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Abstract: In this report, a review on state estimation schemes applied to large-scale systems
is made. The attention is focused on Moving Horizon Estimation (MHE) schemes due to the
addressing of the estimation problem in an optimal way, and it inherent capability to handle
the process constraints. Moreover, the cost function can be proposed unlike other optimal
estimation schemes like those based on Kalman Filters. Therefore, contributions on state
estimation schemes applied to large-scale systems are described, in order to outline its merits
and limitations. Finally, open problems are listed with the aim to prepare a basis for future
contributions.

Keywords: Moving horizon estimator, distributed estimation, large-scale systems, nonlinear
programming, constraint addressing.

1. INTRODUCTION

Moving Horizon Estimation is becoming an important
tool to estimate the state and parameters of any plant.
The main added value is the possibility to address the
constraints directly into the formulation of the optimiza-
tion problem. As a main drawback, it must be pointed
out the difficulty to handle a numerical complex problem,
each sample time, as a consequence of the solution of a
nonlinear optimization problem with constraints. Many
authors have focused on the improvement of the numerical
issues in which MHE are involved [Binder et al (2005),
Kang (2006), Jørgensen et al (2004), Kraus et al (2006),
Zavala et al (2007), Zavala et al (2008)]. Therefore, as
the computational advances allow the use of powerful pro-
cessors, and the research on numerical issues in nonlinear
optimization is increasing, the development of new efficient
estimation schemes for large-scale and complex systems
are becoming in a feasible research area.

On the other hand, large-scale systems have been char-
acterized by complex systems with hard nonlinearities,
uncertainties, large number of variables and dynamics with
different response times. Its decomposition into a set of
smaller systems have been researched for many decades
[Siljak and Vukcevic (1976), Sanders et al (1978), Mahil
and Bommaraju (1992)]. This kind of decomposition looks
for more manageable subsystems with the aim to organize
them, possibly in a hierarchical way. As there are more
subsystems, local control and estimation becomes more
attractive, but the plant coordination and information
exchange between subsystems turns more complicated. A
large scale example is the traffic in a city, where sensors
are collecting information about traffic conditions, and
this information is distributed to the coordination system,
allowing people to select alternate routes avoiding traffic
jams. Similar problems may be weather prediction, total
estimation of the state in a big industrial plant, etc.

Later, it will be shown why the state estimation of large-
scale systems remains a challenge. The lack of a general
methodology do not allow the design of efficient and fast
schemes in order to guarantee convergence and stability of
the estimations in a desired way. The paper is organized
as follows: In Section 2, the problem statement of MHE
is presented. Moreover some of the most relevant publi-
cations on MHE field are shown in order to establish the
current status of the estimation scheme. The first part of
Section 3 describes some general approaches to estimate
the state in a large-scale system. In the next subsection,
some published schemes of MHE applied to large-scale
systems are also reviewed as the main subject in this note.
Advantages and drawbacks are analyzed in all reviewed
approaches. Finally some conclusions and open problem
are presented in Section 4.

2. MOVING HORIZON ESTIMATORS

MHE strategies was born as a dual problem of the Model
Predictive Control (MPC). Despite MPC and MHE pro-
cedures are quite similar, MPC technology was developed
first in petroleum industry due to the dynamic complexity
of the processes and the need of improved control strate-
gies, whereas MHE theory was developed first in academia
[Algöwer et al (1999)].

The basic strategy of MHE reformulate the estimation
problem as a quadratic problem using a moving, fixed-size
estimation window. The fixed-size window is needed to
bound the computational effort to solve the problem. This
is the principal difference of MHE with batch estimation
problem (or full information estimator) [Findeisen (1997),
Algöwer et al (1999), Rao (2000)]; once a new measure-
ment is available, the oldest one is discarded, using the
concept of window shifting. Moreover, the main advantage
of MHE in comparison with another estimation schemes
(like the Kalman Filter-based) is the direct constraint
addressing inside the optimization problem, and the pos-
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sibility to propose the cost function. However, as MHE is
a limited memory filter, stability and convergence issues
arise.

2.1 Problem statement

Assume a system modeled by means of the following
nonlinear difference equation:

xk+1 = f(xk) + g(xk, wk)
yk = h(xk) + vk

(1)

where some constraints are imposed over the state vari-
ables and disturbances as follows:

xk ∈ X, wk ∈ W (2)

with xk and yk the state and output at k sample respec-
tively, wk is the disturbance or model uncertainty, and vk
is the noise in the measured variables. Also, f : Rn → R

n,
g : Rn × R

m → R
n with g(·, 0) = 0, and h : Rn → R

p.
Finally it is assumed that X and W are closed with 0 ∈ W.

As it is desired estimate the state of the system described
by Ec (1), first we define the full information estimator
(FIE), and then the MHE general statement is shown.
Consider an optimal constrained estimation problem:

(P1) : φ∗
T = min

x0, {wk}
T−1

k=0

φT (x0, {wk}
T−1

k=0 ), (3)

where x0 is the initial state, and T is the current discrete
time. The problem is subject to the following constraints:

xk ∈ X for k = 0, ..., T
wk ∈ W for k = 0, ..., (T − 1)

(4)

with the cost function as:

φT (x0, {wk}
T−1

k=0 ) ,

T−1∑

k=0

L(wk, vk) + Γ(x0) (5)

Notice that, the most important constraint is the model
(1). It is assumed the stage cost function as L : Rm×R

p →
R+ and the initial penalty as Γ : Rn → R+. The solution to

(P1) at T , it is denoted by
{
x̂k|T−1

}T

k=0
and disturbance

sequence by means of
{
ŵk|T−1

}T−1

k=0
. It is pointed out

that the noise is obtained from the difference between
the measured outputs and the model output: vk = yk −
h(xk). The problem (P1) is referred as the full information
problem (FIP) or batch state estimation problem (BSEP)
in the most relevant literature [Rao (2000), Rao and
Rawlings (2000), Rao et al (2001), Rao et al (2003),
Findeisen (1997)].

As the problem (P1) gets more information as time goes,
the optimization become more complicated, due to the
availability of new information. Therefore, as the problem
has T stages, the computational complexity increases at
least as a linear function of time. Unless the problem is
linear, unconstrained, and it has a quadratic cost function
(in which case the solution is equivalent to the obtained

with the Kalman filter), the problem becomes infeasible
to be solved on line. One way to avoid the last problem is
getting a new optimization problem with a fixed window
data, that is, a fixed dimension optimal problem by means
of a moving horizon approximation.

Consider again the problem (P1), with the cost function
rewritten in an alternative way:

φT (x0, {wk}
T−1

k=0 ) =

T−1∑

k=0

L(wk, vk) + Γ(x0)

=
T−N−1∑

k=0

L(wk, vk) +
T−1∑

k=T−N

L(wk, vk) + Γ(x0)

(6)

where N is the moving horizon. The last cost function can
be rearranged in a more compact function, and then the
problem can be reformulated as:

(P1)∗ : min
xT−N , {wk}T−1

k=T−N

T−1∑

k=T−N

L(wk, vk) + ΞT−N (xT−N ) (7)

with

ΞT−N (x) = min

x0, {wk}
T−N−1

k=0

T−N−1∑

k=0

{
φT−N (x0, {wk}

T−N−1

k=0
)
}

(8)

subject to constraints:

xk ∈ X for k = 0, ..., T −N,
wk ∈ W for k = 0, ..., (T −N − 1)

(9)

Henceforth in this note, the initial penalty Ξj is referred
as the arrival cost. Note that, the arrival cost must have
all the past information over the process, in order to
establish an equivalence between (P1) and (P1)∗. In fact,
some authors assume this term as an equivalent statistic
that summarize the past data [Algöwer et al (1999),
Rao (2000)]. The previous statement is not always true,
because of the exact computation of the arrival cost is
only possible if the system is linear, the cost function is
quadratic, and there are not constraints. Otherwise, the
arrival cost must be approximated. So the computation
of the arrival cost is still a challenge for the scientific
community. To see a graphical comparison between FIE
and MHE, see Fig 1.

2.2 About the latest developments on MHE

This subsection deals with the most relevant results on
MHE in the last years. First, stability issues in a discrete
framework are presented. Then the framework is changed
to a continuous time. Finally, contributions on numerical
algorithms to solve the numerical optimization involved
on MHE problem are also presented. Interesting MHE
applications can be found in Alamir and Corriou (2003),
Alamir and Sheibat-Othman (2007), Haverbeke et al
(2008), Kawohl et al (2007), and Kupper et al (2008).
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Fig. 1. Full Information and Moving Horizon formulations
[Algöwer et al (1999)]

MHE Stability in a discrete framework. Stability con-
tributions in a discrete framework have been presented
in Algöwer et al (1999), Ling and Ling (1999), Rao
(2000), Rao and Rawlings (2000), Rao et al (2001),
Rao et al (2003), Alessandri et al (2008), and Qu and
Hahn (2008). Allgöwer et al. [Algöwer et al (1999)] show
the historical path of MHE procedures until the end of
90’s. First, the contribution of Jang and coworkers [Jang
et al (1986)] is outlined as the earliest MHE technique,
but the disturbance effect and constraints addressing are
ignored, focussing only on the estimation of the initial
state of the system. Then, some important works are
listed with the aim to show their theoretical importance,
advantages, and drawbacks. Some authors investigated
the logical extension of MPC to MHE, nonlinear data
reconciliation, the use of inequality constraints (that is
the cornerstone of the MHE procedures), stability, and
convergence issues among others. The remainder of this
publication presents the optimization problem statements
for full information estimation and MHE for both, linear
and nonlinear models subject to constraints. Then, a result
on estimator stability is shown in a deterministic way for
linear systems: the proposition says that the Kalman Filter
covariance becomes a lower bound to the arrival cost, and
then stability is guaranteed if (C,A) is observable and all
the covariance matrices are positive definite. Finally, it is
pointed out the challenge to formulate the MHE strategy
in a nonlinear framework. The main difficulty is to solve
online a nonlinear optimization problem with constraints.

In Ling and Ling (1999) it was shown a stability result
for certain receding horizon recursive state estimator based
on the choice of the state estimation horizon. The disad-
vantage of this publication lies in its limited application:
only linear systems. Later, Rao et al. [Rao and Rawlings
(2000)] present some fundamentals of MHE theory. The
main difference with Algöwer et al (1999) are the MHE
strategies with guaranteed stability, also for nonlinear sys-
tems. These results are based on the Lyapunov theory and
are concerned with the search of a global bound for the
arrival cost if the system is linear. It is pointed out that
the stability results are mainly based on some assumptions
made over the terms involved in the cost function, the fact
that the system state remains inside the constraints, and
the system is incrementally observable. In the nonlinear
case, the bounding of the arrival cost is more challenging.
Rather than attempt to bound the arrival cost, a strategy

to generate a monotone decreasing sequence that bounds
the optimal cost function was proposed, and based on these
sequences the initial penalization is calculated. Further
results on stability of MHE with linear models and con-
straints are presented in Rao et al (2001) extending the
published analysis made in Rao and Rawlings (2000). In
fact, these results are based on the “equivalence” found
between the MHE with the full information estimator.
Assuming the state respects the constraints all the time,
it is guaranteed that the full information estimator is
stable, and then conditions to reformulate the stability
analysis for MHE are made. These conditions are only
sufficient, limiting the result to some systems. Finally, the
paper presents some smoothing strategies. Later, Rao and
coworkers presented a nonlinear MHE procedure (NMHE)
in Rao et al (2003). This is based on a linearization of the
nonlinear model around certain operating point. Once the
previous linearization is performed an approximation of
the arrival cost is found as a function of the covariance
matrix of the Extended Kalman Filter (EKF). Further
results on stability of this approach are discussed here. The
performance of this approach is tested first with a linear
model compared with a Kalman Filter (KF). Then the
performance of the scheme is tested with a nonlinear model
with an EKF as a benchmark. Despite the results, this
contribution points out the need to develop more research
on NMHE.

In a recent work [Alessandri et al (2008)], a MHE strategy
based on the least-squares optimization is performed,
taking explicitly into account the measurement noises and
disturbances uncertainties, both of them with unknown
statistics. Unlike previous contributions, it is considered
a bounded optimization expected error, therefore a strict
optimization is not necessary. Another difference is the
inclusion of a new term in the cost function, that is, a term
that penalizes the deviation between the predicted initial
value with the estimated one. Stability is proven over the
estimation error dynamics. Finally numerical results are
reported and compared with an EKF.

A novel computation of arrival cost is performed in Qu and
Hahn (2008). This was done by means of the Unscented
Kalman Filter (UKF), published by Julier and Uhlmann
[Julier and Uhlmann (2004)], instead of EKF. This
last publication demonstrates the superiority of the UKF
compared with the EKF since the parameter statistics
are found in a more precise way. Therefore, any arrival
cost computation with UKF gives better results than the
one computed with EKF. This result gives consequently
convergence and then stability as it was demonstrated
previously in Rao and Rawlings (2000).

Contributions in a continuous framework. Contributions
in a continuous framework are presented in Alamir (2007),
Alamir and Calvillo-Corona (2002), Mayne and Michal-
ska (1992), and Michalska and Mayne (1995). Alamir
and Calvillo-Corona [Alamir and Calvillo-Corona (2002)]
presented further results on MHE using the continuous
time approach. The main idea is as follows: with a compact
set S0 of possible initial states, it assumed the existence
of certain high-gain receding horizon observer with guar-
anteed convergence if the initial estimation error is lower
than the observability radius associated to S0. This idea
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is derived assuming uniformly local observability of all
system in each (t, x) pair, that is in most cases hard to
guarantee. The analysis is made assuming a quadratic cost
function penalizing only the output error. This publication
does not mention anything about constraint handling.

Mayne and Michalska developed a MHE with the aim
to get a new receding horizon structure: model based
regulator plus a receding horizon observer [Mayne and
Michalska (1992), Michalska and Mayne (1995)]. This
is done first, building an MH observer in a deterministic
way, with a simple cost function that only penalizes the
output deviation. In this procedure, measurement noise
and disturbance uncertainty initially are not taken into
account. In fact, once the observer procedure is shown
in absence of noise, a sufficient condition based in a
deteriorated optimization is made in order to tolerate
certain bounded measurement noise. Finally, a stabilizing
composed strategy is derived from the convergence of the
MHE, but it is not part of the present review.

Numerical issues. Explicitly numerical issues are studied
in Kang (2006). A Moving Horizon Numerical Observer
(MHNO) is developed both for linear and nonlinear sys-
tems [Kang (2006)]. The key result is different of previous
approaches and it is based on the optimization and the
integration errors. This is done by minimizing certain cost
function that penalizes only the deviation in the output.
Then, previous minimum is improved with an approximate
Newton method based on an approximate of the Hessian
matrix. As an advantage it can be outlined that the
method is flexible since any numerical and optimization
method can be applied. The main disadvantage is the lack
of penalization of the disturbances in the cost function.
The feasibility of the method is demonstrated with certain
bounds on the errors.

3. STATE ESTIMATION IN LARGE-SCALE
SYSTEMS

Large-scale systems deal with more complicated process
than is usual. A concrete definition of this kind of systems
is not agreed by the scientific community, but some con-
crete features can be pointed out: high or infinite dimen-
sion, multi-objects, model uncertainty (due to random-
ness, fuzzyness, etc), special architectures, large number
of variables, etc. Due to the high dimensionality, it is
impossible (or uneconomical) to carry out some central-
ized calculation. It is mandatory to decompose the large-
scale system into several coupled subsystems. Therefore,
estimation and control procedures become a hard task. As
it will be seen, large-scale monitoring and control is still
a challenge. Moreover, large-scale state estimation with
MHE procedures is still an unexplored work area.

3.1 A review on state estimation schemes applied to
large-scale systems

It is important to explain some relevant schemes applied
in order to solve this problem. The identification of what
has been done and what remain a challenge in this area
is mandatory in order to propose a future contribution.
Therefore, a review of state estimation schemes applied to
large-scale systems can be classified in two main groups:

purely decentralized state estimators and distributed or
partially decentralized estimators. As it was stated earlier,
the centralized framework become a performance refer-
ence, instead of a possibility to implement in practice.

Fully decentralized schemes deal with a set of subsystems
which perform control and/or estimation tasks in an au-
tonomous way, that is, there is not information exchange
between subsystems. Some works about estimation based
on decentralization of linear systems was published in Sil-
jak and Vukcevic (1976), Sanders et al (1978), Chen and
Lu (1988), and Mahil and Bommaraju (1992). First, Sil-
jak and Vukcevic (1976) address process stabilization and
state estimation designs for a set of input-decentralized
and output-decentralized linear models respectively. As a
main disadvantage it must be outlined that the duality
concept is defined only for linear systems. If the system
is nonlinear the design must be performed with other
additional assumptions. Another disadvantage is the im-
possibility to address constraints. Finally, the performance
of this straightforward scheme was not even tested in simu-
lation nor in real applications. In a subsequent publication
[Katti (1982)], it is shown by means of a counterexample
that the previous scheme does not always work.

In a later paper [Sanders et al (1978)], the authors con-
sidered some specific structures to develop certain state
observers for large-scale linear systems. The performance
of such structures are evaluated with different levels of in-
formation exchange between local agents. The analysis was
made first considering noisy channels between decoupled
systems and additive disturbances in the state equation.
An important idea taken of this paper is whatever struc-
ture is chosen, there exist important parameters that could
modify the performance of the state estimation in one or
another way. The main contribution of this paper is the
use of the interaction measurement of noise crossover level
between two different structures with the aim to compare
the performance. The comparison of each structure is
made taking into account two levels of information: process
model information and measurement information. Note
that it is possible to limit the last one to a desired level.
Perhaps the lack of generality is the main limitation of this
contribution, since it can only be applied to linear models.
Also, the analysis becomes intractable as more subsystems
are considered because the results are obtained when there
are two subsystems. Finally this scheme does not take into
account constraints.

On the other hand distributed state estimation schemes
deals with the capability of local agents (local filters) to
intercommunicate between them in some way, in order
to improve the overall estimation. A generic distributed
state estimator can be depicted in Fig. 2. The intercon-
nection network is a generalized channel to perform the
information exchange between subsystems, in a desired
fashion. x1e, x2e,..., xne are the local state estimates of
each subsystem. Moreover, a mathematical description of
the overall linear large-scale system, and then a decompo-
sition to subsystems can be written as:

ẋ = Ax+Bu
y = Cx

(10)
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Fig. 2. Distributed observer structure

Si : ẋi = Aiixi +Biiui +
N∑

j=1,j 6=i

Aijxj +
N∑

j=1,j 6=i

Bijuj

yi = Ciixi

(11)

where x ∈ R
n , u ∈ R

m, y ∈ R
p are the state, input,

and output of the whole system respectively. A, B, and
C are the state, input, and output matrices of the large-
scale system, and Si with i = 1, ..., N is each decomposed
subsystem, N the number of subsystems. Note that the
model dependence with other subsystems is shown in a
explicitly way. In an analogous manner, the nonlinear
counterpart can be described mathematically as follows:

ẋ = f(x) + g(x, u)
y = h(x)

(12)

Si : ẋi = fi(xi, ..., xi−1, xi, xi+1, ..., xN , u)
yi = hi(xi)

(13)

where i = 1, ..., N . Moreover f , g, and h are vector fields
with real valued functions as components. In this equation,
it can be seen that the dependence with other subsystems
is not generic nor explicit.

Then, in a distributed framework some publications can
be outlined: Abdel-Jabbar (1998), Vadigepalli and Doyle
(2003), and Vadigepalli and Doile III (2003). Two criti-
cal issues are further discussed in Abdel-Jabbar (1998):
distributed state estimation in large-scale systems, and its
parallel computer implementation. Moreover a complete
design including a distributed design of the state estima-
tion of the whole system based on a parallel program
and a fully distributed control is presented and tested
in two complex chemical examples. The parallel simula-
tion is performed by means of a dynamic block Jacobi-
like iteration scheme. Moreover, in order to account the
fact that different subsystems may have different time
responses it is defined an iteration time greater than all
the sample times in order to make the intercommunication
only at the end of this time. In fact, while the iteration
time is running an interpolation method e.g. cubic splines
approximate internally the states. As additional this paper
studied the effect of observer gains on the convergence of
the estimation, and the parallelization of the scheme.

In Vadigepalli and Doyle (2003) a structural analysis
of plantwide processes for application of multi-rate dis-
tributed estimation and control is presented. First the pa-
per discuss the need to implement a distributed estimation
scheme in such a way that it performs as the centralized
optimal structure. The main idea presented in this paper

is to transform the global estimation and control problem
to a fully distributed and decentralized structure using
some results on multisensor data fusion. This algorithm
first published in Mutambara (1998) provides the required
scalability and at the same time retains the global optimal
performance. An extension to multi-rate systems is pub-
lished in Vadigepalli and Doile III (2003). The scalable
distributed methodology is presented in two steps: first
an appropriated model decomposition in N nodes is made
and then distributed estimators and control are designed
locally. In Fig. 3 it can be seen a generic distributed
estimation structure. The decomposition procedure can
be summarized as follows: first identification of the units
in the process are made in an heuristic way to get the
so called computation nodes. Later the discretized model
is obtained from the continuous one, taking into account
the sample time as a critical parameter to preserve the
sparseness of the state matrix. Then the overlapping states
are identified at each node based on the discrete-time
global state transition matrix if available. Otherwise the
use of the plant flowsheet in a heuristically way is needed.
The computational load at each node must be revaluated
continuously in order to redistribute the nodes when it is
necessary. If the communication is excessive due to large
number of overlapping states a new process decomposition
must be made again with a lower sampling time. On
the other hand, the estimation task is performed with a
distributed Kalman filter. This is done in two steps as
usual: first a prediction is made and then an update in the
estimation is achieved. Moreover, the overall estimation
step consists of three stages: (i) local estimation, (ii) in-
ternodal communication, and (iii) assimilation to produce
a global estimate. Control issues are not outlined here.
Finally, as key issues we outline: local state vector at
node i is related to the global state vector by means of
a linear nodal transformation matrix. In this procedure
only orthonormal transformations are taken into account
for simplicity; excessive partitioning of the system results
in increased communication load while reducing computa-
tional burden on each node; the sample time needs to be
sufficiently small to preserve the structure and sparseness
in the state transition matrix. The structural analysis of
two plantwide processes (an industrial reaction-separation
and a pulp mill process) are shown. The main drawback
of this contribution is that the estimation procedure by
a distributed Kalman filter does not allows constraint
handling. Moreover, the linear framework limits the global
operation of a nonlinear plant.

In a subsequent publication [Vadigepalli and Doile III
(2003)], the authors show the multirate distributed and de-
centralized approach for large-scale processes commented
in Vadigepalli and Doyle (2003). This contribution is
an extension of the algorithm proposed in Mutambara
(1998) for multirate complex systems. Theoretical results
are presented in Vadigepalli and Doyle (2003). As a
difference, the plantwide estimator and control designs
are presented in this paper for the separation-reaction
process described in Luyben et al (1997). In this appli-
cation, the effect of the sample time on the sparseness
of the transition matrix is shown. Also, some topologies
are presented in order to test the computational load of
the distributed nodes and intercommunication issues. For
the estimation problem, the prediction error covariance
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Fig. 3. Typical Distributed Estimation and Control Net-
work

matrices Pi involved in prediction and estimation steps
are computed offline. Simulation results are performed in
a parallel framework using MATLAB/SIMULINK. The
main contribution of this paper is the distributed scheme
with a centralized performance guaranteed for estimation
purposes. On the other hand as main drawback it can be
pointed out that the estimation procedure by a distributed
Kalman filter does not allows constraint handling. Also the
linear framework limits the global operation of a nonlinear
plant.

An interesting application is performed in Mjaavatten and
Foss (1997). In this paper a Topology-Based Diagnosis is
described in an analytical redundancy framework. In fact,
some observers are designed locally in a decentralized way,
taking into account the normal plant operation. The mod-
ular estimation method used is the proposed by Sanders
[Sanders et al (1974)]. Despite, its contribution is not
focused directly on estimation of large-scale systems, they
propose an interesting viewpoint about the modulariza-
tion of plantwide processes. This allows to use any agent
(equipment) as an information box and then using it in
other applications. The central subject of this paper is the
development of a modular process representation suitable
for the design of flexible operator support systems. The
methodology is tested in an operator support system in a
fertilizer plant. As an advantage, it is stated the modu-
larization concept. Some drawbacks can be outlined: first
the estimation is made in a linear framework, then only
a restricted operation must be taken into account. Also
the decentralization scheme guarantees local estimation
of the state of any agent but issues like optimality and
the relationship between the decentralized scheme and an
optimal centralized estimator are not discussed. Finally
there is no constraint handling.

3.2 MHE schemes applied to large-scale systems

MHE has been proved as a powerful strategy to estimate
states, parameters, and disturbances in an optimal way,
allowing constraints handling and taking into account
the measurement noises and state uncertainties. Also,
it must be pointed out the versatility of the scheme,
because it consider some punctual penalties inside the cost

function. The main drawback, is the computational burden
generated by solving at each sample time an optimization
problem with constraints that in most cases is a nonconvex
problem. Another difficult issue is the approximation made
to perform the receding horizon procedure by means of the
arrival cost.

The reviewed works are classified in order of its main
contribution. First, numerical issues for MHE algorithms
has been presented in Jørgensen et al (2004), Kraus et
al (2006), Zavala et al (2007), Zavala et al (2008),
and Biegler and Zavala (2009). In the first publication
only numerical methods for constrained linear MHE with
quadratic functions are shown. The main contribution
of this work is the use of KKT (Karush-Kuhn-Tucker)
system as a direction finder in all of primal active set,
dual active set, and interior-point algorithms, improving
the optimization time. This KKT system may be solved
in a recursive way by means of a Ricatti equation, even
if there are constraints. The paper title mentioned the
usefulness of the contribution to large-scale systems, but
there are not explicit elements.

Later in Zavala et al (2007), Zabala and coworkers pro-
posed a fast computational framework for Large-Scale
MHE in a centralized fashion. First it is assumed a
quadratic functional cost penalizing the moving initial
condition, the parameters, and the output deviation. Con-
straints are tackled as appropriate barrier terms in the
cost function. Once this cost function is built, then an
IPOPT algorithm [Watcher and Biegler (2006)] is used
for the solution of the NLP (nonlinear program). This
IPOPT algorithm follows a full-space, primal-dual barrier
approach and applies Newton method to the KKT condi-
tions derived to the cost function and then find the desired
solution. Finally a shifting strategy is presented, but a
coupling between NMPC and MHE is needed. Therefore
the last idea can not be applied at free-control systems. A
successful application of the scheme is presented in a full-
scale low-density polyethylene process, taking into account
all 294 differential and 64 algebraic states variables.

One of the latest result was published in Biegler and
Zavala (2009). An integrating framework for plantwide
dynamic optimization based on fast calculations of MHE
and NMPC is discussed. The theoretical fundamentals of
these fast algorithms was published in Zavala et al (2008).
The main idea is to integrate the real-time optimization
and the control at the higher level of decision-making, that
is, in the scheduling and planning levels. On-line dynamic
optimization deals with solving two nonlinear problems
each sample time: first the current state of the process
and the model parameters must be estimated from the
model measurements using a MHE scheme. Next, with the
updated state, optimal values of the manipulated variables
are calculated by means of an NMPC. The results for the
estimation procedure was shown in Zavala et al (2008).

Application cases. Application cases can be found in
Kraus et al (2006), Hedengren and Allsford (2007), and
Samar and Gorinevsky (2006). An interesting application
was published in Kraus et al (2006). A MHE algorithm
is applied to the well-known Tennessee Eastman bench-
mark problem with the aim to test its performance and
computational effort. The procedure is first based on a
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least-squares optimization problem solved numerically by
the direct multiple shooting technique. A drawback is the
multiple iteration done in order to solve the optimization
problem at each sampling time. This would be a problem
in an hypothetical real-time implementation. A possible
solution to the last problem is also presented in this paper,
and it is based on the application of a single generalized
Gauss-Newton iteration. The procedure separates the es-
timation into a separation phase (it does not need the
latest measurement) and the short estimation phase (it is
executed once the latest measurement is available) as in
Zavala et al (2007).

4. OPEN PROBLEMS AND CONCLUSIONS

This paper consider three important subjects: MHE as an
estimation procedure, estimation in large-scale systems in
general and finally MHE schemes applied to large-scale
systems. In the first subject, it must be outlined the few
theoretical results compared with the dual problem, that
is, MPC. In fact, it was analyzed some relevant papers
showing the lack of maturity of this area. Some important
results on MHE with linear and nonlinear models are
reviewed. Numerical issues are described in those papers.
However, further research on stability, convergence and
numerical optimization for nonconvex problems is needed.

There exist more research about large-scale state estima-
tion in general. The main results are based on decoupling,
decentralization and distribution of large-scale systems.
Issues like model reduction, computational parallel for-
mulation, subsystem communication arise. However those
reviewed results has the same drawback: impossibility to
handle constraints and in most cases difficulties to filter
the noise and tackle the state uncertainty.

As it is well known, there exists a lot of strategies to esti-
mate the state in a nonlinear system. However, the main
drawback of almost all of these strategies is the lack of
generality to be applied in any nonlinear system. Some ex-
amples are the differential geometric approach proposed in
Krener and Isidori (1983), high-gain Luenberguer-like ob-
servers, Kalman Filters and its derived (Extended Kalman
Filter, Unscented Kalman Filter, Ensemble Kalman Filter,
etc). All of them has successful applications, but each of
them fail under certain conditions. On the other hand,
MHE seems to solve the previous problems, even if large-
scale systems are concerned.

The challenge is focused on the design of MHE schemes
applied to large-scale systems in a distributed fashion.
Therefore, there is a need to formulate fast and precise
nonlinear optimization solvers. Also, stability and conver-
gence proves of those schemes must be derived in order
to get new feasible procedures. Moreover, computational
issues must be tackled by means of accurate parallel com-
putational programs, taking advantage of the distributed
structure.
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