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Abstract: Digital subscriber line (DSL) technology is the dominating broadband internet
access technology with a market share of over 66% of all broadband subscribers worldwide. The
main performance bottleneck of modern DSL networks is the crosstalk interference generated
among different lines (i.e. twisted pair cables) inside the same cable bundle. Multi-user spectrum
coordination is recognized as a key technology to tackle this crosstalk problem. It consists of
optimizing the users’ transmit spectra so as to mitigate the destructive impact of crosstalk,
leading to spectacular data rate performance gains as well as power savings. The corresponding
optimization problems are however large-scale nonconvex problems. In this paper we provide a
survey of recent developments on spectrum coordination techniques where the main focus is on
distributed spectrum coordination. Here, individual users optimize their transmit spectra based
on local measures while they are steered by a centralized controller (spectrum management
center) so as to obtain a good global network performance. It is shown how state-of-the-art
techniques from mathematical programming are used to obtain distributed algorithms with very
low complexity and yet good performance. Finally simulation results are shown that demonstrate
the impact of spectrum coordination for DSL broadband access.
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1. INTRODUCTION

The internet plays a prominent role in our current
information-driven society. One crucial component here is
the broadband access network, which connects the sub-
scribers to their service provider, which is then connected
to the internet core network. One popular way to pro-
vide these broadband access connections makes use of the
existing telephone network infrastructure. Here multiple
twisted pairs are bundled into large cable bundles that
typically consist of 20-100 twisted pairs each, and where
many cable bundles are deployed from the telephone cen-
tral office (CO) or a remote terminal (RT) towards the
customers.

Digital subscriber line (DSL) technology is a technology
that can turn each of these twisted pair connections into a
true broadband connection, which is capable of delivering
data rates of several Mb/s over a distance of multiple
kms. DSL is the dominating broadband access technology
with a market share of 66% of all broadband subscribers
worldwide. The number of DSL subscribers is expected to
grow to 330 million in 2012.
⋆ This research work was carried out at the ESAT Laboratory of
Katholieke Universiteit Leuven, in the frame of K.U. Leuven Re-
search Council CoE EF/05/006, GOA AMBioRICS, FWO project
G.0235.07(‘Design and evaluation of DSL systems with common
mode signal exploitation’), FWO project G.0226.06, and the Belgian
Federal Science Policy Office IUAP DYSCO. The scientific responsi-
bility is assumed by its authors.

To accommodate the many new broadband services
(IPTV, video-phone, youtube.com, . . . ), it is necessary
that DSL technologies (ADSL, ADSL2(+), VDSL(2)) are
designed that can also guarantee the corresponding quality
of service (QoS) requirements (data rates, stability, power
usage, delay, . . . ). However, the major obstacle for further
performance improvement of DSL access networks is the
electromagnetic coupling amongst different lines in the
same cable bundle, also referred to as crosstalk. Different
twisted pair lines indeed act as antennas when used at the
high DSL frequencies, creating a very challenging multi-
user interference environment.

Multi-user coordination techniques, also referred to as
dynamic spectrum management (DSM) techniques [Song
et al. (2002); Starr et al. (2003)], are indispensable here to
tackle the crosstalk problem by coordinating the different
interfering users (i.e. lines, modems). Two main types of
DSM techniques can be distinguished: (i) multi-user signal
coordination [Ginis and Cioffi (2002); Cendrillon et al.
(2006a)], where the data signals are coordinated over the
different users so as to remove crosstalk, and (2) multi-
user spectrum coordination, which consists of coordinat-
ing the user’s transmit spectra, i.e. the user’s transmit
powers over different frequency bands, so as to prevent
the destructive impact of crosstalk. Both techniques can
lead to spectacular data rate performance gains as well
as power savings. In this text the focus will be on multi-
user spectrum coordination also referred to as spectrum
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balancing, spectrum management, or multi-carrier power
control.

Optimal multi-user spectrum coordination basically corre-
sponds to solving an optimization problem, also referred
to as the spectrum management problem [Cendrillon et al.
(2006b)], where the variables are the transmit spectra of
the users. One crucial component in DSM is the spectrum
management center (SMC). An SMC can be seen as a
set of computer workstations that collects data from the
network environment, i.e., channel characteristics (line at-
tenuations as well as crosstalk levels), noise characteristics,
etc. Based on the obtained information, the SMC can then
solve the corresponding spectrum management problem to
obtain the optimal combination of transmit spectra. This
SMC-centric approach can be seen as centralized spectrum
coordination. However this is not always practical because
of different reasons, (i) different service providers can have
different SMCs that each coordinate only part of the lines
in a cable bundle, (ii) the centralized setting may not react
fast enough to changes in the network because of the large
communication overhead and the typically slow network
monitoring [Cioffi et al. (2004)]. Therefore it makes sense
to move to a more distributed setting, where users monitor
their local environment using local measures and react to
rapid changes in the network environment (noises turning
on or off) by configuring their transmit spectra. In addition
and on a slower pace, they can be steered by a centralized
controller in the SMC towards a better global network
performance. We will refer to this approach as distributed
spectrum coordination.

The goal of this paper is to provide a survey of recent devel-
opments in distributed multi-user spectrum coordination.
In Section 2, the system model is presented for multi-user
spectrum coordination over a DSL cable bundle. In Sec-
tion 3, spectrum management problem formulations are
discussed where the most common formulation, i.e. con-
strainted weighted rate sum maximization, is presented.
Furthermore it is shown how typical spectrum coordi-
nation solutions tackle this problem. In Section 4, the
focus is on distributed spectrum coordination, where the
approach of iterative convex approximation is discussed
and elaborated for one particular distributed spectrum co-
ordination algorithm, i.e. distributed spectrum balancing
(DSB) [Tsiaflakis et al. (2008a)]. Finally in Section 5 the
impact of applying spectrum coordination is demonstrated
using a realistic DSL scenario.

2. SYSTEM MODEL

We consider multi-user spectrum coordination over a
cable bundle consisting of N = {1, . . . , N} interfering
DSL users. The available bandwidth is divided into K =
{1, . . . , K} independent tones (i.e., frequency bands or car-
riers), where the exact number of tones K depends on the
considered DSL technology (e.g. VDSL can use up to 4096
tones). Assuming standard synchronous discrete multi-
tone (DMT) modulation, the cable bundle transmission
can be modeled independently on each tone k by

yk = Hkxk + zk.

The vector xk = [x1
k, . . . , xN

k ]T contains the transmitted
signals on tone k, where xn

k refers to the signal transmitted
by user n on tone k. Vectors zk and yk have similar

structures; zk refers to the additive noise on tone k,
containing thermal noise, alien crosstalk, radio frequency
interference (RFI), etc, and yk refers to the received
signals on tone k. Hk is an N × N channel matrix
with [Hk]n,m = hn,m

k referring to the channel gain from
transmitter m to receiver n on tone k. The diagonal
elements are the direct channels and the off-diagonal
elements are the crosstalk channels.

The transmit power of user n on tone k is denoted as
sn

k , ∆fE{|xn
k |

2}, where ∆f refers to the tone spacing.

The vector sk , {sn
k , n ∈ N} denotes the transmit powers

of all users on tone k. The vector sn , {sn
k , k ∈ K}

denotes the transmit spectrum of user n, i.e. the transmit
powers of user n over all tones, which is also referred to
as the transmit power spectral density of user n. The
received noise power by user n on tone k is denoted as
σn

k , ∆fE{|zn
k |

2}.

Note that we assume no signal coordination at the trans-
mitters and at the receivers, and that the interference
is treated as additive white Gaussian noise. Under this
standard assumption, the number of bits that user n can
transmit on tone k, given the transmit spectra sk of all
users on tone k, is given by

bn
k , bn

k (sk) , log2

(

1 +
1

Γ

|hn,n
k |2sn

k
∑

m 6=n

|hn,m
k |2sm

k + σn
k

)

bits/Hz,

(1)
where Γ denotes the so-called signal-to-noise ratio (SNR)
gap to capacity, which is a function of the desired bit
error rate (BER), the coding gain and noise margin [Starr
et al. (1999)]. The DMT symbol rate is denoted as fs. The
achievable total data rate for user n and the total power
used by user n are equal to, respectively:

Rn , fs

∑

k∈K

bn
k , and Pn ,

∑

k∈K

sn
k . (2)

3. SPECTRUM COORDINATION

3.1 Spectrum management problems

Multi-user spectrum coordination consists of carefully
allocating transmit spectra sn over the different users n,∈
N , so as to pursue certain objectives subject to constraints
in resources and QoS requirements. However the presence
of crosstalk among the users significantly complicates this
coordination. More particularly, the data rate Rn for user
n depends on the transmit spectra of all other users in a
very nonconvex way.

The particular objectives and constraints should be chosen
by the service providers depending on the needs of their
customers. The objectives are generally functions of the
data rates Rn and the transmit powers Pn, where one
typically strives for large data rates and small transmit
powers. Also the constraints are generally defined for the
data rates and transmit powers where minimum data
rate requirements and maximum power constraints are
common. A number of constraints are enforced by DSL
standardization and should always be satisfied, namely
the per-user total power constraints (3) and the so-called
spectral mask constraints (4), i.e.
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Pn ≤ Pn,tot, n ∈ N (3)

0 ≤ sn
k ≤ sn,mask

k , n ∈ N , k ∈ K, (4)

where Pn,tot denotes the available total power budget for

user n and sn,mask
k denotes the spectral mask for user n on

tone k. The set of all possible data rate combinations that
satisfy the constraints (3)(4) can be characterized by the
achievable rate region R, a concept that has its origin in
information theory, i.e.

R =
{

(Rn : n ∈ N )|Rn = fs

∑

k∈K

bn
k (sk), s.t. (3) and (4)

}

(5)
The most common multi-user spectrum coordination prob-
lem formulation [Cendrillon et al. (2006b); Yu and Lui
(2006); Lui and Yu (2005)], which will be referred to as
the constrained weighted rate sum maximization (cWRS)
formulation, is given as follows, where wn is the weight
given to user n:

max
{sn,n∈N}

∑

n∈N

wnRn (= f0)

s.t. Pn ≤ Pn,tot, n ∈ N (cWRS)

0 ≤ sn
k ≤ sn,mask

k , n ∈ N , k ∈ K

(6)

However, recently many other spectrum management
problem formulations have been proposed leading to a
much larger modelling freedom for service providers to
configure their network: e.g. extension to power-aware
spectrum coordination (Green DSL in [Tsiaflakis et al.
(2009d,c)], [Wolkerstorfer et al. (2008)]), extension to fair-
ness in data rates [Luo and Zhang (2008)], extension to
fairness in power usage [Tsiaflakis et al. (2009c)], and
even extension to cross-layer spectrum coordination taking
queue scheduling into account [Tsiaflakis et al. (2008b)].
It is shown that the solutions to these different problem
formulations have a similar structure. Here, due to space
limitations, we restrict ourselves to a discussion for cWRS.
However extension to the other problem formulations is
straightforward, and for further details we refer to [Tsi-
aflakis et al. (2009d,c, 2008b)].

3.2 Spectrum coordination solutions

From an optimization point of view, cWRS can be classi-
fied as an NP-hard nonconvex optimization problem [Luo
and Zhang (2008)]. In fact, depending on the particular
channel and noise characteristics, the objective function
can exhibit many locally optimal solutions with a large
difference in objective function value. The number of vari-
ables, i.e. transmit powers over all tones k and for all users
n, is equal to NK, where the number of users N ranges
between 2-100 and the number of tones K can go up to
4096.

The main approach to solve cWRS is via its dual formu-
lation, sometimes also called the (Lagrange) dual problem
or Lagrange relaxation, which is given as

min
λ

g(λ)

s.t. λ ≥ 0
(7)

with g(λ) = max
{sk∈Sk,k∈K}

L(λ, sk, k ∈ K)

= max
{sk∈Sk,k∈K}

∑

n∈N

wnRn −
∑

n∈N

λn(Pn − Pn,tot)

(8)

where λ = [λ1, . . . , λN ]T are the Lagrange multipliers,
g(λ) is the dual objective function in λ and corresponds to
an optimization problem for fixed λ, L(λ, sk, k ∈ K) is the

Lagrangian, and Sk = {sk ∈ R
N : 0 ≤ sn

k ≤ sn,mask
k , n ∈

N}. The dual problem consists of a master problem (7),
where the unknowns are the Lagrange multipliers λ ∈ R

N
+ ,

and a slave problem (8), where the Lagrange multipliers
are fixed and the unknowns are the transmit powers
sn

k , n ∈ N , k ∈ K.

In [Luo and Zhang (2008); Yu and Lui (2006)] the authors
proved that asymptotic zero duality holds, i.e. when K
goes to infinity the solution of cWRS is equal to the
solution of its dual formulation (7) - (8). In practice K is
quite large and so zero duality gap is a valid assumption.

The master problem (7) is a convex problem. However it
is non-differentiable because the slave problem can have
multiple globally optimal solutions for given Lagrange
multipliers λ. In [Yu and Lui (2006); Cendrillon and Moo-
nen (2005)] an iterative subgradient approach is proposed
for the master problem as follows

λ =
[

λ + δ(
∑

k∈K

sk(λ) − Ptot)
]+

, (9)

where [x]+ denotes the projection of x ∈ R
N onto R

N
+ ,

Ptot = [P 1,tot, . . . , PN,tot]T , sk(λ) denotes the optimal
solution of the slave problem (8) for given λ, and δ is
the stepsize that can be adapted using different strategies
[Yu and Lui (2006); Tsiaflakis et al. (2007)] so as to
converge to the optimal Lagrange multipliers, that satisfy
the complementarity conditions λ

T (
∑

k sk(λ)−Ptot) = 0.

Because of the separability of the objective function of
cWRS and the use of the Lagrange relaxation approach,
the slave problem (8), i.e. g(λ) for fixed λ, can be decom-
posed into independent per-tone problems as follows:

g(λ) =
∑

k∈K

gk(λ) =
∑

k∈K

max
sk∈Sk

Lk(λ, sk)

with Lk(λ, sk) = fsbk(sk) −
∑

n∈N

λnsn
k +

∑

n∈N

λnPn,tot/K

and bk(sk) =
∑

n∈N

wnbn
k (sk)

(10)

For each tone k, this corresponds to a per-tone nonconvex
problem gk(λ), for fixed λ, in a much smaller dimension
N . This decomposition over tones is also known as dual
decomposition and reduces the computational complexity
of cWRS from exponential in K to only linear in K, with
the addition of N unknown Lagrange multipliers.

The dual decomposition approach for finding the solution
of cWRS is summarized in Algorithm 1. The different
spectrum coordination algorithms proposed in literature
mainly differ in how the nonconvex per-tone problems
gk(λ), i.e. line 3 of Algorithm 1 are tackled. For in-
stance, optimal spectrum balancing (OSB) [Cendrillon
et al. (2006b)] uses an exhaustive discrete search, modified
prismatic branch-and-bound (PBnB) [Xu et al. (2008)]
uses a prismatic branch and bound algorithm, branch-and-
bound optimal spectrum balancing (BB-OSB) [Tsiaflakis
et al. (2007)] uses a branch and bound algorithm, iterative
spectrum balancing (ISB) [Lui and Yu (2005); Cendrillon
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and Moonen (2005)] uses a coordinate descent discrete
search, etc.

Algorithm 1 Dual decomposition approach for cWRS

1: Initialize λ, {sk(λ), k ∈ K}
2: while λ

T (
∑

k sk(λ) − Ptot) 6= 0 do
3: ∀k ∈ K : sk(λ) = argmax

sk∈Sk

Lk(λ, sk) (= gk(λ))

4: λ =
[

λ + δ(
∑

k∈K sk(λ) − Ptot)
]+

5: end while

Generally, spectrum coordination algorithms can be di-
vided into three categories: (1) centralized algorithms (e.g.
OSB, ISB, PBnB, BB-OSB), which are executed by a cen-
tralized controller (SMC) that has full information on the
network environment, (2) distributed algorithms (e.g. suc-
cessive convex approximation for low-complexity (SCALE)
[Papandriopoulos and Evans (2006)], (convex approxima-
tion) distributed spectrum balancing ((CA-)DSB) [Tsi-
aflakis et al. (2008a)], multiple starting point distributed
spectrum balancing (MS-DSB) [Tsiaflakis et al. (2008a)],
modified iterative water-filling (MIW) [Yu (2007)]), that
consist of local procedures run by the users and that
are steered by a centralized controller through message
passing, and (3) autonomous algorithms (e.g. iterative
water-filling (IW) [Yu et al. (2002)], autonomous spectrum
balancing (ASB) [Cendrillon et al. (2007)]), which can
be seen as fully distributed algorithms where each user
optimizes its transmit spectrum based on local information
and some a priori-information, and without any message
passing. In the next section we will focus on distributed
spectrum coordination algorithms and discuss the deriva-
tion of one particular algorithm, i.e. distributed spectrum
balancing (DSB), which is also presented in [Tsiaflakis
et al. (2008a)].

4. DISTRIBUTED SPECTRUM COORDINATION

Distributed spectrum coordination algorithms aim at
near-optimal network performance, i.e. the transmit power
allocation should be close to the optimal transmit power
allocation of cWRS. To achieve this, the starting point in
the design of distributed spectrum coordination algorithms
is an optimization procedure that can efficiently tackle
the cWRS problem. In a second step, the challenge is to
decompose this optimization procedure into a distributed
implementation that can be executed by the DSL infras-
tructure. In Section 4.1 we review a general optimization
procedure to tackle nonconvex problems, namely the iter-
ative convex approximation approach. In Sections 4.2, 4.3
and 4.4, it is shown how a particular convex approximation
of cWRS can be decomposed into a distributed imple-
mentation that maps very well on the existing DSL in-
frastructure, resulting in a powerful distributed spectrum
coordination algorithm.

4.1 Iterative convex approximation

To tackle nonconvex spectrum management problems an
iterative convex approximation approach can be used. The
basic idea here is to generate and solve a sequence of
convex approximations so as to converge to a solution of
the original nonconvex problem. This approach is formally

summarized in Algorithm 2 where F refers to the original
nonconvex spectrum management problem, e.g. cWRS, F̃
refers to a convex approximation of F, {sk,cvx(i), k ∈ K}
are the transmit spectra over all users and all tones
computed in iteration i, and Fcvx({sk,cvx(i), k ∈ K})
refers to the convex approximation for a given point
{sk,cvx(i), k ∈ K}.

Algorithm 2 Generic iterative convex approximation for
spectrum coordination

1: Initialize i := 0, {sk,cvx(i), k ∈ K}

2: Approximate F by a convex approximation F̃ =
Fcvx({sk,cvx(i), k ∈ K})

3: repeat
4: i := i + 1
5: {sk,cvx(i), k ∈ K} := Solve F̃
6: Tighten convex approximation:

F̃ = Fcvx({sk,cvx(i), k ∈ K})
7: until convergence

Under certain conditions on the chosen convex approx-
imations Fcvx({sk,cvx(i), k ∈ K}), which are described in
[Chiang et al. (2007)], Algorithm 2 converges to a solution,
that satisfies the Karush-Kuhn-Tucker (KKT) conditions
of the original spectrum coordination problem F. Different
convex approximations have been proposed in literature
that satisfy these conditions. For instance in [Chiang
et al. (2007)], three types of approximations were pro-
posed based on geometric programming: logarithmic ap-
proximation, which is also used by the SCALE algorithm,
single condensation, and double condensation. Here, we
focus on a convex approximation that was proposed in
[Tsiaflakis et al. (2008a)], i.e. distributed spectrum bal-
ancing (DSB). Note that DSB, CA-DSB, and MIW are
very similar algorithms that have been derived based on
slightly different viewpoints but eventually come down to
the same basic approach. In the next sections, we explain
how DSB chooses its particular iterative convex approxi-
mation procedure and how a distributed implementation
is obtained for this. A similar derivation can also be done
for the other schemes based on geometric programming.
We refer to [Chiang et al. (2007); Papandriopoulos and
Evans (2006)] for further details.

4.2 DSB: Convex approximation

The convex approximation for DSB can be best explained
by reformulating the nonconvex objective of cWRS as a
difference of concave functions as follows:

f0 =
∑

n∈N

wnfs

∑

k∈K

log2(|h
n,n
k |2sn

k +
∑

m 6=n

Γ|hn,m
k |2sm

k + Γσn
k )

−
∑

n∈N

wnfs

∑

k∈K

log2(
∑

m 6=n

Γ|hn,m
k |2sm

k + Γσn
k )

︸ ︷︷ ︸

A =non−concave part

(11)
Note that term A causes the non-concavity of the objective
f0. In DSB this convex term is approximated by a lower
affine hyperplane which is tangent in point {sk,cvx(i −
1), k ∈ K} in iteration i. This approximation leads to the
following convex approximation Fcvx({sk,cvx(i − 1), k ∈
K}) of cWRS:
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max
{sk∈Sk,k∈K}

∑

k∈K

bk,cvx(sk) (= fcvx)

s.t.
∑

k∈K

sn
k ≤ Pn,tot, n ∈ N

(12)

with

bk,cvx(sk) =
∑

n∈N

wnfs log2(|h
n,n
k |2sn

k +
∑

m 6=n

Γ|hn,m
k |2sm

k + Γσn
k )

−
∑

n∈N

wnfs(
∑

m 6=n

am,n
k sm

k + cn
k )

and

am,n
k =

Γ|hn,m
k |2/ log(2)

∑

p6=n Γ|hn,p
k |2sp

k,cvx(i − 1) + Γσn
k

(13)

The parameters am,n
k and cn

k are the approximation pa-
rameters where in fact cn

k can be disregarded as it does not
have any influence on the obtained transmit spectra. The
approximation parameters am,n

k that are used in iteration
i, are computed based on the optimal solution {sk,cvx(i −
1), k ∈ K} obtained in the previous iteration i − 1 so as
to obtain successive convex approximations, cfr. line 6 of
Algorithm 2.

The particular choice of approximation parameters (13)
leads to a convex approximation (12) whose objective
function fcvx has the following relation with respect to
the objective f0 of cWRS:

(1) fcvx(sk, k ∈ K) ≤ f0(sk, k ∈ K) ∀k, sk ∈ Sk

(2) fcvx(sk,cvx(i), k ∈ K) = f0(sk,cvx(i), k ∈ K), for all
iterations i

(3) ∇fcvx(sk,cvx(i), k ∈ K) = ∇f0(sk,cvx(i), k ∈ K), for
all iterations i

These three properties correspond to the conditions that
were given in [Chiang et al. (2007)] to guarantee conver-
gence of the iterative convex approximation approach to a
solution that satisfies the KKT conditions of cWRS.

4.3 DSB: Solving the convex approximation

The convex approximation Fcvx (12) for each iteration i
has to be solved in an efficient way, cfr. line 5 of Algorithm
2. Despite its large dimension, i.e. NK, it can be observed
that the corresponding objective function is separable over
the tones whereas the per-user total power constraints are
coupling the problem over the tones. This is actually the
key motivation for using a Lagrange relaxation approach,
namely to move the coupled constraints to the objective
with the introduction of Lagrange multipliers, and to
obtain a so-called dual decomposition. The resulting dual
problem is given in (14) and (15). It consists of a master
convex problem in the Lagrange multipliers (14) and K
independent convex slave problems in the transmit powers
sk of much smaller dimension N (15), i.e. gk,cvx(λ) for
fixed λ.

min
λ≥0

gcvx(λ) (Fcvx,dual) (14)

with gcvx(λ) =
∑

k∈K

gk,cvx(λ) =
∑

k∈K

max
sk∈Sk

Lk,cvx(sk, λ)

Lk,cvx(sk, λ) = bk,cvx(sk) −
∑

n∈N

λnsn
k +

∑

n∈N

λnPn,tot/K

(15)

In the next two sections, two approaches are proposed to
solve the dual problem. As the duality gap is zero, the
solution of the dual problem corresponds to the optimal
solution of the convex approximation Fcvx.

Subgradient based dual decomposition
The first approach is to use a standard subgradient-based
procedure. This approach is summarized in Algorithm 3,
where line 4 is the subgradient update of the Lagrange
multipliers with the stepsize δ. Note that this algorithm
is similar to Algorithm 1 proposed for cWRS, except for
line 3 that now consists of solving K independent convex
problems gk,cvx instead of nonconvex problems gk.

Algorithm 3 Dual decomposition approach for Fcvx

1: Initialize λ

2: while λ
T (
∑

k sk(λ) − Ptot) 6= 0 do
3: ∀k ∈ K : sk(λ) = argmax

sk

Lk,cvx(sk, λ)(= gk,cvx(λ))

4: λ =
[

λ + δ(
∑

k∈K sk(λ) − Ptot)
]+

5: end while

The per-tone problems gk,cvx can be solved using state-of-
the-art iterative methods (e.g. Newton’s method). Alter-
natively, DSB uses an iterative fixed point update strategy.
Based on the KKT conditions of Fcvx one can indeed
derive the fixed point update formula [Tsiaflakis et al.
(2008a)]:

sn
k =

[

wnfs/ log(2)

λn +
∑

m 6=n

(

ωmfsa
n,m
k −

wmfs|h
m,n

k
|2/ log(2)

|h
m,m

k
|2sm

k
Γ

+

∑

p6=m

|hm,p

k
|2sp

k
+σm

k

)

−

∑

m 6=n

Γ|hn,m
k |2sm

k + Γσn
k

|hn,n
k |2

]+

sn,mask

k

.

(16)
where [x]+a refers to min(max(x, 0), a). Note that the spec-
tral mask constraints are taken into account by simple
projection. Per-tone problem gk,cvx can now be solved by
successively updating the transmit powers, using (16), for
all users n over multiple iterations (outer iterations). It is
experimentally shown that this iterative fixed point update
works very well for solving the per-tone problems, in the
sense that it converges in very few outer iterations (3-
5) within a satisfying accuracy. Proving the convergence
of this type of fixed point updates turns out to be very
difficult. In [Cendrillon et al. (2007); Yu et al. (2002); Tsi-
aflakis et al. (2008a)], only few convergence conditions are
provided, but it was also shown that convergence is always
observed in simulations with realistic DSL scenarios.
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Improved dual decomposition based optimization
Subgradient-based dual decomposition approaches are

however known to exhibit slow convergence, i.e. conver-
gence order of O( 1

ǫ2 ) with ǫ referring to the required
accuracy of the approximation of the optimum of Fcvx

[Nesterov (2004)]. Furthermore the stepsize parameter δ
of the subgradient update (line 4 of Algorithm 3) is very
difficult to tune so as to guarantee fast convergence.

An alternative improved dual decomposition approach for
spectrum coordination was proposed in [Tsiaflakis et al.
(2009a,b)], which is based on recent developments in
mathematical programming, namely the proximal center
method [Necoara and Suykens (2008)], advanced smooth-
ing schemes and optimal gradient-based schemes [Nesterov
(2004)]. More specifically, the improved approach com-
bines a per-tone smoothing technique for obtaining a Lips-
chitz continuous dual objective, with an optimal gradient-
based scheme to update the Lagrange multipliers. This
results in the improved dual decomposition algorithm, as
shown in Algorithm 4, where the smoothness parameter

c = ǫ/(
∑

k

∑

n(sn,mask
k )2/2), the Lipschitz constant Lc =

K/c, ǫ denotes the required accuracy, and imax denotes
the number of iterations. For further details, we refer to
[Tsiaflakis et al. (2009a,b)].

Algorithm 4 Improved dual decomposition scheme for
Fcvx (12)

1: i := 0, tmp := 0
2: initialize imax, λ

i

3: for i = 0 . . . imax do

4: ∀k : si+1
k = argmax

sk∈Sk

bk,cvx(sk)−
∑

n∈N

(
λi

nsn
k − c

(sn
k )2

2

)

5: dḡi+1
c =

∑

k∈K si+1
k − Ptot

6: ui+1 = [
dḡi+1

c

Lc
+ λ

i]+

7: tmp := tmp + i+1
2 dḡi+1

c

8: vi+1 = [ tmp
Lc

]+

9: λ
i+1 = i+1

i+3u
i+1 + 2

i+3v
i+1

10: end for
11: Build λ̂ = λ

imax+1

and ŝk =
∑imax

i=0
2(i+1)

(imax+1)(imax+2)s
i+1
k

Note that this approach is fully automatic, i.e. it auto-
matically and optimally tunes its stepsize in contrast to
the difficult stepsize tuning required for the subgradient-
based approach. Furthermore it is proven in [Tsiaflakis
et al. (2009a,b)], that Algorithm 4 converges one order of
magnitude faster than the standard subgradient approach
(Algorithm 3), i.e. O(1

ǫ ) instead of O( 1
ǫ2 ), resulting in

a much faster convergence of DSB. This has also been
confirmed experimentally.

Finally note that the per-tone problem, i.e. line 4 of
Algorithm 4, consists of an extra term. The fixed point
update formula for the transmit powers (16) can be simply
modified so as to take this extra term into account. For
further details, we refer to [Tsiaflakis et al. (2009a,b)].

4.4 DSB: Distributed implementation

The derivation of the distributed implementation of DSB is
based on the procedures given in Sections 4.2 and 4.3 that

follow an iterative convex approximation approach to solve
cWRS, namely the approximation step (13), the update of
the Lagrange multipliers (e.g. the subgradient approach of
Algorithm 3), and the iterative updates of the transmit
powers (16). By combining (13) and (16), we obtain the
following expression for the transmit power updates

sn
k =

[

wnfs/ log(2)

λn +
∑

m 6=n

wmfsΓ|hm,n

k
|2

log(2)

(
1

intm
k

− 1
recm

k

)−
intn

k

|hn,n
k |2

]+

sn,mask

k

(17)
where intn

k =
∑

m 6=n Γ|hn,m
k |2sm

k + Γσn
k refers to the

interference received by user n on tone k, and recn
k =

|hn,n
k |2sn

k +
∑

m 6=n Γ|hn,m
k |2sm

k +Γσn
k refers to the received

signal by user n on tone k. Formula (17) can then be
reformulated as follows

sn
k =

[

wnfs/ log(2)

λn + Wn
k

−
intn

k

|hn,n
k |2

]+

sn,mask

k

with Wn
k =

∑

m 6=n

wmfsΓ|h
m,n
k |2

log(2)
V m

k

and V m
k =

( 1

intm
k

−
1

recm
k

)

(18)

We can now differentiate between local information and
non-local information. Local information is all informa-
tion that is accessible by the users locally, i.e. (1) con-
stants wn, fs, (2) local variables λn, {sn

k , k ∈ K}, lo-
cal state information {V n

k , k ∈ K}, and local measures
{intnk , recn

k , hn,n
k , k ∈ K}. Note that these local measures

are already available in current DSL modems. Non-local
information is information that is based on local infor-
mation of the other users, such as Wn

k , k ∈ K, n ∈ N .
This information is not available to the users. However in
the distributed setting this information can be gathered by
the centralized controller (SMC) through message passing.
Each of the users then regularly transmits its local state
information {V n

k , k ∈ K} to the SMC. Based on this,
together with the knowledge of the channel and the user
constants wn, fs, the SMC calculates the {Wn

k , k ∈ K}
for all users n and regularly updates the users with this
information. In the meantime all users monitor their local
environment, and optimize their transmit powers. The
combination of the local algorithms with the continuous
updating through message passing basically implements
the iterative convex approximation approach and guaran-
tees the convergence to a locally optimal solution of cWRS
and so also a good global network performance. The result-
ing local algorithm run by the individual users is shown
in Algorithm 5, whereas the centralized communication
steering loop is shown in Algorithm 6.

Note that in the case there is no message passing, this
corresponds to the case where all users have no non-local
information, i.e. {Wn

k = 0, k ∈ K} for all users n. It is
shown in [Tsiaflakis et al. (2008a)] that this corresponds
to the case where all users update their transmit spectra
in a selfish way without minding the interference caused to
the other users, similarly to what is done by the iterative
waterfilling (IW) algorithm. This is an interesting property
as it implies that by increasing the centralized control, the
network performance improves from a selfish behaviour to
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Fig. 1. 4-user upstream VDSL scenario

a more social behaviour that corresponds to a better global
network behaviour.

Algorithm 5 Local algorithm for each user n

1: Execute at regular intervals:
2: Measure intn

k , recn
k , k ∈ K

3: Compute V n
k , k ∈ K using (18)

4: while λn(
∑

k∈K sn
k − Pn,tot) 6= 0 do

5: Update λn (e.g. subgradient update)
6: Update sn

k , k ∈ K using (17)
7: end while

Algorithm 6 SMC centralized steering loop:

1: Execute at regular intervals:
2: Monitor network environment (channels, noise)
3: Receive V n

k , k ∈ K of all users n
4: Compute Wn

k , n ∈ N , k ∈ K using (18)
5: Transmit Wn

k , k ∈ K to user n, and that for each user.

5. SIMULATION RESULTS

In this section we will demonstrate the data rate perfor-
mance gains that result from applying distributed spec-
trum coordination. The considered scenario is shown in
Figure 1, and consists of a four-user upstream VDSL
scenario. The twisted pair lines have a diameter of 0.5 mm
(24 AWG). The maximum user’s total transmit power is
11.5 dBm. The SNR gap Γ is 12.9 dB. The tone spacing
∆f is 4.3125 kHz. The DMT symbol rate fs is 4 kHz. The
weights wn are equal to 1 for all users n. The spectral mask

constraints are sn,mask
k = −60dBm/Hz, n ∈ N , k ∈ K.

This scenario is known as a near-far scenario, where the
three near users, i.e. with line length of 600m, can generate
a huge amount of interference into the far user, i.e. with
line length 1200m. When no spectrum coordination is
applied, all users transmit at their spectral mask, i.e.

sn
k = sn,mask

k , n ∈ N , k ∈ K. In this case the data rates
obtained by the users correspond to R1 = 0.043Mb/s,
R2 = 17.6Mb/s, R3 = 17.6Mb/s, R4 = 17.6Mb/s.

However when applying spectrum coordination through
the DSB algorithm, as discussed in the previous section,
the data rates increase up to R1 = 1.140Mb/s, R2 =
19.2Mb/s, R3 = 19.2Mb/s, R4 = 19.2Mb/s. One can
observe a huge increase in the data rate of user 1. The
corresponding transmit spectra for the four users are
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Fig. 2. Transmit spectra for the four users obtained by the
DSB algorithm for the DSL scenario of Figure 1

shown in Figure 2. One can see that user 1 mainly
transmits at the low frequency range, i.e. from available
tone 1 up to tone 112. The three near users have the
same transmit spectra where in the low frequency range
the level is decreased so as to prevent too much crosstalk
degradation to user 1. However, in the frequency range
above tone 112, the near users transmit at higher power
levels as user 1 does not use these frequencies. So one can
observe that application of spectrum coordination leads
to intelligent spectrum shaping which leads to spectacular
data rate performance gains.

Finally in Figure 3, we plotted the evolution of the data
rate of user 1, while the data rates of the other users are
fixed at 19.2Mb/s, in function of the number of iterations
of message passing, where one iteration corresponds to
a system wide update of the Wn

k , n ∈ N , k ∈ K. One
can observe that when the number of communication
messages increases, the data rate performance increases
from 0.2Mb/s up to 1.1Mb/s. After 30 iterations, the
distributed algorithm converges to the globally optimal
solution of cWRS. This is verified by comparing with a
globally optimal spectrum coordination algorithm (BB-
OSB). In practice one could make a trade-off between the
number of messages (communication overhead) and the
data rate performance.

6. CONCLUSION

In order to cope with the QoS requirements of the many
emerging broadband services, current DSL technologies
have to be improved. The main bottleneck for data rate
performance improvement of current DSL broadband ac-
cess is crosstalk interference. Spectrum coordination is
identified as a key technology to tackle this crosstalk prob-
lem and consists of intelligently coordinating the transmit
spectra of the interfering users. Here, distributed spectrum
coordination is an interesting option as it combines local
procedures that can react fast on the channel environ-
ment with a centralized control that steers towards a
better global network behavior. It is shown how recent
advances from mathematical programming can be used
to design very efficient distributed spectrum coordination
algorithms, that scale with the amount of message passing
from a selfish local behavior to a social network behavior.
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Fig. 3. Evolution of the data rate performance of user 1, for
fixed data rates of the other users, for an increasing
number of iterations of message passing, i.e. number
of network wide updates of Wn

k for all users n and
over all tones k
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