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Abstract: Swarm robotics has gained momentum in the last years due to impressive technological and 
scientific advances. A wide range of application areas benefit from the power of collective behaviors and 
emergent intelligence even if individual agents in a swarm are simple and have limited sensing and 
processing capabilities. This paper presents a new approach to the problem of software system integration 
of heterogeneous robots in a swarm. We showcase the capabilities of this approach by providing a sound 
methodology, full code and demonstration videos of the run-time platform through experiments with 
heterogeneous swarms. The proposed solution is shown to be modular, scalable, robust, and flexible. 
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1. INTRODUCTION 

Swarm robotics can be defined as “the study of how a large 
number of relatively simple physically embodied agents can 
be designed such that a desired collective behavior emerges 
from the local interactions among agents and between the 
agents and the environment” (Şahin and Spears, 2005) 
without any centralized control or use of global information. 
The emergent behaviors of such swarms demonstrate 
robustness and flexibility which are desired qualities in real-
world applications, such as warehouse automation or civilian 
or military search and rescue missions. 

To date, a lot of research effort has been spent on 
homogeneous robot swarms (where all the robots are 
identical) and it is considered that in order to reach the 
complexity of real-world systems it is necessary to address 
the stringent issue of designing integrated heterogeneous 
robot swarms in which robots can differ physically, 
functionally and informationally (Dorigo et al., 2013). 
Integration in this context relates to the fact that each 
individual robot or subgroup of similar robots can 
communicate and interact with other robots and the swarm as 
a whole, regardless of their hardware and software 
characteristics. Fig. 1 shows a heterogeneous swarm in which 
there are three different types of robots (Koala, Khepera, and 
E-puck) which differ in terms of size, sensors, processing 
power, capabilities and autonomy. Even for identical robots, 
they can differ in terms of processing power, e.g. the two 
Khepera robots in Fig. 1, one of which is a Raspberry Pi-
powered robot. 

A list of issues and challenges in designing heterogeneous 
robotic swarms, which include the physical and behavioural 
integration among various hardware platforms, with different 
components, capabilities, software interfaces and multiple, 
possibly competing, requirements, is detailed in (Dorigo et 
al., 2013). Given the difficulty of hardware and software 
integration, it is not surprising that only a few papers have 
approached the problem of designing and deploying 

heterogeneous robot swarms, from both the hardware and 
software points of view. In (Patil and Abukhalil, 2014), the 
hardware architecture of a swarm of five different mobile 
robots is addressed, while this issue is approached from a 
system-of-systems perspective in (Sahin et al., 2007). Sharing 
of information by multiple robots is addressed using a graph-
based map-building method in (Moon et al., 2015). 

 

Fig. 1. A heterogeneous robotic swarm. 

The software issue of deploying heterogeneous robot swarms 
is addressed through a programmability perspective in 
(Pinciroli et al., 2015), where an extensible programming 
language for self-organizing heterogeneous robot swarms is 
presented as an indispensable tool. A prominent actor on the 
robotics market is ROS, an open-source Robot Operating 
System which allows compatible software to be written for 
different robots by providing libraries and tools to assist 
developers to create robot applications and reducing the 
development time (Quigley et al., 2009), (Mayachita et al., 
2013), (Alisher et al., 2015), (Araújo et al., 2014), (Tsarouchi 
et al., 2015). A real-time extension of ROS is presented in 
(Wei et al., 2016). 

The main contribution of this paper is to propose and 
demonstrate the viability of a software framework which 
allows the integration of various robots into a unitary swarm 
of robots.  
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The paper is structured as follows. The next section gives an 
overview of the currently available robot hardware and 
software tools used to integrate software components in a 
heterogeneous robot swarm. The third section presents the 
software implementation for the robots in order to make them 
ROS compatible. The fourth and fifth sections present 
functioning modes for the heterogeneous swarm in multiple 
configurations and the test results. The paper ends with 
conclusions and directions for further improvements. 

2. OVERALL SYSTEM ARCHITECTURE 

This section defines and describes a possible view of a 
heterogeneous robot swarm in terms of structure, 
components, their properties, and the relationships between 
them. The emphasis will be placed on programming the 
interconnection of various robots in a common software 
framework. 

2.1  System Overview  

The goal is to have different robots interacting in an 
integrated way which can enable the effective realization of 
high-level, complex goals in a dynamic environment. Some 
hardware additions might be needed but not necessarily in all 
cases, as the majority of robots are built around connectivity, 
hardware wise, using standard devices, as will be explained 
in the next subsections. 

Regarding software, a common framework is required. This 
is accomplished using ROS, a very powerful tool in robotics 
software development which has become nearly a standard in 
robotics research. 

2.2  Robot Operating System 

ROS (http://wiki.ros.org/) is an open-source robotics software 
framework for robotics software development. It provides the 
user with connectivity and control of robot devices through a 
common software interface. ROS offers message passing 
(publish/subscribe) between processes (nodes), software 
libraries and tools for writing, building and running 
programs. It also offers visualization, data recording and 
other tools for analysing the results and for adjusting the 
code. Software package management (catkin, rosbuild) is 
another important feature. ROS also offers network 
connectivity between machines, allowing the software to be 
run across multiple machines. 

ROS is an open-source and research community driven 
software, and is written in the very popular and powerful 
C++ and Python programming languages, but it is not an 
operating system in itself, as it runs on the Linux operating 
system, especially on the Ubuntu distribution. It is called so 
because it offers many operating system-like services 
between the computer/robot and the user.  

The power of ROS is that it allows the user to freely use all 
the existing ROS packages, modify or create new ones. 
Linking the functionalities of these packages makes ROS a 
great tool for rapid robotics development. ROS offers the 
supported robots (with ROS drivers) important high-level 

robot application packages such as robot vision, navigation 
and planning, intelligent control, grasping, and SLAM 
(Simultaneous Localization and Mapping). It also offers links 
to other existing robotics frameworks and simulators such as 
Player, Gazebo, Webots etc.   

In order to have a robot using the ROS software, a software–
hardware link (driver) between the computer running ROS 
and the robot is needed. The robot devices that need to be 
used or controlled (e.g. camera, motors) must be connected 
directly to this computer via USB, serial, or other ports, or 
have the robot’s central (embedded) computer connected to 
this computer. The embedded computer controlling all the 
robot devices is more common because robots are usually 
built to be standalone machines. The ROS driver 
implementation for the robots presented in this paper will be 
described in the next section. 

Another advantage of ROS is that it is made to scale easily 
and appropriately for various size systems. Robots usually 
have embedded devices and software, and this provides real-
time features. ROS is intended for higher-level application 
use, it is a fast software but not real-time. This might be a 
limitation, and some ROS embedded tools might be needed 
for this. 

2.3  Test Robots 

The majority of robots used by the industry and research are 
built and mass-produced by robotics companies. These robots 
come with built-in software for their microcomputer 
architecture to connect all the on-board sensors and actuators, 
and even provide purchasable extensions, such as more 
sensors, e.g. laser scanners. The application purposes and 
research areas in which these robots are used lead in many 
cases to the robots needing modifications or add-ons to their 
hardware and software, whether they are open-source 
platforms or not. Depending on the robot architecture, the 
firmware may be easily modified, with software tools and 
programming hardware either built-in or external. Modifying 
the robot firmware is good for program running speed and 
real-time restrictions. When working on advanced, high-level 
applications, where developers and users need to visualize 
what the robot is doing, modifying the firmware is not a good 
solution. With older hardware, the memory of the embedded 
computer is usually limited. High-level programming tools, 
such as C++, Python programming languages and other 
object-oriented programming languages are recommended in 
these cases. For these tools a powerful computer is needed 
and if it is not integrated in the robot, this computer needs to 
be added to it.  

The robots used in this paper to demonstrate and validate the 
proposed software system integration are three types of 
mobile robots of different sizes and capabilities and are 
shown in Fig. 2. 

The smallest robot used is the E-puck robot (e-puck.org), 
which is an open-source robot. It has a dsPIC microcontroller 
connected to 2 stepper motors and the following sensors: IRs, 
VGA camera, microphones. It also has a speaker and LEDs. 
The robot supports serial communication and Bluetooth. The 
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firmware for this robot is written in C programming 
language. Programs can be written and cross-compiled to 
create a .hex file to write to the flash memory of the 
microcontroller via Bluetooth, serial or using a programmer 
device wired directly to the robot. 

 

Fig. 2. (Left to right) E-puck, Khepera III and Koala robots. 

The second robot is a larger but still small size robot Khepera 
III (K3). The K3 is a proprietary developed research robot 
and it has a main dsPIC microcontroller connected to two 
other PIC microcontrollers for each of its 2 motors with 
encoders, and the following sensors: IR, ultrasonic. The robot 
supports serial, Bluetooth and USB communication. The 
robot has an installed firmware for all the robot capabilities 
and can be updated. A Korebot board which has an ARM 
processor can be attached to the robot to run programs and 
control the robot. The board runs an Ångström Linux 
distribution OS. C programs can be written using the Korebot 
API (K-Team, 2012). 

The last robot is the Koala, which is another proprietary 
research robot. The Koala is a medium size robot. The robot 
has a Motorola microcontroller connected to 2 motors with 
encoders, and the following sensors: IR, temperature, torque. 
The robot supports serial and Bluetooth communication. The 
microcontroller runs a software named Koala BIOS (K-Team 
SA, 2001) written in Assembly language or C. This BIOS can 
be modified and used for other programs written in C and 
compiled with a GNU C cross-compiler. 

The three robots support receiving commands via 
serial/Bluetooth interfaces. These commands can fully use all 
the on-board capabilities of the robots and can be used in any 
software program that uses serial communication or has 
software libraries for it. 

2.4  Robot Hardware Modifications for Software 
Requirements 

All the robots have IR proximity sensors and serial over 
Bluetooth communication for PC connectivity. In order for 
the robots to communicate, additional software and/or 
hardware is required. 

Bluetooth and Wi-Fi device software drivers are implemented 
already in major operating systems (Linux, Windows, Mac 
OS). ROS is also a common software interface for robots 
which can be used to communicate using the wireless 
devices. Linux is preferred because it is open-source, it is 
supported on multiple micro-computer architectures, and 
ROS is implemented for the Ubuntu distribution of Linux. 
Thus platforms running Ubuntu are required. 

The smaller robots, E-puck and K3, can run Linux on an 
attached small size Raspberry Pi computer board (version 2 

B+ 2015 is recommended for more computing power) with 
USB Bluetooth and Wi-Fi dongles attached. The K3 already 
runs a version of Linux on its Korebot computer board, but it 
lacks computing power and a very small version of ROS 
would need to be compiled for its processor, thus a Raspberry 
Pi is preferred. 

 

Fig. 3. Modified E-puck with Raspberry Pi 2 B and Wi-Fi 
dongle (front and back). 

 

Fig. 4. Modified Khepera III robot with Raspberry Pi 2 B and 
Wi-Fi dongle. 

 

Fig. 5. Koala Rzobot connected via serial to a 13.3” laptop 
mounted on a support. A Kinect sensor is mounted on the 
robot and connected directly to the laptop via USB. 

The Koala robot, being larger in size, can carry a small size 
laptop on it. A support was added to the robot to carry the 
laptop. Having a laptop PC adds a lot of power, versatility 
and connectivity to the robot. Such an example is adding a 
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Kinect sensor for precise mapping information, needed for 
SLAM.  

Pictures of the modified standard robots are shown in Fig. 3–
5, and Table 1 summarizes all their characteristics. 

Table 1.  Overview of robots used. 

 E-puck 
Khepera III 

(K3) 
Koala 

Embedded 
Computer 

dsPIC30F6
014A at 60 
MHz, 8KB 

RAM, 
144KB 
flash 

memory 

dsPIC30F5
011, 60 

MHz, 4KB 
RAM, 

66KB flash 
memory 

M68331 32-
bit MCU at 

22MHz, 
1MB RAM, 
1MB flash 
memory 

Connectivity 
Bluetooth, 

Serial 
Bluetooth, 

Serial 
Serial  

Extensions - 

Korebot: 
Xscale 

PXA255 
400 MHz, 

64MB 
RAM, 32 
MB flash, 
Wi-Fi card 

connectBlue 
industrial 
Bluetooth 

333s 

Robot Additions 

Computer 

Raspberry 
Pi 2 B 

900MHz 
quad-core 

ARM 
Cortex-A7 
CPU, 1GB 

RAM, 
32GB SD-
card, USB 

Wi-Fi 
dongle, 
Ubuntu-

ARM 
14.04 OS 

Raspberry 
Pi 2 B 

900MHz 
quad-core 

ARM 
Cortex-A7 
CPU, 1GB 

RAM, 
32GB SD-
card, USB 

Wi-Fi 
dongle, 
Ubuntu-

ARM 
14.04 OS 

Laptop Z30t-
B-104, 13.3” 

monitor, 
Intel i7-
5500U, 

16GB RAM, 
512 SSD, 

Wi-Fi, 
Bluetooth, 
USB 3.0, 

Ubuntu 64-
bit 14.04 OS 

Sensors - - Kinect 
 

Any number of the robots from the above table can be used 
with any additional robots that are ROS compatible. 

3. ROS LINK. SOFTWARE IMPLEMENTATION 

The robots presented in Section 2 must be able to 
communicate with each other. For this they need ROS drivers 
to link them to the software environment and to other robots 
in the swarm. These ROS drivers are sometimes made by the 
companies that produce the robots or research groups that use 
the robots, and this is the case of the E-puck robot. 

Starting in 2015, ROS drivers for the E-puck robot are 
available. These drivers are written in Python 
(https://github.com/verlab-ros-pkg/epuck_driver) and C++ 

(https://github.com/gctronic/epuck_driver_cpp). They use the 
Bluetooth communication and serial over Bluetooth 
commands to control and receive information from the 
sensors. 

The K3 and Koala robots also need software drivers for the 
ROS link. The ROS drivers are written in C++ and use serial 
commands (Fig. 6) to control the robots and read sensor 
information. A serial communication library from ROS is 
used (http://wiki.ros.org/serial). The code is similar for the 
robots, with only some commands and functionalities 
differing because the robots have different on-board devices, 
actuators and sensors, needing different values for their data, 
thus different drivers. The code is a basic C++ program 
which controls the robot using a serial library, but the 
addition is that it links the functions and data to ROS 
functions in the same program. 

 

Fig. 6. Koala motors and sensors commands (K-Team SA, 
2001), pp. 39 and 41. 

The source program and other configuration files are placed 
in a node folder and structured for the ROS catkin workspace 
(http://wiki.ros.org/catkin) in order for the project node to be 
built and linked to ROS. 

The driver node can also contain messages files to pass 
between ROS programs and roslaunch files to easily and 
automatically launch every needed node and program that 
uses this driver. 

A basic Koala robot ROS driver C++ code is listed in the 
lines shown in Fig 7 and 8. 

The program subscribes to and waits for general ROS 
geometry_msgs/Twist.msg which it uses as commands for 
the left and right motors. The Koala robot is connected to the 
mounted computer using a robot serial cable and a serial-to-
USB cable, thus the /dev/ttyUSB0 port is used in the driver. 

Having the robot driver node connected to ROS, other 
programs/applications can listen to this node, which can 
publish information on ROS topics, and wait for motor 
commands over the motor topic. 
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Fig. 7. koala.cpp (part 1). 

 

Fig. 8. koala.cpp (part 2). 

Using this template, drivers for the K3 and E-puck were also 
created, and along with the Koala drivers. The drivers created 
with this template are available as open-source software at: 
https://github.com/pktehgm/newswarm/tree/master/robot_dri
vers. 

4. USE CASE SCENARIOS 

Depending on the applications and tasks required for the 
heterogeneous robotic swarm presented here, the robots can 
communicate and run programs using the ROS system in five 
different working modes, which we will introduce in the 
following. These modes are different in terms of where the 
programs run, on which robot and how. The programs refer 
to the drivers, applications and ROS. The software drivers for 
controlling the robots and programs for higher-level 
applications and tasks can run on the robot they are intended 
for or on a different robot, a so-called Leader robot, with 
better hardware, more computing power or sensors. ROS can 
also run on a single robot and the other robots just connect to 
that robot, or on each robot capable of running ROS, the so-
called Standalone robot. Some very simple robots cannot run 
ROS and do not have a computer attached to run ROS. A 
Standalone robot will be used as a Leader robot, needed to 
run drivers and commands wirelessly for these simple robots. 

We propose five basic heterogeneous swarm working modes 
which are described in the following. We provide 
demonstration videos for all these use case scenarios in 
(Gânsari and Buiu, 2015). An overall view of these basic use 
case scenarios is given in Fig. 9 and 10. 
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Fig. 9. Heterogeneous swarm functioning modes using ROS 
(1-3). 

1. Single-Minded Robot Swarm. In this mode, there is a main 
robot called the Leader with a computer running the ROS 
master (roscore), ROS drivers for itself and all the other 
robots. The Koala robot is the Leader in this system 
configuration. The Leader sends/receives information to/from 
the other robots through wireless communication, e.g. 
Bluetooth (BT) for the robots used here. All the other task-
driven programs run on the same main robot computer, which 
sends commands to the robots through the ROS system. For 
this mode the Leader robot needs modifications as in section 
2.4. This mode is used in order to have a more complex and 
capable robot control, provide ROS communication and drive 
the application for a large number of very simple robots. 

2. Swarm with Leader Robot and Standalone Basic Robots. 
In this mode each robot runs its own ROS drivers, and other 
required control programs. They communicate with each 
other by connecting to the main robot computer which runs 
the ROS master. The connection is done in a common 
network using WLAN protocol. The main robot may receive 
tasks from the user and the other robots will coordinate and 
receive commands from this Leader robot. For this mode and 
the following modes, robot modifications as in Section 2.4 
are required for the Standalone robots. This mode is 
recommended when the user wants to control many 
Standalone robots in the swarm through a single robot. This 
mode is also recommended when a robot needs to run some 
programs which require more powerful processing power 
than is available on its computer, but available on the Leader 
robot’s computer. The processed data is passed over ROS. 

3. Swarm with Standalone Robots Connecting to a Central 
Robot. This is similar to mode 2, and the difference is that all 
the robots act and run individual tasks independent from the 
other robots, but they communicate using the ROS 
environment by connecting to a single rosmaster that runs on 
a designated robot in the network. In this mode all the robots 
in the swarm are independent, and there is no central 
controller. The robots just connect to the roscore running on 
the computer of the one designated robot in the swarm, to 
allow communication between robots, allowing the robot 
programs to exchange data. 

 

Fig. 10. Heterogeneous swarm functioning modes using ROS 
(4 and 5). 

4. Swarm with Standalone Robots. In this mode each robot is 
a fully independent agent running its own ROS master. The 
robots connect when they need to other robots by using the 
rosmultimaster ROS package (http://wiki.ros.org/multimaster 
_fkie). This package allows the robot to search the network 
for other ROS masters (individual robots or single-minded 
swarm of robots in the case of the first mode), synchronize 
and communicate with each other. 

5. Combined Swarm (Single-Minded Robot Swarm(s) and 
Standalone Robots). This is a combination of the previous 
modes. This mode is used when very simple robots, which 
lack some of the capabilities required for this system, are 
added to the swarm. Depending on their hardware 
capabilities, they can be added to a robot configuration such 
as in mode 1 or 2. The robots in these configurations can 
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communicate with other Standalone robots in the swarm, or 
with similar robots controlled through another Leader robot 
in a similar configuration. 

 

Fig. 11. Single Minded Robot Swarm. 

5. EXPERIMENTAL RESULTS. APPLICATIONS 

Using the ROS drivers described in section 3, a series of tests 
were devised to prove that the robots in the swarm can 
communicate at a software level using ROS. The robots have 
individual goals, in this case to follow simple movement 
commands. The robots move after receiving command 
information from their program, whether it is local or from 

another robot. All the programs needed for each test will be 
called individually, and also roslaunch files can be used to 
launch all the needed programs. A desktop computer together 
with the programs SSH and X11VNC were used in the tests 
to connect remotely to the robots, i.e. the laptop and 
Raspberry Pis mounted on the robots. Five tests were done to 
prove each functioning mode. 

In the first test, a single-minded swarm with the main robot 
Koala is running all the drivers and programs for each robot. 
The programs for the robots communicate through the 
roscore and send commands to their respective robots using 
Bluetooth. An example is shown in Fig. 11. 

The second test is done with three Standalone robots. Each 
robot runs its own drivers and they all connect to a single 
roscore. In this test a Koala robot is used as a Leader running 
roscore and rtab map program for ROS (http://wiki.ros.org/ 
rtabmap_ros) to create maps with the Kinect sensor. The 
mapping information is needed for SLAM. To connect to a 
single roscore, all the robots must have the following two 
ROS commands run in the terminal to tell the system where 
the roscore is run and the IP of each robot:  

In the third test all the robots run their drivers and other high-
level programs standalone, but they connect and 
communicate with each other through a single roscore 
running on a single robot. In this test, the E-puck robot runs 
along with its driver and uses gmapping ROS nodes 
(http://wiki.ros.org/gmapping) for SLAM. The K3 is running 
the driver and a simple movement program. The Koala robot 
runs rtab map with the Kinect and has a wireless controller 
connected via USB for movement commands. The controller 
Linux drivers are linked to a ROS joy node 
(http://wiki.ros.org/joy) which will publish the controller 
data. To prove the communication between robots, the 
controller on the Koala is used to send movement commands 
to the Koala and E-puck. 

In the fourth test each robot is completely independent, 
running roscore and all programs. The robots connect with 
each other using rosmultimaster nodes. A detailed report on 
how to set up the multimaster ROS can be found in (Juan and 
Coratelo, 2015). All the robots in this test subscribe to the joy 
node running on the Koala, and thus move by receiving 
commands from the controller. A multimaster example 
running on each Standalone robot is given in Fig. 12. 

In the fifth and final test a Combined Swarm is tested. All 
Standalone robots run their own roscore and the 
rosmultimaster node. The Standalone robots have other 
simple robots connected to them using Bluetooth and run 
their own drivers, other more advanced programs and the 
simple robots’ ROS drivers. A tested goal here is to have 
simple robots such as those from the first test receive 
commands from other Standalone robots in the swarm 
through its Leader robot. The Koala controller joy node was 

export ROS_MASTER_URI=http://Leader_IP:11311 

export ROS_IP=Current_Robot_IP 
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used again, publishing data on the ROS network. Any robot 
driver connected to this network can subscribe to the 
publishing joy node and thus the simple robots not connected 
to the Koala with the controller receive commands from the 
controller through their own respective Leader robot. A 
screen capture of this Combined Swarm Robots and the 
Standalone robots’ computer desktops can be seen in Fig. 13. 

 

Fig. 12. Multimaster ROS. 4 roscores running on the user 
computer and 3 remote SSH terminals connected to the 
computers of the robots. ROS master and sync nodes are 
running on all computers. 

6. CONCLUSIONS 

Robotic swarms can move to a superior level of performance 
and applicability if a large number of robots with different 
kinds of heterogeneities in terms of characteristics and 
objectives can be integrated in a coherent whole. With this 
goal, we presented an original approach to the problem of 
software integration for swarms of heterogeneous mobile 
robots. The contributions of our work include: software 
integration of different robots in a single software 
environment allowing communication between robots (i.e. 
robot programs) using add-on hardware and ROS, providing 
a template for a ROS compatible robot driver, and proposing 
five basic working modes for heterogeneous robot swarms 

with functioning examples which are demonstrated through 
online videos. 

 

 

Fig. 13. User connected to the heterogeneous swarm. A 
computer with webcam is used to connect remotely via Wi-Fi 
to the computer desktops of 3 Standalone robots: 
Koala+Laptop, K3+Raspberry Pi and E-puck+Raspberry Pi. 
The other robots are connected via Bluetooth to their 
respective Leader robots. ROS cores, drivers and applications 
are running in the background terminals. 

The system offers scalability, allowing the addition of any 
number of robots such as those presented in this paper, and 
other ROS compatible robots. This system of robots can be 
used to raise the level of automation in factories and even in 
places for the general public. 

Plans for further developments are manifold and involve 
several activities. A major activity is having the robots in the 
swarm accomplish advanced coordinated and individual tasks 
by using the advantages of the swarm and of the different 
capabilities of each robot. Such an example is having the 
robots navigate in an intelligent manner using simultaneous 
localization and mapping. Another use is to add new different 
robots to the swarm which will provide new capabilities to 
the system. 

Having robots communicating and coordinating over the 
network can leave the robots exposed to security threats from 
other robots and computers that connect to the network, and 
can drive the robots in a different manner than the intended 
one. A security system solution for the heterogeneous robot 
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swarm is required and this can be accomplished by using 
bioinspired approaches. 
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