
CEAI, Vol.19, No.3 pp. 49-57, 2017 Printed in Romania

Software System Integration of Heterogeneous Swarms of Robots

Mihai Gânsari, Cătălin Buiu

Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Romania, (e-mails:
(mihai.gansari, catalin.buiu)@acse.pub.ro).

Abstract: Swarm robotics has gained momentum in the last years due to impressive technological and
scientific advances. A wide range of application areas benefit from the power of collective behaviors and
emergent intelligence even if individual agents in a swarm are simple and have limited sensing and
processing capabilities. This paper presents a new approach to the problem of software system integration
of heterogeneous robots in a swarm. We showcase the capabilities of this approach by providing a sound
methodology, full code and demonstration videos of the run-time platform through experiments with
heterogeneous swarms. The proposed solution is shown to be modular, scalable, robust, and flexible.

Keywords: mobile robots, swarm robotics, software integration, robot operating system.

1. INTRODUCTION

Swarm robotics can be defined as “the study of how a large
number of relatively simple physically embodied agents can
be designed such that a desired collective behavior emerges
from the local interactions among agents and between the
agents and the environment” (Şahin and Spears, 2005)
without any centralized control or use of global information.
The emergent behaviors of such swarms demonstrate
robustness and flexibility which are desired qualities in real-
world applications, such as warehouse automation or civilian
or military search and rescue missions.

To date, a lot of research effort has been spent on
homogeneous robot swarms (where all the robots are
identical) and it is considered that in order to reach the
complexity of real-world systems it is necessary to address
the stringent issue of designing integrated heterogeneous
robot swarms in which robots can differ physically,
functionally and informationally (Dorigo et al., 2013).
Integration in this context relates to the fact that each
individual robot or subgroup of similar robots can
communicate and interact with other robots and the swarm as
a whole, regardless of their hardware and software
characteristics. Fig. 1 shows a heterogeneous swarm in which
there are three different types of robots (Koala, Khepera, and
E-puck) which differ in terms of size, sensors, processing
power, capabilities and autonomy. Even for identical robots,
they can differ in terms of processing power, e.g. the two
Khepera robots in Fig. 1, one of which is a Raspberry Pi-
powered robot.

A list of issues and challenges in designing heterogeneous
robotic swarms, which include the physical and behavioural
integration among various hardware platforms, with different
components, capabilities, software interfaces and multiple,
possibly competing, requirements, is detailed in (Dorigo et
al., 2013). Given the difficulty of hardware and software
integration, it is not surprising that only a few papers have
approached the problem of designing and deploying

heterogeneous robot swarms, from both the hardware and
software points of view. In (Patil and Abukhalil, 2014), the
hardware architecture of a swarm of five different mobile
robots is addressed, while this issue is approached from a
system-of-systems perspective in (Sahin et al., 2007). Sharing
of information by multiple robots is addressed using a graph-
based map-building method in (Moon et al., 2015).

Fig. 1. A heterogeneous robotic swarm.

The software issue of deploying heterogeneous robot swarms
is addressed through a programmability perspective in
(Pinciroli et al., 2015), where an extensible programming
language for self-organizing heterogeneous robot swarms is
presented as an indispensable tool. A prominent actor on the
robotics market is ROS, an open-source Robot Operating
System which allows compatible software to be written for
different robots by providing libraries and tools to assist
developers to create robot applications and reducing the
development time (Quigley et al., 2009), (Mayachita et al.,
2013), (Alisher et al., 2015), (Araújo et al., 2014), (Tsarouchi
et al., 2015). A real-time extension of ROS is presented in
(Wei et al., 2016).

The main contribution of this paper is to propose and
demonstrate the viability of a software framework which
allows the integration of various robots into a unitary swarm
of robots.

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

The paper is structured as follows. The next section gives an
overview of the currently available robot hardware and
software tools used to integrate software components in a
heterogeneous robot swarm. The third section presents the
software implementation for the robots in order to make them
ROS compatible. The fourth and fifth sections present
functioning modes for the heterogeneous swarm in multiple
configurations and the test results. The paper ends with
conclusions and directions for further improvements.

2. OVERALL SYSTEM ARCHITECTURE

This section defines and describes a possible view of a
heterogeneous robot swarm in terms of structure,
components, their properties, and the relationships between
them. The emphasis will be placed on programming the
interconnection of various robots in a common software
framework.

2.1 System Overview

The goal is to have different robots interacting in an
integrated way which can enable the effective realization of
high-level, complex goals in a dynamic environment. Some
hardware additions might be needed but not necessarily in all
cases, as the majority of robots are built around connectivity,
hardware wise, using standard devices, as will be explained
in the next subsections.

Regarding software, a common framework is required. This
is accomplished using ROS, a very powerful tool in robotics
software development which has become nearly a standard in
robotics research.

2.2 Robot Operating System

ROS (http://wiki.ros.org/) is an open-source robotics software
framework for robotics software development. It provides the
user with connectivity and control of robot devices through a
common software interface. ROS offers message passing
(publish/subscribe) between processes (nodes), software
libraries and tools for writing, building and running
programs. It also offers visualization, data recording and
other tools for analysing the results and for adjusting the
code. Software package management (catkin, rosbuild) is
another important feature. ROS also offers network
connectivity between machines, allowing the software to be
run across multiple machines.

ROS is an open-source and research community driven
software, and is written in the very popular and powerful
C++ and Python programming languages, but it is not an
operating system in itself, as it runs on the Linux operating
system, especially on the Ubuntu distribution. It is called so
because it offers many operating system-like services
between the computer/robot and the user.

The power of ROS is that it allows the user to freely use all
the existing ROS packages, modify or create new ones.
Linking the functionalities of these packages makes ROS a
great tool for rapid robotics development. ROS offers the
supported robots (with ROS drivers) important high-level

robot application packages such as robot vision, navigation
and planning, intelligent control, grasping, and SLAM
(Simultaneous Localization and Mapping). It also offers links
to other existing robotics frameworks and simulators such as
Player, Gazebo, Webots etc.

In order to have a robot using the ROS software, a software–
hardware link (driver) between the computer running ROS
and the robot is needed. The robot devices that need to be
used or controlled (e.g. camera, motors) must be connected
directly to this computer via USB, serial, or other ports, or
have the robot’s central (embedded) computer connected to
this computer. The embedded computer controlling all the
robot devices is more common because robots are usually
built to be standalone machines. The ROS driver
implementation for the robots presented in this paper will be
described in the next section.

Another advantage of ROS is that it is made to scale easily
and appropriately for various size systems. Robots usually
have embedded devices and software, and this provides real-
time features. ROS is intended for higher-level application
use, it is a fast software but not real-time. This might be a
limitation, and some ROS embedded tools might be needed
for this.

2.3 Test Robots

The majority of robots used by the industry and research are
built and mass-produced by robotics companies. These robots
come with built-in software for their microcomputer
architecture to connect all the on-board sensors and actuators,
and even provide purchasable extensions, such as more
sensors, e.g. laser scanners. The application purposes and
research areas in which these robots are used lead in many
cases to the robots needing modifications or add-ons to their
hardware and software, whether they are open-source
platforms or not. Depending on the robot architecture, the
firmware may be easily modified, with software tools and
programming hardware either built-in or external. Modifying
the robot firmware is good for program running speed and
real-time restrictions. When working on advanced, high-level
applications, where developers and users need to visualize
what the robot is doing, modifying the firmware is not a good
solution. With older hardware, the memory of the embedded
computer is usually limited. High-level programming tools,
such as C++, Python programming languages and other
object-oriented programming languages are recommended in
these cases. For these tools a powerful computer is needed
and if it is not integrated in the robot, this computer needs to
be added to it.

The robots used in this paper to demonstrate and validate the
proposed software system integration are three types of
mobile robots of different sizes and capabilities and are
shown in Fig. 2.

The smallest robot used is the E-puck robot (e-puck.org),
which is an open-source robot. It has a dsPIC microcontroller
connected to 2 stepper motors and the following sensors: IRs,
VGA camera, microphones. It also has a speaker and LEDs.
The robot supports serial communication and Bluetooth. The

CONTROL ENGINEERING AND APPLIED INFORMATICS 51

firmware for this robot is written in C programming
language. Programs can be written and cross-compiled to
create a .hex file to write to the flash memory of the
microcontroller via Bluetooth, serial or using a programmer
device wired directly to the robot.

Fig. 2. (Left to right) E-puck, Khepera III and Koala robots.

The second robot is a larger but still small size robot Khepera
III (K3). The K3 is a proprietary developed research robot
and it has a main dsPIC microcontroller connected to two
other PIC microcontrollers for each of its 2 motors with
encoders, and the following sensors: IR, ultrasonic. The robot
supports serial, Bluetooth and USB communication. The
robot has an installed firmware for all the robot capabilities
and can be updated. A Korebot board which has an ARM
processor can be attached to the robot to run programs and
control the robot. The board runs an Ångström Linux
distribution OS. C programs can be written using the Korebot
API (K-Team, 2012).

The last robot is the Koala, which is another proprietary
research robot. The Koala is a medium size robot. The robot
has a Motorola microcontroller connected to 2 motors with
encoders, and the following sensors: IR, temperature, torque.
The robot supports serial and Bluetooth communication. The
microcontroller runs a software named Koala BIOS (K-Team
SA, 2001) written in Assembly language or C. This BIOS can
be modified and used for other programs written in C and
compiled with a GNU C cross-compiler.

The three robots support receiving commands via
serial/Bluetooth interfaces. These commands can fully use all
the on-board capabilities of the robots and can be used in any
software program that uses serial communication or has
software libraries for it.

2.4 Robot Hardware Modifications for Software
Requirements

All the robots have IR proximity sensors and serial over
Bluetooth communication for PC connectivity. In order for
the robots to communicate, additional software and/or
hardware is required.

Bluetooth and Wi-Fi device software drivers are implemented
already in major operating systems (Linux, Windows, Mac
OS). ROS is also a common software interface for robots
which can be used to communicate using the wireless
devices. Linux is preferred because it is open-source, it is
supported on multiple micro-computer architectures, and
ROS is implemented for the Ubuntu distribution of Linux.
Thus platforms running Ubuntu are required.

The smaller robots, E-puck and K3, can run Linux on an
attached small size Raspberry Pi computer board (version 2

B+ 2015 is recommended for more computing power) with
USB Bluetooth and Wi-Fi dongles attached. The K3 already
runs a version of Linux on its Korebot computer board, but it
lacks computing power and a very small version of ROS
would need to be compiled for its processor, thus a Raspberry
Pi is preferred.

Fig. 3. Modified E-puck with Raspberry Pi 2 B and Wi-Fi
dongle (front and back).

Fig. 4. Modified Khepera III robot with Raspberry Pi 2 B and
Wi-Fi dongle.

Fig. 5. Koala Rzobot connected via serial to a 13.3” laptop
mounted on a support. A Kinect sensor is mounted on the
robot and connected directly to the laptop via USB.

The Koala robot, being larger in size, can carry a small size
laptop on it. A support was added to the robot to carry the
laptop. Having a laptop PC adds a lot of power, versatility
and connectivity to the robot. Such an example is adding a

52 CONTROL ENGINEERING AND APPLIED INFORMATICS

Kinect sensor for precise mapping information, needed for
SLAM.

Pictures of the modified standard robots are shown in Fig. 3–
5, and Table 1 summarizes all their characteristics.

Table 1. Overview of robots used.

 E-puck
Khepera III

(K3)
Koala

Embedded
Computer

dsPIC30F6
014A at 60
MHz, 8KB

RAM,
144KB
flash

memory

dsPIC30F5
011, 60

MHz, 4KB
RAM,

66KB flash
memory

M68331 32-
bit MCU at

22MHz,
1MB RAM,
1MB flash
memory

Connectivity
Bluetooth,

Serial
Bluetooth,

Serial
Serial

Extensions -

Korebot:
Xscale

PXA255
400 MHz,

64MB
RAM, 32
MB flash,
Wi-Fi card

connectBlue
industrial
Bluetooth

333s

Robot Additions

Computer

Raspberry
Pi 2 B

900MHz
quad-core

ARM
Cortex-A7
CPU, 1GB

RAM,
32GB SD-
card, USB

Wi-Fi
dongle,
Ubuntu-

ARM
14.04 OS

Raspberry
Pi 2 B

900MHz
quad-core

ARM
Cortex-A7
CPU, 1GB

RAM,
32GB SD-
card, USB

Wi-Fi
dongle,
Ubuntu-

ARM
14.04 OS

Laptop Z30t-
B-104, 13.3”

monitor,
Intel i7-
5500U,

16GB RAM,
512 SSD,

Wi-Fi,
Bluetooth,
USB 3.0,

Ubuntu 64-
bit 14.04 OS

Sensors - - Kinect

Any number of the robots from the above table can be used
with any additional robots that are ROS compatible.

3. ROS LINK. SOFTWARE IMPLEMENTATION

The robots presented in Section 2 must be able to
communicate with each other. For this they need ROS drivers
to link them to the software environment and to other robots
in the swarm. These ROS drivers are sometimes made by the
companies that produce the robots or research groups that use
the robots, and this is the case of the E-puck robot.

Starting in 2015, ROS drivers for the E-puck robot are
available. These drivers are written in Python
(https://github.com/verlab-ros-pkg/epuck_driver) and C++

(https://github.com/gctronic/epuck_driver_cpp). They use the
Bluetooth communication and serial over Bluetooth
commands to control and receive information from the
sensors.

The K3 and Koala robots also need software drivers for the
ROS link. The ROS drivers are written in C++ and use serial
commands (Fig. 6) to control the robots and read sensor
information. A serial communication library from ROS is
used (http://wiki.ros.org/serial). The code is similar for the
robots, with only some commands and functionalities
differing because the robots have different on-board devices,
actuators and sensors, needing different values for their data,
thus different drivers. The code is a basic C++ program
which controls the robot using a serial library, but the
addition is that it links the functions and data to ROS
functions in the same program.

Fig. 6. Koala motors and sensors commands (K-Team SA,
2001), pp. 39 and 41.

The source program and other configuration files are placed
in a node folder and structured for the ROS catkin workspace
(http://wiki.ros.org/catkin) in order for the project node to be
built and linked to ROS.

The driver node can also contain messages files to pass
between ROS programs and roslaunch files to easily and
automatically launch every needed node and program that
uses this driver.

A basic Koala robot ROS driver C++ code is listed in the
lines shown in Fig 7 and 8.

The program subscribes to and waits for general ROS
geometry_msgs/Twist.msg which it uses as commands for
the left and right motors. The Koala robot is connected to the
mounted computer using a robot serial cable and a serial-to-
USB cable, thus the /dev/ttyUSB0 port is used in the driver.

Having the robot driver node connected to ROS, other
programs/applications can listen to this node, which can
publish information on ROS topics, and wait for motor
commands over the motor topic.

CONTROL ENGINEERING AND APPLIED INFORMATICS 53

Fig. 7. koala.cpp (part 1).

Fig. 8. koala.cpp (part 2).

Using this template, drivers for the K3 and E-puck were also
created, and along with the Koala drivers. The drivers created
with this template are available as open-source software at:
https://github.com/pktehgm/newswarm/tree/master/robot_dri
vers.

4. USE CASE SCENARIOS

Depending on the applications and tasks required for the
heterogeneous robotic swarm presented here, the robots can
communicate and run programs using the ROS system in five
different working modes, which we will introduce in the
following. These modes are different in terms of where the
programs run, on which robot and how. The programs refer
to the drivers, applications and ROS. The software drivers for
controlling the robots and programs for higher-level
applications and tasks can run on the robot they are intended
for or on a different robot, a so-called Leader robot, with
better hardware, more computing power or sensors. ROS can
also run on a single robot and the other robots just connect to
that robot, or on each robot capable of running ROS, the so-
called Standalone robot. Some very simple robots cannot run
ROS and do not have a computer attached to run ROS. A
Standalone robot will be used as a Leader robot, needed to
run drivers and commands wirelessly for these simple robots.

We propose five basic heterogeneous swarm working modes
which are described in the following. We provide
demonstration videos for all these use case scenarios in
(Gânsari and Buiu, 2015). An overall view of these basic use
case scenarios is given in Fig. 9 and 10.

54 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 9. Heterogeneous swarm functioning modes using ROS
(1-3).

1. Single-Minded Robot Swarm. In this mode, there is a main
robot called the Leader with a computer running the ROS
master (roscore), ROS drivers for itself and all the other
robots. The Koala robot is the Leader in this system
configuration. The Leader sends/receives information to/from
the other robots through wireless communication, e.g.
Bluetooth (BT) for the robots used here. All the other task-
driven programs run on the same main robot computer, which
sends commands to the robots through the ROS system. For
this mode the Leader robot needs modifications as in section
2.4. This mode is used in order to have a more complex and
capable robot control, provide ROS communication and drive
the application for a large number of very simple robots.

2. Swarm with Leader Robot and Standalone Basic Robots.
In this mode each robot runs its own ROS drivers, and other
required control programs. They communicate with each
other by connecting to the main robot computer which runs
the ROS master. The connection is done in a common
network using WLAN protocol. The main robot may receive
tasks from the user and the other robots will coordinate and
receive commands from this Leader robot. For this mode and
the following modes, robot modifications as in Section 2.4
are required for the Standalone robots. This mode is
recommended when the user wants to control many
Standalone robots in the swarm through a single robot. This
mode is also recommended when a robot needs to run some
programs which require more powerful processing power
than is available on its computer, but available on the Leader
robot’s computer. The processed data is passed over ROS.

3. Swarm with Standalone Robots Connecting to a Central
Robot. This is similar to mode 2, and the difference is that all
the robots act and run individual tasks independent from the
other robots, but they communicate using the ROS
environment by connecting to a single rosmaster that runs on
a designated robot in the network. In this mode all the robots
in the swarm are independent, and there is no central
controller. The robots just connect to the roscore running on
the computer of the one designated robot in the swarm, to
allow communication between robots, allowing the robot
programs to exchange data.

Fig. 10. Heterogeneous swarm functioning modes using ROS
(4 and 5).

4. Swarm with Standalone Robots. In this mode each robot is
a fully independent agent running its own ROS master. The
robots connect when they need to other robots by using the
rosmultimaster ROS package (http://wiki.ros.org/multimaster
_fkie). This package allows the robot to search the network
for other ROS masters (individual robots or single-minded
swarm of robots in the case of the first mode), synchronize
and communicate with each other.

5. Combined Swarm (Single-Minded Robot Swarm(s) and
Standalone Robots). This is a combination of the previous
modes. This mode is used when very simple robots, which
lack some of the capabilities required for this system, are
added to the swarm. Depending on their hardware
capabilities, they can be added to a robot configuration such
as in mode 1 or 2. The robots in these configurations can

CONTROL ENGINEERING AND APPLIED INFORMATICS 55

communicate with other Standalone robots in the swarm, or
with similar robots controlled through another Leader robot
in a similar configuration.

Fig. 11. Single Minded Robot Swarm.

5. EXPERIMENTAL RESULTS. APPLICATIONS

Using the ROS drivers described in section 3, a series of tests
were devised to prove that the robots in the swarm can
communicate at a software level using ROS. The robots have
individual goals, in this case to follow simple movement
commands. The robots move after receiving command
information from their program, whether it is local or from

another robot. All the programs needed for each test will be
called individually, and also roslaunch files can be used to
launch all the needed programs. A desktop computer together
with the programs SSH and X11VNC were used in the tests
to connect remotely to the robots, i.e. the laptop and
Raspberry Pis mounted on the robots. Five tests were done to
prove each functioning mode.

In the first test, a single-minded swarm with the main robot
Koala is running all the drivers and programs for each robot.
The programs for the robots communicate through the
roscore and send commands to their respective robots using
Bluetooth. An example is shown in Fig. 11.

The second test is done with three Standalone robots. Each
robot runs its own drivers and they all connect to a single
roscore. In this test a Koala robot is used as a Leader running
roscore and rtab map program for ROS (http://wiki.ros.org/
rtabmap_ros) to create maps with the Kinect sensor. The
mapping information is needed for SLAM. To connect to a
single roscore, all the robots must have the following two
ROS commands run in the terminal to tell the system where
the roscore is run and the IP of each robot:

In the third test all the robots run their drivers and other high-
level programs standalone, but they connect and
communicate with each other through a single roscore
running on a single robot. In this test, the E-puck robot runs
along with its driver and uses gmapping ROS nodes
(http://wiki.ros.org/gmapping) for SLAM. The K3 is running
the driver and a simple movement program. The Koala robot
runs rtab map with the Kinect and has a wireless controller
connected via USB for movement commands. The controller
Linux drivers are linked to a ROS joy node
(http://wiki.ros.org/joy) which will publish the controller
data. To prove the communication between robots, the
controller on the Koala is used to send movement commands
to the Koala and E-puck.

In the fourth test each robot is completely independent,
running roscore and all programs. The robots connect with
each other using rosmultimaster nodes. A detailed report on
how to set up the multimaster ROS can be found in (Juan and
Coratelo, 2015). All the robots in this test subscribe to the joy
node running on the Koala, and thus move by receiving
commands from the controller. A multimaster example
running on each Standalone robot is given in Fig. 12.

In the fifth and final test a Combined Swarm is tested. All
Standalone robots run their own roscore and the
rosmultimaster node. The Standalone robots have other
simple robots connected to them using Bluetooth and run
their own drivers, other more advanced programs and the
simple robots’ ROS drivers. A tested goal here is to have
simple robots such as those from the first test receive
commands from other Standalone robots in the swarm
through its Leader robot. The Koala controller joy node was

export ROS_MASTER_URI=http://Leader_IP:11311

export ROS_IP=Current_Robot_IP

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

used again, publishing data on the ROS network. Any robot
driver connected to this network can subscribe to the
publishing joy node and thus the simple robots not connected
to the Koala with the controller receive commands from the
controller through their own respective Leader robot. A
screen capture of this Combined Swarm Robots and the
Standalone robots’ computer desktops can be seen in Fig. 13.

Fig. 12. Multimaster ROS. 4 roscores running on the user
computer and 3 remote SSH terminals connected to the
computers of the robots. ROS master and sync nodes are
running on all computers.

6. CONCLUSIONS

Robotic swarms can move to a superior level of performance
and applicability if a large number of robots with different
kinds of heterogeneities in terms of characteristics and
objectives can be integrated in a coherent whole. With this
goal, we presented an original approach to the problem of
software integration for swarms of heterogeneous mobile
robots. The contributions of our work include: software
integration of different robots in a single software
environment allowing communication between robots (i.e.
robot programs) using add-on hardware and ROS, providing
a template for a ROS compatible robot driver, and proposing
five basic working modes for heterogeneous robot swarms

with functioning examples which are demonstrated through
online videos.

Fig. 13. User connected to the heterogeneous swarm. A
computer with webcam is used to connect remotely via Wi-Fi
to the computer desktops of 3 Standalone robots:
Koala+Laptop, K3+Raspberry Pi and E-puck+Raspberry Pi.
The other robots are connected via Bluetooth to their
respective Leader robots. ROS cores, drivers and applications
are running in the background terminals.

The system offers scalability, allowing the addition of any
number of robots such as those presented in this paper, and
other ROS compatible robots. This system of robots can be
used to raise the level of automation in factories and even in
places for the general public.

Plans for further developments are manifold and involve
several activities. A major activity is having the robots in the
swarm accomplish advanced coordinated and individual tasks
by using the advantages of the swarm and of the different
capabilities of each robot. Such an example is having the
robots navigate in an intelligent manner using simultaneous
localization and mapping. Another use is to add new different
robots to the swarm which will provide new capabilities to
the system.

Having robots communicating and coordinating over the
network can leave the robots exposed to security threats from
other robots and computers that connect to the network, and
can drive the robots in a different manner than the intended
one. A security system solution for the heterogeneous robot

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

swarm is required and this can be accomplished by using
bioinspired approaches.

ACKNOWLEDGEMENT

This work was supported by the grant of the Ministry of
National Education CNCS-UEFISCDI, project number PN-
II-ID-PCE-2012-4-0239, Bioinspired techniques for robotic
swarms security (Contract 2/30.08.2013).

REFERENCES

Alisher, K., Alexander, K., and Alexandr, B. (2015). Control
of the Mobile Robots with ROS in Robotics Courses.
Procedia Eng., vol. 100, pp. 1475–1484.

Araújo, A., Portugal, D., Couceiro, M. S., Sales, J., and
Rocha, R. P. (2014). Desarrollo de un robot móvil
compacto integrado en el middleware ROS. Rev.
Iberoam. Automática e Informática Ind. RIAI, vol. 11,
no. 3, pp. 315–326, Jul. 2014.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F.,
Nolfi, S., Baaboura, T., Birattari, M., Bonani, M.,
Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A. L., Decugniere, A., Di Caro, G.,
Ducatelle, F., Ferrante, E., Forster, A., Gonzales, J. M.,
Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N.,
Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G.,
Retornaz, P., Roberts, J., Sperati, V., Stirling, T.,
Stranieri, A., Stutzle, T., Trianni, V., Tuci, E., Turgut, A.
E., and Vaussard, F. (2013). Swarmanoid: A Novel
Concept for the Study of Heterogeneous Robotic
Swarms. IEEE Robotics and Automation Magazine, vol.
20 (4), pp. 60–71, Dec. 2013.

Gânsari, M and Buiu, C. (2015). Demonstrative videos for
software system integration of hetereogeneous swarms of
robots. [Online] http://dx.doi.org/10.5281/zenodo.35649.

Juan, S. H. and Coratelo, F. H. (2015). Multi-master ROS
systems. Technical Report IRI-TR-15-1, Institut de
Robòtica i Informàtica Industrial, Barcelona, Spain, Jan.
2015.

K-Team (2012). Khepera III User Manual, V3.4, Apr. 2012.
K-Team SA (2001), Koala User Manual, V2.0, 29 May

2001.

Mayachita, I., Widyarini, R., Sono, H. R., Ibrahim, A. R., and
Adiprawita, W. (2013). Implementation of Entertaining
Robot on ROS Framework. Procedia Technology, vol.
11, pp. 380–387.

Moon, W.-S., Jang, J.-W., Kim, H.-S., and Baek, K.-R.
(2015). Virtual Pheromone Map Building and a
Utilization Method for a Multi-purpose Swarm Robot
System. International Journal of Control, Automation
and Systems, vol. 13 (6), pp. 1446–1453.

Patil, M. D. and Abukhalil, T. (2014). Design and
Implementation of Heterogeneous Robot Swarm. ASEE
2014 Zone I Conference, April 3-5, 2014, University of
Bridgeport, Bridgeport, CT, USA.

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz:
An Extensible Programming Language for Self-
Organizing Heterogeneous Robot Swarms. arXiv:1507.
05946, p. 12, Jul. 2015.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R. and Ng, A. Y. (2009). ROS: an
open-source Robot Operating System. ICRA workshop
on open source software, vol. 3 (3.2), p. 5, 2009.

Sahin, F., Sridhar, P., Horan, B., and Jamshidi, M. (2007).
System of systems approach to threat detection and
integration of heterogeneous independently operable
systems. IEEE International Conference on Systems,
Man and Cybernetics, pp. 1376–1381, 2007.

Şahin, E. and Spears, W. M. (2005). Swarm Robotics, vol.
3342, pp. 10–20, Eds. Springer Berlin Heidelberg.

Tsarouchi, P., Makris, S., Michalos, G., Matthaiakis, A.-S.,
Chatzigeorgiou, X., Athanasatos, A., Stefos, M.,
Aivaliotis, P., and Chryssolouris, G. (2015). ROS Based
Coordination of Human Robot Cooperative Assembly
Tasks-An Industrial Case Study. Procedia CIRP, vol. 37,
pp. 254–259.

Wei, H., Shao, Z., Huang, Z., Chen, R., Guan, Y., Tan, J.,
and Shao, Z. (2016). RT-ROS: A real-time ROS
architecture on multi-core processors. Futur. Gener.
Comput. Syst., vol. 56, pp. 171–178, Mar. 2016.

