responses obtained by conventional MRAC 
structure for 1.0   and the proposed FOAR-MRAC for 

1.3  . Fractional integrator for 1.3   was implemented 
by CFE method according to (2) as follows,  

4 3 2
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Fig. 11. (a) TRMS experimental setup; (b) Real time control 
model of TRMS including FOAR-MRAC with error dead 
zone modification. 
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(b) 

 

 

 

 

 

 

 

Fig. 12. Pitch angle response of TRMS for (a) 1.0   and 
(b) 1.3  . 

Fig. 13 demonstrates that FOAR-MRAC structure ( 1.3  ) 
can provide faster adaptation than the conventional MRAC 
( 1.0  ) in the same conditions. Fig. 14 shows dead zone 
modified error signal of FOAR-MRAC structure and 
conventional MRAC. After acceptable adaptation 
performance was achieved, the dead zone kept error signal at 
zero value in order to interrupt adaptation process. Since 
FOAR-MRAC structure provides faster convergence than 
conventional MRAC, FOAR-MRAC goes adaptation 
interrupted state rather earlier than conventional MRAC. In 
order to demonstrate operation of dead zone modification of 
model error, Figs. 15, 16 and 17 show response of TRMS 
with and without dead zone modification. In this experiment, 
a rectified sinusoidal signal was applied to the system input 
as the following, 

0.3 0.2sin( ) 0
( )

0.3 2c

t t
u t

t

  
  

   
    

,        (20) 

where 0.1 / secrad  . As shown in figures, without dead 

zone modification, adaptation process performs continuously 
and this can prevent quaisi-stabilization of adaptation 
parameters 1  and 2 . Fig. 17 reveals noisy data of model 

approximation error that is captured from experimental 
system.  
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Fig. 13. a) Deviation of 1  for 1.0   and 1.3  ;  

b) Deviation of 2  for 1.0   and 1.3  . 

 

 

 

 

 

 

 

 

 

Fig. 14. Error with dead zone for integer and fractional order 
cases. 

 

 

 

 

 

 

 

 

 

Fig. 15. Response of TRMS with and without dead zone 
modification for 1  . 
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Fig. 16. Evolution of parameters 1  and 2  with and without 

dead zone modification for 1  .  

 

 

 

 

 

 

 

 

 

 

Fig. 17. Evolution of model approximation error signal with 
and without dead zone modification for 1  . 

Due to structural noise in system and external disturbances, 
the model approximation error fluctuates around the zero. 
This noisy data, which can unnecessarily stimulates 
parameter updating of MRAC, is suppressed by the dead 
zone application as shown in the figures. 

5. DISCUSSIONS AND CONCLUSIONS 

Control of fight systems needs adaptive control techniques to 
deal with changing flight conditions. This study discusses 
application of FOAR-MRAC method for adaptive rotor 
control of TRMS. One of the advantages of the proposed 
adaptive control system, a PID control loop can be 
transformed into adaptive system only by appending FOAR-
MRAC structure. This property makes it easy-to-use in flight 
control applications, where a PID control loop has been 
already employed. We implemented feedforward and 
feedback MIT rules with fractional order integrator and 
modified FOAR-MRAC structure for requirements of 
experimental rotor control application. Controlling of multi 
rotor system requires smooth and low overshoot control 

responses. Configuring the theoretical reference model for 
smooth and low overshooting allows online improvement of 
PID control system response by support of FOAR-MRAC 
structure. Contribution of this study for adaptive control has 
two folds: One is the dead zone modification of model 
approximation error, which enables management of 
adaptation process for real applications. The other is 
development of model reference adaptive PID control system 
by integrating FOAR-MRAC structure. 

Simulation and experimental study shows us that dead zone 
error modification to MRAC structure can facilitate practical 
utilization of MRAC structures. It was observed that quasi-
stabilization of updating rule is a major problem for real 
application of FOAR-MRAC structure in flight control 
application. To deal with this problem in practical 
applications; we used a model approximation error with a 
dead zone modification in addition to combine with a PID 
controller. Piecewise linear function was used to implement 
an error dead zone around the zero. The dead zone near to 
zero forms error insensitive region. This region provides 
interruption of the adaptation process, when the model 
approximation error magnitude decreases below an 
acceptable error level. This avoids the over-adaptation of 
FOAR-MRAC structure or misleading effects of noise and 
disturbances on the adaptation process. We demonstrate these 
effects in numerical and experimental results. 

For the proposed adaptive rotor control, employment of 
model approximation error with dead zone modification 
enables to management of adaptation process in two-state: 
adaptation active state and adaptation interrupted state. This 
allows operation of adaptation process only when the 
response of reference model and real control system diverge 
undesirably. We concluded that dead zone modification to 
model error enhances applicability of MRAC based adaptive 
control methods in real control engineering problems. 

Conventional PID control systems are commonly used in 
industrial control applications. This study demonstrates 
integration of conventional PID control to FOAR-MRAC 
structure. This integration enables to transformation of PID 
control systems into model reference adaptive control 
systems by simply connecting the proposed FOAR-MRAC 
structures. Thus facilitates utilization of adaptive control 
skills in industrial control applications and contributes to 
improvement of robust performance for practical control 
systems. For instance, servomotor position control by PID 
controller may need the adaptation skill in long term because 
of ageing of mechanical and electrical parts. By using the 
proposed adaptive PID control structure, conventional static 
PID control systems can gain adaptation skill that is needed 
for maintaining control performance. On the other hand, 
FOAR-MRAC structures can perform a proportional control 
action. Cooperation with a PID controller improves control 
performance of FOAR-MRAC structures when integrator and 
derivative control action are required. Additionally, in our 
experimental works, we observed that it can be possible to 
find out fractional order integrators providing faster 
adaptation to the reference model (Vinagre et al., 2002). This 
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observation confirms that use of fractional order integrator 
can speed up the adaptation process. 
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