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Abstract: In this paper, the integral sliding modes with high order sliding modes is presented to control a 
wind energy conversion system, with a doubly-fed induction generator connected to a wind turbine. The 
mathematical model takes into account the dynamics of the generator, the wind turbine and the 
connections with the electrical network. The control objectives are the active power output and power 
factor regulation in the stator of the generator, which are achieved with the proposed controller without 
an extra control loop for the machine currents. An observer is not needed, since the control law depends 
on the terminal voltages and currents only that can be measured directly. A complete stability analysis of 
the closed-loop system is carried out. The effectiveness of the proposed controller was proved by 
simulations, in spite of perturbations. 
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

1. INTRODUCTION 

In order to decrease the greenhouse gas emissions due to the 
use of fossil fuels, the renewable energies have increased 
their importance, in particular, the wind energy. Indeed, 
several countries in the world have implemented huge wind 
farms (Burlibasa et al., 2012; Wang et al., 2012). In the case 
of wind turbines, the use of generators with constant speed 
could be difficult, due to the random behaviour of the wind. 
Then, the generators with variable speed could be better, and 
the Doubly-Fed Induction Generator (DFIG) have 
demonstrated its effectiveness. The DFIG is composed of two 
windings, one in the stator, connected directly to the 
electrical network, and the other in the rotor, connected to the 
electrical network through a bidirectional AC – AC power 
converter. The schematic diagram of the connection for the 
DFIG is shown in Fig. 1. The electronic power converter 
could have back-to-back or matrix topology. For the DFIG, 
the converter requires about the 20%-30% of the power 
output in the generator, which results in a little converter. 
Additionally, it is possible to regulate the active and reactive 
power in the generator, by using the power converter 
(Iacchetti et al., 2014). 

On the other hand, in the Electric Power Systems (EPS) are 
several components, for example, generators, transmission 
lines, loads, etc. The EPS are subject to disturbances, such 
that parameter variations, programmed disconnection of 
elements and several faults, e. g., short circuits in lines, loads 
or generators (Kassem et al., 2013). The connection of the 
wind farms to the electrical network is needed, then, the 
DFIG is subject to the perturbations and nonlinearities of the 
complete EPS. In addition, the mechanical torque given by 
the wind turbine is time varying, since it depends on the wind 
conditions. Thus, the controller of the DFIG must take into 
account the previous conditions, including the rejection of 
perturbations, random behavior of the wind and nonlinear 

region of operation, as well as offer robustness in all 
admissible operation points. (Jiabing and Yikang, 2009). 

 

Fig. 1. Schematic diagram of the DFIG. 

Although the DFIG in the wind farms has operated with 
controllers designed with linear techniques for several years 
(Ghedamsi and Aouzellag, 2010; Mansour et al., 2011), these 
controllers could not guarantee a good performance, since 
they do not offer robustness due to the design depends on the 
plant parameters and are developed considering linear 
regions, tuned around a single equilibrium point (Zarei and 
Asaei, 2016). There are some techniques to improve the 
performance of the linear controllers, see for example (Zarei 
and Asaei, 2016; Javan et al., 2013). However, these 
controllers take into account a single operation point of the 
system again, so that they are limited to a small region of 
operation. To avoid the limitations of linear controllers, and 
take into consideration the complete nonlinear operation 
region of the DFIG, nonlinear controllers have been 
presented in the literature, for example passivity analysis 
(Song and Qu, 2013) and feedback linearization (Leon et al., 
2012). Even though these nonlinear controllers could 
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improve the performance of linear controllers, they were 
designed considering the nominal plant parameters, which 
results in the lack of robustness, in spite of plant parameter 
variations. Some adaptive techniques, for example fuzzy 
logic (Jafari et al., 2014; Jazaeri and Samadi, 2015) and 
artificial neural networks (Marchi et al., 2014), could avoid 
the problems mentiones above, but the direct application of 
these techniques could produce a complicated algorithm with 
a high computational effort. 

Furthermore, the Sliding Modes (SM) approach offers 
robustness under external disturbances and parameters 
variations in the plant. SM technique has demonstrated its 
effectiveness in electromechanical systems (Rossomando et 
al., 2014), renewable energy systems (Belkaid et al., 2016) 
and the DFIG (Abdeddaim and Betka, 2013; Patnaik et al., 
2016). However, the direct implementation of sliding mode 
controllers to the DFIG would provoke finite-frequency, 
finite-amplitude oscillations (chattering), since the 
unmodeled fast electrical dynamics could be excited (Utkin et 
al., 1999). In order to avoid chattering and maintain the 
robustness with respect to matched perturbations with 
bounded and smooth control signals, alternative techniques 
based on SM can be applied, for example, the High Order 
Sliding Modes (HOSM) (Fridman and Levant, 1996; Moreno 
and Osorio, 2008). In (Morfin et al., 2014), the HOSM was 
presented, considering the block control feedback 
linearization and super-twisting algorithm, to regulate the 
electromagnetic torque and power factor in the stator. 
Nevertheless, the power output in the stator is not regulated 
and the sliding manifold could be difficult to design. In 
(Huerta, 2014) it was presented a HOSM controller for the 
DFIG, however, the turbine behavior was not considered and 
the robustness analysis was not included. Furthermore, in 
(Huerta, 2016), a passivity with sliding modes controller was 
presented, but the turbine behavior was omitted again and the 
solution converges to the sliding manifold asymptotically, 
instead of in a finite time. 

Considering two control objectives, the active power output 
and Power Factor (PF) regulation in the stator of the DFIG, in 
this paper a novel control scheme is developed, specifically, 
Integral High Order Sliding Modes (IHOSM). A fifth order 
mathematical model is introduced, which takes into account 
the wind turbine and the interconnections to the EPS. The 
dynamics for the power output of the stator are obtained as 
well. In order to reject the internal perturbations and external 
disturbances since the first instant of time, the Integral 
Sliding Modes (ISM) approach is applied (Utkin et al., 1999). 
The ISM enables to reduce the computational effort and 
simplify the design of the sliding manifold that is used to 
stabilize the complete system. Then, a sliding manifold 
vector is chosen, to deal with the control objectives, in this 
case, the active power output and PF regulation in the stator 
of the DFIG, taking into account the stator power output 
unperturbed dynamics. The HOSM approach is considered, to 
induce the systems trajectories to the sliding manifolds vector 
and produce a smooth control signal, to avoid chattering. 
With the proposed control scheme, a control loop to regulate 
the currents in the stator is not needed, since the control law 
depends directly on the state vector. Furthermore, the 

rejection of the matched perturbations can be accomplished, 
for example, external disturbances, such as short circuits, 
mechanical torque variations and voltage variations, and 
internal disturbances, like parameter variations in the system. 

2. SYSTEM MODEL 

The DFIG presented includes the mathematical description of 
the wind turbine and the mechanical, rotor and stator 
electrical dynamics. Then, based on the electrical dynamics, 
the active and active and reactive stator power output 
dynamics are developed. 

2.1 DFIG electrical dynamics 

Consider a balanced DFIG presented in the synchronous 
reference frame, that is, after the Park transformation. Taking 
into account the machine currents, the electrical dynamics 
can be presents as (Krause et al., 2002): 
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Remark 1. It is important to note that the perturbations vector 
,ௗ௤ࡵ൫ࢍ ,ௗ௤ࢂ ௠ܶ൯ can include several disturbances, for 
example parameter variations, mechanical torque variations 
and interconnection voltage variations (Javan et al., 2013). 
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Remark 2. Due to the interconnection of the DFIG with the 
electrical network, the terminal voltage of the generator can 
be considered constant, so that ࢂௗ௤௦ is presented as a vector 
with constant value elements. Then, the control input for the 
DFIG is the rotor voltages vector ࢂௗ௤௥. 

2.2 DFIG mechanical dynamics 

Taking into account the wind speed, ݒ௪, the mechanical 
power output of a wind turbine can be expressed as (Rahim 
and Habiballah, 2011) 

௪ܲ௧ ൌ
ଵ

ଶ
,ߛ௣ሺܥଶܴߨߩ ௪ଷݒሻߚ 	                                                     (3) 

where ߩ is the air density, ܴ is the rotor diameter and 
,ߛ௣ሺܥ  ሻ is the power coefficient that represents theߚ
efficiency of the blades at the operation point. Considering a 
wind turbine with three blades it follows that 0.25 ൏ ௣ܥ ൏
0.45 and it can be approximated as (Hachicha and Krichen, 
2012) 
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 ,is the tip speed ratio ߛ ,is the blade tip pitch angle ߚ
presented as: 
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                                                                                 (5) 

߱௧ is the wind turbine rotational speed. From (3) – (6) it 
follows: 
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The wind speed varies randomly all day. Nevertheless, the 
average wind speed can be considered as a constant value in 
some intervals of time. Then, the variations of the wind 
speed, can be presented as a linear combination of the 
constant wind speed, and sinusoidal variations (Datta and 
Ranganathan, 2002): 
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where ݒ௠ is a constant wind speed. Then, changing the value 
 ௠ and the frequency of the sinusoidal variations, a wind gustݒ
could be obtained. The mechanical torque in the rotor of the 
wind turbine can be computed as 

௪ܶ௧ ൌ
௉ೢ೟
ఠ೟

              (8) 

Furthermore, the mechanical torque in the rotor of the DFIG, 
௠ܶ, is obtained from the wind turbine through a gearbox. The 

mechanical torque and rotor speed, ߱௥, are calculated as 
follows 
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்ೢ ೟

ீ
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where ܩ is the transmission rate. Finally, according to 
(Krause et al., 2002) the DFIG swing equation is written as 
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 ௠ is the constant of inertia, ݊௣ is the number of poles of theܬ
DFIG and ௘ܶ is the electromagnetical torque in the generator, 
which is expressed as a function of the rotor and stator 
currents as follows: 
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Remark 3. It is worth mentioning that the DFIG model (1) - 
(12) is presented as a nonlinear model due to the swing 
equation in which the electromagnetical torque is given by 
(12) (Krause et al., 2002). 

Finally, the DFIG state space model given by (1) - (12) will 
be used in the next section to obtain the dynamics of the 
active and reactive power in the stator. 

2.3 Stator active and reactive power dynamics 

Since the control objectives are the output active power and 
PF in the stator, it is necessary to obtain the dynamics of the 
stator output power. In this way it is possible to avoid an 
extra control loop for the rotor currents. Then, the stator 
active and reactive power in terms of the DFIG currents and 
voltages can be written as 

ࡽࡼ ൌ  ௗ௤௦           (13)ࡵࢂ

where ࡽࡼ ൌ ሾܲ		ܳሿ் is the stator active power output vector 
and 
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ଶ
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Then, considering the DFIG electrical dynamics, (2), the time 
derivative of (13) becomes to: 

ሶࡽࡼ ൌ ,ௗ௤ࡵ௉ொ൫ࢌ ௗ௤௦൯ࢂ ൅ ௗ௤௥ࢂ௉ொ࡮ ൅ ,ௗ௤ࡵ௦൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯    (14) 

Where the elements of the vector ࢌ௉ொ൫ࡵௗ௤, ௗ௤௦൯ࢂ ൌ
ௗ௤௦ࡵଵଵ࡭൫ࢂ ൅ ௗ௤௥ࡵଵଶ࡭ ൅   are continuous functions	ௗ௤௦൯ࢂଵଵ࡮
of time and ࡮௉ொ ൌ  ଵଶ is a nonsingular matrix with࡮ࢂ
constant elements. Moreover, the vector of perturbations 
terms in the stator ࢍ௦ሺ∙ሻ includes parameters variations and 
external disturbances. 

3. IHOSM CONTROL SCHEME  

In this section the design of the IHOSM control scheme is 
presented, for the DFIG. A DFIG driven by a wind turbine is 
presented in Fig. 1. The machine has two windings, the stator 
winding is connected to the EPS, through the electrical grid, 
while the rotor winding needs an AC – AC electronic power 
converter, composed of two interconnected circuits, namely, 
the rotor side converter and grid side converter. The proposed 
control objectives can be achieved by means of the rotor side 
converter. The grid side converter is able to control the DC 
link voltage between the two converters, as well as the 
reactive power to the network. The DFIG can operate in a 
band of േ∆߱௥ around the synchronous speed, ߱௦. When the 
rotor speed is greater than the synchronous speed, that is, 
߱௥ ൐ ߱௦, the DFIG works in super - synchronous mode and 
the power is delivered to the electrical network from both, 
rotor and stator windings. On the other hand, when ߱௥ ൏ ߱௦ 
the DFIG is running in sub–synchronous mode, only the 
stator windings provides electrical power to the network, and 
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the power converter is fed from the electrical network to 
supply the rotor winding. 

In this paper the grid side control is outlined. The control 
inputs to the system are the rotor voltages, ௗܸ௥ and ௤ܸ௥. 
Having two control inputs, it is possible to consider two 
control objectives, the active power output and PF regulation 
in the stator of the machine. At first, based on the difference 
between the stator active and reactive power output and their 
references values, the control error dynamics vector is 
obtained. Then, the ISM technique is applied to achieve an 
unperturbed error system. Finally, the sliding manifold vector 
for the HOSM controller is designed and implemented in a 
super twisting algorithm. 

Before the introduction of the proposed IHOSM control 
scheme an important definition is stated: 

Definition 1. Robust stabilization. Let the nonlinear system: 

ሶ࢞ ൌ ሻ࢞ሺࢌ ൅ ݑሻ࢞ሺ࢈ ൅ ,࢞ሺࢍ  ሻ         (15)ݐ

where ࢞ሺݐሻ is the state vector, ࢌሺ࢞ሻ and ࢈ሺ࢞ሻ are smooth 
vector-fields, and ࢍሺ࢞,  ሻ is the perturbation vector. Theݐ
system (15) achieves robust stability if it is stable in the 
Lyapunov sense for all admissible perturbations Khalil, 
1996). 

It is important to note that the proposed IHOSM control 
scheme is robust according to the Definition 1, as it will be 
shown later. 

3.1 IHOSM control scheme design 

Given the control objectives, from the active power output 
and Power Factor (PF) regulation in the stator of the DFIG, a 
reference values vector is presented. Considering the active 
and reactive power output in the stator, the PF can be 
expressed as follows: 

ܨܲ ൌ
௉

ඥ௉మାொమ
            (16) 

Solving (16) for the reactive power, its reference value, ܳ௥௘௙, 
is written as: 

ܳ௥௘௙ ൌ ௥ܲ௘௙ට
ଵ

௉ிೝ೐೑
െ 1           (17) 

Then, the control error vector, ࢋ, is defined as the difference 
between the stator power output vector, ࡽࡼ, and the 
reference values vector, ࡽࡼ௥௘௙, i. e. 

ࢋ ൌ െࡽࡼ  ௥௘௙           (18)ࡽࡼ

where ࡽࡼ௥௘௙ ൌ ൣ ௥ܲ௘௙		ܳ௥௘௙൧
்
. From the stator power output 

dynamics, (14), it is possible to obtain the time derivative of 
the control error vector (18), as follows: 
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where ࢍ௉ொ൫ࡵௗ௤, ,ௗ௤௦ࢂ ௠ܶ൯ ൌ ,ௗ௤ࡵ௦൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ െ ሶࡽࡼ ௥௘௙, is 
the perturbations term, that contains internal disturbances and 
external perturbations. 

It is worth mentioning that the following assumptions must 
be considered in the control scheme design procedure of the 
IHOSM: 

A1. The perturbation term, ࢍ௉ொ൫ࡵௗ௤, ,ௗ௤௦ࢂ ௠ܶ൯, in (11) 
satisfies the matching condition, that is, there exists the 
vector ࢍഥ such that (Utkin et al., 1999) 

,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ ൌ  ഥ          (20)ࢍ௉ொ࡮

A.2. The perturbation term ࢍ௉ொ൫ࡵௗ௤, ,ௗ௤௦ࢂ ௠ܶ൯ in (11) is 
bounded, i. e.: 

หࢍ௉ொ൫ࡵௗ௤, ,ௗ௤௦ࢂ ௠ܶ൯ห ൑ ௉ொࢍ
ା ሺݐሻ. 

A.3. The nominal parameters of the DFIG mathematical 
model (1) - (12) are known. 

A.4. The mechanical torque input in (11) is assumed as a slow 
varying and bounded function of time. 

It is important to note that the proposed control scheme 
differs from the classical sliding mode approach, since a 
hyperbolic tangent function, ݄݊ܽݐሺݔሻ, is applied instead of 
the ݊݃݅ݏሺݔሻ function. This is possible, due to (Castillo et al., 
2007) 

݈݅݉ఌ→଴ ݄݊ܽݐ ቀ
௫

ఌ
ቁ ൌ ,ሻݔሺ݊݃݅ݏ ߝ ∈ Թା         (21) 

Next, in order to reject the perturbation term 
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ in (19), since the first instant of time, the 
ISM technique will be applied. Then, the HOSM with a super 
twisting algorithm will be used in the unperturbed system. 

Thus, according to the ISM technique (Utkin et al., 1999), 
defining the control input ࢂௗ௤௥ in the control error dynamics 
given by (19) as: 

ௗ௤௥ࢂ ൌ ௗ௤௥,଴ࢂ ൅  ௗ௤௥,ଵ           (22)ࢂ

it follows 

ሶࢋ ൌ ,ௗ௤ࡵ௉ொ൫ࢌ ௗ௤௦൯ࢂ ൅ ,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ ൅
ௗ௤௥,଴ࢂ௉ொ࡮ ൅ ௗ௤௥,ଵࢂ௉ொ࡮

					        (23) 

where ࢂௗ௤௥,଴, the first part of the control input, is designed to 
stabilize the DFIG around its equilibrium point and add 
damping, in spite of perturbations. ࢂௗ௤௥,ଵ, the second part of 
the control input, is selected to reject the perturbation term 
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯. According to the ISM technique, to 
design the second part of the control input, ࢂௗ௤௥,ଵ, a sliding 
manifold vector is stablished as 

ଵ࢙ ൌ ࢋ ൅  (24)            ࣌

where ࢙ଵ ൌ ሾݏଵଵ		ݏଵଶሿ் and ࣌ ൌ ሾߪଵ		ߪଶሿ் is the integral 
variables vector. Taking into account (23), the time derivative 
of the sliding manifold vector ࢙ଵ, (24), can be presented as: 

ሶଵ࢙ ൌ ,ௗ௤ࡵ௉ொ൫ࢌ ௗ௤௦൯ࢂ ൅ ,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ ൅
ௗ௤௥,଴ࢂ௉ொ࡮ ൅ ௗ௤௥,ଵࢂ௉ொ࡮ ൅ ሶ࣌

        (25) 

Then, from (25), the dynamics for the integral variables 
vector ࣌ሶ  are selected as 
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ሶ࣌ ൌ െࢌ௉ொ൫ࡵௗ௤, ௗ௤௦൯ࢂ െ ,ௗ௤௥,଴ࢂ௉ொ࡮ ሺ0ሻ࣌ ൌ െࢋሺ0ሻ        (26) 

Moreover, considering (26) and the matching condition 
defined in the assumption A.1, equation (20), the dynamics 
for the sliding manifold vector ࢙ሶଵ (25) becomes to 

ሶଵ࢙ ൌ ഥࢍ௉ொ൫࡮ ൅  ௗ௤௥,ଵ൯           (27)ࢂ

Then, select ࢂௗ௤௥,ଵ in (25) as 

ௗ௤௥,ଵࢂ ൌ െ݇ଵ݄݊ܽݐሺ࢙ଵሻ           (28) 

where ݄݊ܽݐሺ࢙ଵሻ ൌ ሾ݄݊ܽݐሺݏଵଵሻ		݄݊ܽݐሺݏଵଶሻሿ், and ݇ଵ ∈ Թା. 
Considering (26) and (27), under the condition 

݇ଵ ൐  ഥ|            (29)ࢍ|

the trajectories of (25) tends to the sliding manifold ݏଵ ൌ 0, 
(24), (Castillo et al., 2007). The sliding mode motion is 
governed by  

ሶࢋ ൌ ,ௗ௤ࡵ௉ொ൫ࢌ ௗ௤௦൯ࢂ ൅ ഥࢍ௉ொ൫࡮ ൅ ௗ௤௥,ଵ௘௤൯ࢂ ൅  ,ௗ௤௥,଴ࢂ௉ொ࡮

where ࢂௗ௤௥,ଵ௘௤ is the equivalent control obtained with ࢙ሶ ଴ ൌ
0, (27), that can be written as ࢂௗ௤௥,଴௘௤ ൌ  ഥ. Therefore, theࢍ
equivalent control ࢂௗ௤௥,ଵ௘௤ reject the perturbation term 
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ in (23). Moreover, as the Integral Sliding 
Modes stated, chosing ࣌ሺ0ሻ ൌ െࢋሺ0ሻ, the perturbation vector 
is rejected since the first instant of time (Utkin et al., 1999), 
and the sliding mode equation to represent the control error ࢋ 
is written as an unperturbed system: 

ሶࢋ ൌ ,ௗ௤ࡵ௉ொ൫ࢌ ௗ௤௦൯ࢂ ൅  ௗ௤௥,଴           (30)ࢂ௉ொ࡮

In order to design the second part of the control input (22), 
 ௗ௤௥,଴, the HOSM technique is applied, by using the superࢂ
twisting algorithm. Then, the sliding manifold vector 
଴࢙ ൌ ሾݏ଴ଵ		ݏ଴ଶሿ் is presented, as the control error vector, that 
is 

଴࢙ ൌ  (31)             ࢋ

Then, according to the super twisting algorithm (Fridman and 
Levant, 1996), it follows: 

ௗ௤௥,଴ࢂ ൌ െ݇଴,ଵඥ‖࢙଴‖݄݊ܽݐሺ࢙଴ሻ ൅ ,࢛
ሶ࢛ ൌ െ݇଴,ଶ݄݊ܽݐሺ࢙଴ሻ

         (32) 

where ݇଴,ଵ, ݇଴,ଶ ∈ Թା. Under the conditions ݇଴,ଵ ൐ 0 and 
݇଴,ଶ ൐ 0, the solution of the closed-loop system (30) with 
(32) reaches the sliding manifold ࢙଴ ൌ 0 in a finite time 
(Moreno and Osorio, 2008) and the control error vector ࢋ 
tends exponentially to zero. 

It is worth mentioning that selecting ࢂௗ௤௥,଴ as in (32), the 
attractiveness of the sliding manifold (31) is guaranteed, 
achieving the both control objectives, in this case, the active 
power output and PF regulation in the stator of the machine. 
Moreover, the control signal is bounded and smooth, 
avoiding chattering. 

Remark 4. Two sliding manifolds are needed to complete the 
proposed control scheme. At first, ࢙଴ in ࢂௗ௤௥,଴ to guarantee 
the stability of the closed - loop system, and, secondly, ࢙ଵ in

the second part of the control input, ࢂௗ௤௥,ଵ, to reject the 
perturbation term since the first instant of time. 

Remark 5: In the case of the electric power systems, the 
steady-state initial values for the state vector are computed 
considering a pre-fault flow analysis, as in (Anderson and 
Fouad, 1994). Then, it is possible to obtain the initial 
conditions for the integral variables vector as ࣌ሺ0ሻ ൌ െࢋሺ0ሻ, 
required in (26). 

3.2 IHOSM proposed controller main features 

It is worth mentioning that there are some important remarks 
about the IHOSM proposed control scheme for the DFIG: 

a) Both control objectives are fulfilled by obtaining the 
control error dynamics (19), which depends on the stator 
currents. So, it is not necessary the use of an extra control 
loop for the stator currents due to the sliding manifolds is 
presented as a function of the machine currents and 
voltages. Therefore, the proposed control scheme can be 
implemented directly with the measurements of these 
variables. Moreover, an observer is not needed. 

b) Given the condition (29) for ݇ଵ, it is possible to reject all 
unknown matched perturbations that satisfy that bound, by 
means of the ISM controller, obtaining the robust stability, 
according to Definition 1. Examples of perturbations are 
mechanical torque variation due to the wind turbine, 
parameter variations in the system, rotor speed variations, 
changes in the EPS configuration, etc. 

c) The effect of the complete EPS and its elements, including 
generators, transmission lines and loads, etc., are 
considered as variations in the interconnection voltages, 
 ௗ௤௦, so that, they are contained in the perturbation termࢂ
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯, in (19). In this way, the proposed 
IHOSM control scheme is able to reject the perturbations, 
providing the robust stabilization around the equilibrium 
point. Since the DFIG is connected to the EPS by the 
interconnection voltage only, it is possible to apply the 
proposed control scheme to any EPS, with n generators, m 
buses and k loads. 

d) The proposed IHOSM control scheme enables to reject 
perturbations since the first instant of time due to are 
included the ISM and HOSM techniques. This can be done 
by the first part of the control law, (28). Furthermore, the 
chattering provoked by the fast electrical dynamics, is 
avoided by the inclusion of the second part of the control 
law (32). Two sliding manifold vectors were presented. 
The sliding manifold vector, ࢙ଵ, was chosen at first, to add 
robustness and reject the perturbation term 
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ in (19). Then, the second sliding 
manifold vector ࢙଴ was selected to guarantee the system 
stabilization and achieve the both control objectives. 

e) In general the sliding modes technique uses the ݊݃݅ݏሺ∙ሻ 
function in the control laws. In this work this function is 
replaced by a ݄݊ܽݐ	ሺ∙ሻ function. This change enables to 
decrease the undesirable high frequency commutation in 
the control inputs and system outputs, which are required 
in the implementation of the controller. 
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3.3. IHOSM proposed controller, practical issues. 

Finally, a schematic diagram for the proposed controller 
implementation is presented in Fig. 2, where the DFIG and its 
interconnections with the IHOSM controller and other 
elements can be found. The wind turbine supplies the 
mechanical torque to the DFIG through a gearbox. The stator 
winding is connected directly to the EPS. The AC – AC 
power converter is a bidirectional electronic circuit to 
manage the power flow between the rotor and the EPS, and 
two topologies could be considered, a back-to-back or a 
matrix converter (Krause et al., 2002). The power converter 
feeds the rotor windings and takes the energy required from 
the electrical network. 

Since the proposed controller is presented in the dq0 
reference frame, an abc-dq0 transformation block is required. 
A PLL oscillator computes the stator angle which is needed 
by the transformation block. The stator currents and voltages 
in the dq0 frame, i., ܫௗ௦, ,௤௦ܫ ௗܸ௦ and ௤ܸ௦, and the DFIG rotor 
speed, measured directly from the machine shaft, are taken by 
the controller. Then, the IHOSM compute the corresponding 
rotor voltages, ௗܸ௥ and ௤ܸ௥, depending on the references 
values for the active power output and PF in the stator, as 
well as the DFIG operation conditions. Moreover, the rotor 
voltages are sent to another transformation block, that 
produce the rotor voltages in the abc frame, taking into 
account the stator angle, given by the PLL oscillator. Finally, 
the rotor voltages are sent to the AC- AC power converter to 
feed the rotor winding.  

It is worth mentioning that the proposed IHOSM control 
scheme needs the DFIG rotor speed, as well as the stator 
voltages and currents. These signals are measured directly 
from the generator, in such a way that an observer is not 
required. 

 

Fig. 2. Proposed control scheme diagram of the DFIG. 

4. CASE STUDIES 

In order to show the effectiveness of the proposed IHOSM 
control scheme the closed-loop (19) with (22) was tested by 
simulations. The reference values were selected as ௥ܲ௘௙ ൌ

600ܹ݇ and ܲܨ௥௘௙ ൌ 0.95. The DFIG parameters are 
ܺ௦ ൌ 8.8Ω, ܺ௥ ൌ 8.8Ω, ܺ௠ ൌ 180Ω, ݎ௦ ൌ 12.5Ω, ݎ௥ ൌ 3.9Ω, 
ܲ ൌ ௠ܬ ,2 ൌ 0.0024݇݃݉ଶ, with rated voltage of 1.5kV. The 
simulations were carried out by using Simulink of MATLAB. 
The mathematical model and the control scheme were 
programmed directly as a functions. Moreover, a fixed 
integration step was included to cover the requirements of the 
real-time implementation of the sliding modes controller. 

In Fig. 3-14 is presented the performance of the stator active 
power output and PF with the proposed IHOSM control 
scheme and a PI scheme, as well as the sliding manifolds 
convergence, with four different perturbations. The 
parameters of the control scheme were tuned as ݇଴,ଵ ൌ 200, 
݇଴,ଵ ൌ 150 and ݇଴,ଶ ൌ 0.5 in the four cases. Moreover, since 
it is possible to calculate the steady-state values for the DFIG, 
as it was mentioned in Section 3.1, these values were set to 
the the closed-loop system in the case studies. The PI 
controller was tuned according to (Lee at al., 2010).The four 
perturbations are described as follows: 

a) In order to prove the PHOSM effectiveness under abruptly 
variations of parameters, the parameter ܮ௠ was 
incremented 50%, as an internal disturbance, in ݐ ൌ  .ݏ1
This kind of perturbations are produced by increments or 
decrements of the parameters nominal values, as a 
consequence of damage in the machine windings and/or 
mismatching in the nominal values. From (6) the 
perturbation term ࢍ௉ொሺ∙ሻ is computed as 

,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯																																								

ൌ ௗ௤௥ࡵଵଵ࡭∆൫ࢂ ൅ ௗ௤௥ࡵଵଶ࡭∆ ൅	∆࡮ଵଶࢂௗ௤௥൯
        (33) 

where 

ଵଵ࡭∆ ൌ ቎
െ

௥ೞ
௅ೄ∆ఈ

߱௦ െ ߱௥
∆ఈିଵ

∆ఈ

߱௥
∆ఈିଵ

ఈ
െ ߱௦ െ

௥ೞ
௅ೄ∆ఈ

቏, 

ߙ∆ ൌ 1 െ 0.25
௅೘
మ

௅ೞ௅ೝ
ଵଶ࡭∆ , ൌ ଵଶ࡮∆ ଵଶ and࡭0.5 ൌ  .ଵଶ࡮0.5

Defining 

ഥࢍ ൌ ௉ொ࡮
ିଵࢍ௉ொ൫ࡵௗ௤, ,ௗ௤௦ࢂ ௠ܶ൯          (34) 

 the perturbation term (33) satisfies (20). In addition, the 
elements of the matrices ࡭ଵଶ and ࡮ଵଶ are bounded and the 
elements of the matrix ࢂ and the vectors ࡵௗ௤௥ and ࢂௗ௤௥ are 
bounded too. Then, the assumptions A1 and A2 are 
fulfilled. 

b) Due to the mechanical torque, ௠ܶ, depends on the wind 
speed and density and, in general, these parameters varies 
randomly all day, the mechanical torque varies randomly 
too. Then, the second perturbation tested at ݐ ൌ  to the ,ݏ1
closed-loop system, was a random variation of ±20% in the 
wind speed, around its initial value, producing a random 
mechanical torque variation. In this case, the perturbation 
term is given by: 

,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ ൌ ௗ௤௦ࡵଵଵ࡭∆ ൅  ௗ௤௥        (35)ࡵଵଶ࡭∆

where  
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ଵଵ࡭∆ ൌ ቎
0 െ∆ω୰

ఈିଵ

ఈ

∆ω୰
ఈିଵ

ఈ
0

቏, 

ଵଵ࡭∆ ൌ ቎
0 െ∆ω୰

௅೘
௅ೞఈ

∆ω୰
௅೘
௅ೞఈ

0
቏, 

and ∆߱௥ is an increment of the rotor speed due to the 
variation of the mechanical torque, ௠ܶ, in (11). 
Furthermore, equation (35) satisfies (20) with 

ഥࢍ ൌ ௉ொ࡮
ିଵ൫∆࡭ଵଵࡵௗ௤௦ ൅  ௗ௤௥൯         (36)ࡵଵଶ࡭∆

Again, the elements of the matrices ∆࡭ଵଵ and ∆࡭ଵଶ are 
bounded and the vectors ࡵௗ௤௥ and ࡵௗ௤௦ are bounded as 
well, then, the assumptions A1 and A2 are fulfilled. 

c) The interconnection voltage was decremented by 50%, at 
ݐ ൌ  :The perturbation term is calculated as .ݏ1

,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ ൌ െ0.5࡮ࢂଵଵࢂௗ௤௦                       (37) 

In order to satisfy (19), consider  

ഥࢍ ൌ െ0.5࡮௉ொ
ିଵ൫࡮ࢂଵଵࢂௗ௤௦൯          (38) 

Additionally, due to the boundedness of the matrices ࡮௉ொ, 
 ௗ௤௦, the assumption A1 isࢂ ଵଵ and the vector࡮ and ,ࢂ
fulfilled. 

d) The fourth perturbation corresponds to a three phase short 
circuit in terminals of the DFIG. This is a critical fault, was 
applied at ݐ ൌ  and was cleared by setting the terminal ݏ	1
voltages at their initial values at ݐ ൌ  The fulfillment .ݏ	1.1
of assumptions can be carried out as in perturbation c. 

It is important to note that according to (29), under the 
condition ݇ଵ ൐ |݃̅|, the four perturbations presented can be 
rejected by the ISM, where ݃̅ can be calculated as in (34), 
(36) and (38). 

Some important features are underlined about the 
performance of the closed – loop system (19) with the 
proposed IHOSM control scheme (22): 

a) The both control objectives, in this case, the active power 
output and PF in the stator of the DFIG, are accomplished 
by the proposed IHOSM control scheme, in less than 0.5 s, 
in spite of perturbations. 

b) The proposed IHOSM control scheme is able to stabilize 
the closed-loop system, in spite of small disturbances, e. g., 
parameter variations, and large disturbances, for example, 
mechanical torque variations, interconnection voltage 
variations and short circuits. 

c) In the case of the transient performance, the closed-loop 
system (19) with (22) does not presents oscillations or 
overshoot after the fault, which shows the damping added 
to the system. On the other hand, a classical controller, e. 
g., a PI controller, presents several oscillations. This fact 
show the damping adding to the closed-loop system. 

d) Perturbation b) shows that the proposed IHOSM is able to 
reject external disturbances, e. g., mechanical torque 

variations, see in Fig. 6-8. When the wind speed varies 
randomly around its initial value the mechanical torque 
too, the response with the IHOSM control scheme varies 
around the active power output and PF references values, 
in a band of 0.3%. With the PI, the both responses tend to 
oscillate in a similar band but the stator active power 
output, as well as PF, tends to decrease their values. 

 

Fig. 3. Stator active power under perturbation a). 

 

Fig. 4. Power factor under perturbation a). 

 

Fig. 5. Sliding manifold convergence under perturbation a). 
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Fig. 6. Stator active power under perturbation b). 

 

Fig. 7. Power factor under perturbation b). 

 

Fig. 8. Sliding manifold convergence under perturbation b). 

e) The robustness of the IHOSM control scheme with respect 
to changes in the EPS configuration is shown with the 
perturbation c), changing the interconnection voltage. In 
Fig. 9-11 are shown the result for this perturbation, in the 
stator active power the value increments but returns to its 
reference value with a maximum of about 11%. The PF 
present an increment of 0.2% and the final value is the 
same as the initial value. On the other hand, the response 
with the PI controller presents oscillations in both 

responses, with an overshoot of 30% in the stator power 
output, moreover, the final values are different form the 
reference values after the introduction of the perturbation. 

 

Fig. 9. Stator active power under perturbation c). 

 
Fig. 10. Power factor under perturbation c). 

 

Fig. 11. Sliding manifold convergence under perturbation c). 

f) The perturbation d) was considered to test the proposed 
IHOSM performance under critical faults, for example, a 
three phase short circuit in terminals of the DFIG. The 
responses with the proposed IHOSM present a similar 
behavior like in the perturbation c). In this case the stator 
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active power and PF decrease their values but recover their 
respective reference values. Again, the responses with the 
PI controller presents oscillations and the steady state 
values are different form the reference values after the 
perturbation, see Fig. 12-14. 

g) In the four perturbations presented, the performance of the 
proposed IHOSM control scheme tends to be unaffected. 

 
Fig. 12. Stator active power under perturbation d). 

Remark 6. In case of a critical fault in the electrical network 
that could provoke the activation of a crowbar protection 
circuit, as a consequence, the active and reactive power are 
not demanded from the EPS. Then, the references for active 
and reactive power output in the DFIG must be set to zero in 
the implementation of the controller when this kind of faults 
occurs. 

Remark 7. Several operation points, reference values and 
perturbations values were simulated, obtaining a good 
performance for the closed loop system. 

5. CONCLUSIONS 

In this paper a novel IHOSM control scheme was developed 
for a wind energy conversion system, to regulate de active 
power output and PF in the stator of a DFIG, connected to a 
wind turbine. The mathematical model includes the generator 
electrical and mechanical dynamics, and the wind turbine 
behaviour. The control law is presented as a function of the 
generator voltages and currents, as well as the rotor speed, 
which can be measured directly, in such a way that an 
observer is not required. The closed-loop system stability 
analysis was carried out to show the controller stability 
properties. The interconnections of the DFIG with the EPS 
are included in the mathematical model, and the proposed 
IHOSM control scheme can be implemented in any kind of 
EPS, with other generators, transmission lines and loads. 

The designed controller was tested through simulation under 
the most typical perturbations in electric power systems, such 
that generator parameters variations, disturbances of 
mechanical torque, variations of the interconnection voltage 
and three phase short circuits in terminals of the DFIG. The 
simulation results show that the proposed IHOSM control 
scheme guarantee the regulation of the active power and PF 

in the stator of the generator, under small and large 
disturbances. 

 
Fig. 13. Power factor under perturbation d). 

 

Fig. 14. Sliding manifold convergence under perturbation d). 

NOMENCLATURE 

  Constant parameter of the mathematical  ߙ
model. 

 .Blade tip pitch angle  ߚ
,ߛ௣ሺܥ  .ሻ  Power coefficientߚ
 .Tip speed ratio  ߛ
 .௜  Tip speed relationshipߛ
 .Control error vector  ࢋ
 .Transmission rate  ܩ
,ௗ௤ࡵ൫ࢍ ,ௗ௤ࢂ ௠ܶ൯ Perturbation vector. 
,ௗ௤ࡵ௦൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ Stator perturbation vector. 
,ௗ௤ࡵ௥൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯ Rotor perturbation vector. 
,ௗ௤ࡵ௉ொ൫ࢍ ,ௗ௤௦ࢂ ௠ܶ൯Perturbation term in the error  

dynamics equation. 
 .ௗ௤  Currents vectorࡵ
,ௗ௤௦ࡵ  .ௗ௤௥ Stator and rotor currents vectorsࡵ
,ௗ௦ܫ  .௤௦  Direct and quadrature stator axis currentsܫ
,ௗ௥ܫ  .௤௥  Direct and quadrature rotor axis currentsܫ
IHOSM  Integral High Order Sliding Modes. 
ISM  Integral Sliding Modes. 
 .Rotor inertia constant  ܬ
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݇ଵ, 	݇଴,ଵ, ݇଴,ଶ Control scheme parameters. 
,	௦ܮ  .௠ Stator, rotor and mutual inductancesܮ ,௥ܮ
݊௣  Pole pair number. 
P  Stator active power output. 
௥ܲ௘௙  Stator active power output reference. 

PF  Stator power factor. 
 .௥௘௙  Stator power factor reference valueܨܲ
 .Stator power output vector  ࡽࡼ
 .Stator power output references vector  ࢌࢋ࢘ࡽࡼ

௪ܲ௧  Power output of the wind turbine. 
Q  Stator reactive power. 
ܳ௥௘௙  Stator reactive power output reference. 
ܴ  Rotor diameter. 
 .௥  Stator and rotor winding resistancesݎ ,௦ݎ
 .Air density  ߩ
 .ଵ  Integral sliding manifold vector࢙
 .଴  Sliding manifold vector࢙
 .Integral vector  ࣌
௘ܶ  Electromagnetical torque. 
௠ܶ  Mechanical torque. 
௪ܶ௧  Wind turbine mechanical torque. 
 .ௗ௤  Voltages vectorࢂ
,ௗ௤௦ࢂ  .ௗ௤௥ Stator and rotor voltages vectorsࢂ	

ௗܸ௦, 	 ௤ܸ௦  Direct and quadrature stator axis voltages. 

ௗܸ௥, 	 ௤ܸ௥  Direct and quadrature rotor axis voltages. 
 .ௗ௤௥,଴  Nominal part of the control inputࢂ
 ௗ௤௥,ଵ Perturbation rejection part of the controlࢂ

input. 
 .ௗ௤௥,ଵ௘௤  Equivalent controlࢂ
 .௪  Wind speedݒ
߱௕  Stator electrical speed. 
߱௥   Rotor speed. 
߱௦  Stator magnetic field speed. 
߱௧  Wind turbine angular speed. 

௟ܺ௦	, ௟ܺ௥, ܺ௠ Stator, rotor and mutual reactances. 
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