CEAI, Vol.11, No. 3, pp. 24-31, 2009 Printed in Romania

Centralized, decentralized, and distributed model
predictive control for route choice in automated
baggage handling systems

A.N. Tarau* B. De Schutter*** J. Hellendoorn*

* Delft Center for Systems and Control
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
{a.ntarau, j.hellendoorn} @tudelft.nl
** Marine and Transport Technology Department
Delft University of Technology, The Netherlands, b@deschutter.info

Abstract: In this paper we develop and compare efficient predictivetrobrmethods for routing
individual vehicles which ensure automatic transportatibbags in a baggage handling system of an
airport. In particular we consider centralized, deceiteal, and distributed model predictive control
(MPC). To assess the performance of the proposed controbapipes, we consider a simple benchmark
case study, in which the methods are compared for sevenasos. The results indicate that the best
performance of the system is obtained when using centcHli#eC. However, centralized MPC becomes
intractable when the number of junctions is large due to tigh komputational effort this method
requires. Decentralized and distributed MPC offer a baddrtcade-off between computation time and
optimality.

Keywords: Baggage handling systems, route choice control, modelgihezicontrol.

1. INTRODUCTION hold DCVs at switching points, if required. We assume that th
velocity of each DCV is always at its maximuni}®*, unless
The increasing need for cost efficiency of the air transpogverruled by the local on-board collision avoidance cdfero
industry and the rise of low-cost carriers require a costatife ~ Finally, the low-level control problems are coordinatiomda
operation of the airports. The state-of-the-art technpleged synchronization when loading a bag onto a DCV (in order to
by baggage handling systems at airports to transport theibag avoid damaging the bags or blocking the system), and when
an automated way incorporates scanners that scan the tabelginloading it to its end point. Note that we assume the lovellev
each piece of luggage, baggage screening equipment for seeantrollers already present in the system.
rity scanning, networks of conveyors equipped with juntsio
that route the bags through the system, and destinatiordco
vehicles (DCVs). As illustrated in Figure 1, a DCV is a metal
cart with a plastic tub on top. These carts transport the bags
high speed on a network of tracks.

timally routing DCVs on the network of tracks so that all
he bags to be handled arrive at their end points within given
time windows. Currently, the networks are simple, the DCVs
being routed through the system using routing schemes based
on preferred routes. These routing schemes can be adapted to
respond on the occurrence of predefined events. In the oésear
we conduct we consider more complex networks. Also, we do
not consider predefined preferred routes. Instead we develo
advanced control methods to determine the optimal routing i
case of dynamic demand.

Jf?pthis paper we focus on the higher-level control problem of

“Buffer with
empty DCVs

\ In the literature, the route assignment problem has been ad-
dressed by e.g. Gang et al. (1996), Kaufman et al. (1998). But
. . in our case we do not deal with a shortest-path or shortest-
Fig. 1. Loading a DCV. time problem, since, due to the airport’s logistics, we nied
_ _ ) bags at their end points within given time windows. The route
In this paper we consider a DCV-based baggage handling s¥oice problem for a DCV-based baggage handling system has
tem. Higher-level control problemsfpr_ such a system aréeroupeen analyzed by e.g. Fay (2005) where an analogy to data
assignment for each DCV (and implicitly the switch contrbl o transmissions via internet is proposed, and by e.g. Hadlenb
each junction), line balancing (i.e. route assignment whe and Demazeau (2006) where a multi-agent approach has been
empty DCV such that all the loading stations have enoudffeveloped. However, this multi-agent system deals with ma-
empty DCVs at any time instant), and prevention of buffefor challenges due to the extensive communication required
overflows. The VelOCity control of each DCV is a medium-leve herefore, the goa| of our work is to deve|0p and compare

control problem. The medium-level controller on board affea efficient control approaches (viz. predictive control noetf
DCV ensures a minimum safe distance between DCVs and also
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T = (tgrrival gareival - garrival) that comprises the vectors
of bag arrival timestj™ ! = [tgrivel . grvl|T with £ €
{1,2,...,L}. We also consider that the track network Has
junctionsSy, So, ..., Sgs.

buffers of bags

=

O

[
buffer of; ] "
DCVs! l L loading conveyors

L, loading stations

3. MODEL

[==100--0

L . . . . .
t In this section we present the simplifying assumptions and

the continuous-time event-driven model to be used in order

network of tracks to determine the optimal route choice for DCVs in a baggage

handling system.

U; Uy unloading stations Uu

il

end points L

3.1 Assumptions

Later on we will use the model for on-line model-based cdntro
So, in order to obtain a balanced trade-off between a ddtaile

model that requires large computation time and a fast simula

Fig. 2. Baggage handling system using DCVs.

transporting a bag through the track network. These control
approached are developed in a centralized, a decentradindd

a distributed manner. The control approach is said to berdece
tralized if the local control actions are computed withooy a
communication or coordination between the local contrsjle
while the control approach is said to be distributed if addi-
tional communication and coordination between neighlapri
controllers is involved, see e.g. Siljak (1991) and Wei€90).

The paper is organized as follows. We start by giving a brief
process description of a DCV-based baggage handling system
(Section 2). Next, in Section 3, we determine a continuous-
time event-driven model of the system. Afterwards, in Secti

4, the operation constraints and the global performanocexind
are elaborated. In Section 5, we propose advanced control

methods for computing the route of each DCV in a centralized\s:

a decentralized, and a distributed manner. The analysiseof t

simulation results and the comparison of the proposed abntra 4:
methods are presented in Section 6. Finally, in Section 4. -

conclusions are drawn and the directions for future refeae
presented.

2. OPERATION OF THE SYSTEM

nA4:

Ag:

tion we make the following assumptions:
and heuristic approaches) for route choice control of ed€iD 4 -

a sufficient number of DCVs are present in the system so
that when a bag is at the loading station there is a DCV
ready for transporting it,

A, the network of tracks has single-direction tracks,

Aj3: we assume each loading station to have only one outgoing

link and each unloading station to have only one incoming
link,

each junctiorS, with s € {1,2,...,S} has maximum

2 incoming links and 2 outgoing links, both indexed by
1 € {0,1} as sketched in Figure 3. f has 2 incoming
links then it also has a switch going into the junction
(called switch-in hereafter). B, has 2 outgoing links then

it has also a switch going out of the junction (called switch-
out hereafter). Note that a junction can have only switch-
in, only switch-out, or both switch-in and switch-out.

a route switch at a junction can be performed in a negligi-
ble time span,

the speed of a DCV is piecewise constant,

the end points have capacity large enough that no buffer
overflow can occur,

the destinations to which the bags have to be transported
are allocated to the end points when the process starts.

Since we consider the line balancing problem solved, these
Consider the general DCV-based baggage handling syst@ssumptions are reaso_nable and give a good approximation of
sketched in Figure 2. This baggage handling system operatb¢ real baggage handling system.

as follows: given a demand of bags (identified by their unique
code) together with their arrival times at the loading stagi
and the network of tracks, the route of each DCV (from a given

3.2 Event-based model

loading station to the corresponding unloading statiorg)a | ater on the model of the DCV-based baggage handling system
be computed subject to the operational and safety contraifyill be used for on-line model-based control. So, in order to
presented in Section 4, such that all the bags to be handiggtain a fast simulation, we write the model as an eventedriv
arrive at their end points within given time windows. Thepne consisting of a continuous part describing the movewfent
bags unloaded outside their end points’ time window are theRe individual vehicles transporting bags through the oektw

penalized as presented in Section 4.2.

We consider a system witlh loading stationd.;, Lo, ...,

Ly andU unloading stationdJ;, Us, ..., Uy as depicted in
Figure 2. Let us index the bags loaded onto DCVs at station
L, with ¢ € {1,...,L} asbe1,...,be N, With N, the number

of bags that will be loaded at statidn, during the entire
simulation period. Then let}/**! denote the time instant

when bagb, ; actually arrives at loading statidoy (t;‘j}ival <

tgrval for i = 1,..., Ny — 1). Then we define the.-tuple

and of the following discrete events: loading a new bag ihé t

link 0 \(/ link 1 k
link 0 / link 1

(a) switch-in (b) switch-out

Fig. 3. Incoming and outgoing links at a junction.
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system, unloading a bag that arrives at its end point, upglatithe track network. Let!**! denote the time instant when the
the position of the switch switch-in, and updating the posit jth bag that entered the track network is loaded onto a DCV
of a switch-out at a junction, and updating the velocity of and letti"'°2d denote the time instant when the same bag is
DCV. unloaded at its end point. Consequently, we denote the noddel

Let X be the number of bags that the baggage handling systdif P2gg9age handiing systemtas M(7, z(to), u, v), where:
has to handle and lex<™* be the total number of bags that o ¢ = [thoad tl)gad tymload tanload]T with X be the
entered the track network up to the current time instéit< number of bags that the system has to handle,

to + T™2* with ¢, the initial simulation time and™2* the o T = (timival garrival | garrivaly defined in Section 2,
maximum simulation period. Also, 1&CV; denote the DCV x(to) is the initial state of the system witfy the initial
that transports théh bag that entered the track network up to simulation time,

the current time instant, < X°t. Note that in case th& or e uis the route control sequence,

more bags are loaded onto DCVs at the same time instar e v is the velocity sequence for each DCV.

order the DCVs according to the index of the loading stations

(DCV; will then denote the DCV transporting the bag loadedat 4. CONSTRAINTS AND CONTROL OBJECTIVE

the loading station with the smallest ind&CV ;1 will denote

the DCV transporting the bag loaded at the loading statidh win this section we present the safety and operational cainssr
the next smallest index, and so on). of a DCV-based baggage handling system, together with the

The state of the DCV-based baggage handling system consisg§trol objective to be used when comparing the proposed
of the just-crossed junction, and the next-to-be-crossectjon  cONtrol methods.

for each DCV, their speed and their position on the link that t ) )

DCVs travel, and the position of the switch-in and switchau 41 Operational constraints

each junction. Then the model of the baggage handling system

is given by the algorithm below. The operational constraints derived from the mechanicdl an
design limitations of the system are the following:
Algorithm 1. Model of the baggage handling system C1: aDCV can transport only one bag at the time,
1: tC“_ —to Cs: abag can be loaded onto a DCV only if there is an empty
2: while t"* <ty + T™** do DCV under the loading station. This means that if there is
3 for/t lfa(} to L do . . a traffic jam at a loading station, then no loading event can
4 7% — time that will pass until the next occur at that loading station.

. loading event oL, C3: a switch at a junction changes its position after minimum
2: ?or:dnioi Lto U do 7« time units in order to avoid the quickly and repeatedly
7. runload . time that will pass until the next mg\éﬁgﬁg’ggﬁggg forth of the switch which may lead to
& endfor unloading event oty,, Cy4: the speed of each DCV is bounded betweemdv™*,

9. fors=1toSdo ) , These constraints are denoteddy, v™**) < 0.

10: o'« time that will pass until the next

switch-in event a8, 4.2 Control objective
11 riw-out time that will pass until the next
' switch-out event a$; Since the baggage handling system performs successfally if

12:  end for the bags are transported to their end point before a gives tim

13 fori=110X °rt do _ _ instant, from a central point of view, the primary objectige

14: 7, % —  time that will pass until the next  the minimization of the overdue time. A secondary objedtve
velocity-update event ddCV; the minimization of the additional storage time at the enidpo

15:  end for _ . ond _ nlond This objective is required due to the intense utilizatiorttas

T = min( e T, T end points in a busy airport. Hence, one way to construct the
6 min Fow-n min Sw-out objective functionJ’*" corresponding to the bag with index
: s=1,2,..,5 ° s=1,2,..,5 ° ’ i,i € {1,2,..., X}, is to penalize the overdue time and the
min_ 7 UPdate) additional storage time. Accordingly, we define the follogi
=1, X penalty for bag index:
17 ﬁcrt - tcrt + pen / unload unload end
18:  take action (i.e. load, unload, switch-in update, switch- i (t"°*) =03 max(0, #; — ")+
out update, velocity-update) A1 max(0, ¢4 — 7PPen _ gunloady ()
19: update the state of the system where
20: end while

e ts"d js the time instant when the end point closes and the

If multiple events occur at the same time, then we take atiehe bags are loaded onto the plane.
events into account when updating the state of the system (i. o 7°°°" js the maximum possible length of the time window

the position and the speed of DCVs, and the position of switch  for which the end point corresponding to bag indeis
in and switch-out at junctions) at step. open for that specific flight.

According to the model, for each bag that has to be handled, ® 7i IS the static priority of bag indek(the flight priority),
we compute the time instants when the bag enters and exits 0 < ¢i < 0" with 0™** > 1 the maximum priority that

9

can be assigned to a flight.
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Jren the route ofDCV,;. We assume that, at bag steghe route is

’ selected once for each DCV without being adjusted after the
decision has been made. Now t€&) denote the future route
sequence for the next bags entering the network after bag

o; stepk, r(k) = [r(k+1)r(k+2) ... r(k + N)|T.
\1\ The total performance function of the centralized MPC is de-
¢t fined asJONTC (x(k)) = SV Ji(fmioad) wherefynload i
tend _ popen tend the estimated arrival time of DGMWepending on the routes of
‘ the firstk + N bags that entered the network. Accordingly, the
Fig. 4. Objective functiony?". MPC optimization problem at bag stégs defined as follows:
e \; < 1 is a nonnegative weighting parameter that ex- min JONFC (r(k))
presses the penalty for the additional storage time. k)
subject to

However, the above performance function has some flat parts, t = M(T,z(t),r(k),v)
which vyield difficulties for many optimization algorithms. Clv™ 1) <0

L@f&g;otrﬁé g]ngldt(iar;éo 'Igrﬁ; fgsnaﬁsa}g.dmonal gradient we alS(Sentralized MPC can compute on-line the route of each DCV in
rlond p(;n unlond nlond slond the.network, put it requires large computat[onal effortsvls
Ji(G0) = TP ) + At —t7*)  (2) bpeillustrated in Section 6. Therefore, we will also propdse
where\; is a small weight factor( < \s < 1). centralized and distributed control approaches that effeade-

, — . _ off between the optimality of the performance of the conéal
The final objective function to be used when comparing thgysiem and the time required to compute the solution.
proposed control approaches is given by:

5.2 Decentralized model predictive control

X
Jtot — Z Jipen(f,;_mload) (3)
i=1 In decentralized model predictive route choice control we-c

Note that the objective functiodi?*" (ti"1°2d) depends on the sider each junction separately, as a local system. For radt ju
unloading time of bag indekat its end point, and implicitly it tions we will then define similar local MPC problems.

depends on the routes of all the bags to be handled. ) . i .
Local syssem Each local system consists of a junction, its

incoming and its outgoing links. Let us now consider the most

complex case, where junctid, with s € {1,2,...,S} has

both a switch-in and a switch-out. MoreovBt, is not directly

connected to an unloading station. For the sake of simplidit

notation, in the remainder of this subsection, we will nqilex

itly indicate the subscript for variables that refer to junction

_ o S,. Nextwe indeX the bags that successively cross juncfign

5.1 Centralized model predictive control during the entire simulation period &g by, . . ., byvess, Where
NP2gs is the number of bags that crd$sduring the simulation

Model predictive control (MPC) is an on-line model-basegeriod.

predictive control design method (see e.g Maciejowski 200

Allgower et al. (1999), Camacho and Bordons (1995)). In thkocal control measures  In decentralized route choice control

basic MPC approach, given an horizdh at stepk, the future we compute the positions of the switch-in and switch-out of

control sequence(k+1),u(k+2),...,u(k+N)iscomputed junction S; for each bag that crosses. For all the other

by solving a discrete-time optimization problem over a péri junctions, the same procedure is applied.

[tr, tx + TsIN], wheret,, = to + k75 with 7, the sampling time, . . .
) A - . ' Recall from Section 5.1 that we use a variant of MPC with a bag
so that a cost criterion is optimized subject to the openatio . dex. So, in this approach, the local control is updatedatye

constraints. MPC uses a receding horizon approach. Se, a Ime instant when some bag has just entered an incoming link
computing the optimal control sequence, only the first aintr of junctionS;. Let¢°'* be such a time instant. Then for junction

sample is implemented, and subsequently the horizon ieghif ; : - ¢ .-
: ; we determine bag indek such thattj s < ¢ < 707,
Next, the new state of the system is measured or estimatdd, Wheretsros is defined as the time instant when Haghas just

a new optimization problem at timg; is solved using this . . X .
new information. In this way, also a feedback mechanism I%rossed the junction. If no bag has crossed the junctiomyest,

introduced. Setk = 0.

We define now a variant of MPC, wheksis not a time index, -€t/V™"** be the maximum prediction horizon for a local MPC
problem andn, the number of DCVs traveling at time

but a bag index. In this context bag steplenotes the time ! . ! — 2

instant w%en théth bag entered thegtraclgjnetwork Also themSt""mﬁC “onlinkI going intoS. Then, the Iocall optimization
. : ’ 1 _ : max horizon

horizon N corresponds to the number of bags that we let entét Performed over the nexy = min (N™, 37, n;*"*°")

the track network after bag stépComputing the contrat(k+  0ags that will pass junctiofi; after bag index:. By solving

), with j € {1,2,..., N} consists in determining the route of this local optimization problem we compute the c?ntrol se-

. . . — sSw.In sSw.In sw_ou

DCVy4 ;. Assume that there is a fixed numbgrof possible duenceu(k) = [u™"(k +1) ... u™(k + N) u™ " (k +

routes from a loading station to an unloading station. The ! This order depends on the evolution of the position of thetcwin at

routes are indexetl 2,..., R. Letr(i) € {1,2,..., R} denote junctions;.

5. CONTROL APPROACHES

In this section we propose centralized, decentralized,digd
tributed model predictive control to determine the routeadh
DCV transporting a bag.
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1) ... u™"(k + N)]T corresponding to the nexy bags fimload = ¢ 4 iRk 4 Froute 4)
bi+1,bk+2, - - ., iy v that will cross the junction. The control \\here

decisiong/*™-" (k+1), ..., u""""(k+ ) of the switch intd5, . o o
determine the order in which the bags cross the junctiontamd t ~ ® "5 is the time instant (computed by the local prediction

time instants at which the ba@gg,1,...,bxrn enterS;. The model) at which bag; crosses;.
control decisions™ " (k+1), ..., u*™-°"*(k+N) determine o 7)ipk, is the time we predict that bagb,; spends on
the next junction towards which the bag,, ..., by Will link  out of S,. For this prediction we take:
travel. dink
o , , , max ( L M) if link ¢ is not jammed
Local objective function When solving the local MPC opti- Alink  _ pmax’ G
mization problem for junctioi$;, we will use a local objective Lkts = U o
function J2MPC. The local objective function is computed via max | —am’ N if link 7 is jammed
a simulation of the local system for the neXtbags that will - , ,
cross the junction, being defined as follows: whered;™* is the length of linkl out of S, 7,k is the
min(N, NS number of DCVs on link at time instant;’?%, andv*™
JDPMPC (14 (LY)) — T (fmoad sy | ypen(pr _ preross is tht_a speed to be _used in case_of jadt” < 1. We
kv (uk) jz:l k(B 7) + ( 5 consider linkl to be jammed only if9; > aQ™* where

@ is the capacity of link at time instant;"?>®, Q"

whereN % is the number of DCVs that actually crossed junc- is its maximum capacity, and is a weighting parameter

: : - : load,* : ¢ o
tion S, during the prediction periody’, ™ is the predicted determined based on empirical daias o < 1.

unloading time instant of balg. ;, andAP*" is a nonnegative o 71°u*¢ is the average travel time on routes R}, for
weighting parameter. The variabléés*** and fZilj‘?ad’* are an average speed determined based on empirical data.

determined by simulating the prediction model presented n

for a given control sequenas(). ®Then the optimal predicted unloading time instant is defiaxed

follows:

7gunload,* _ unload

Local prediction model The local prediction model at bag k+j = la;rgmin Jk+j(fz,7-,k-+j)

index k is an event-driven model for the local system over S IrE RS

an horizon of N bags. So, according talgorithm 1, for the L Lo

next N bags to cross,, given the current state of the local -oc@l optimization problem  So, the MPC optimization prob-

system, we compute the periet™ until the next event will €M atjunctiorS; and bag step is defined as follows:

occur in the local system (loading$f, is connected to loading min JPMPC(u(k))
. AP . . k,N
stations, unloading i, is connected to unloading stations, u(k)
switching atS,, updating the speed of a DCV running through subject to el
the local system), we shift the current time withi®, take the t =M (T, x(ti), u(k), v(k))
appropriate action, and update the state of the local system C(r, v™*) <0

Recall that we considét, to be connected via its outgoing links Where M7 , x(tx), u(k), v(k)) describes the local dy-
to junctions that are not unloading stations. Hence, we tmve hamics of junctionS, with its incoming and outgoing links,
estimate the time when each of the néxtbags to cros§, With x the state of the local system andk) the velocity
will reach their end point. To this aim, we first consider adixe Se€quence for each DCV in the local system.

release rate during the prediction period for each outglimkg  After computing the optimal control, onhy*-in (k + 1) and
l et {0, 1} of S;. Let(; be the fixed release rate at time instant;sw-out (. 4 1) are applied. Next the state of the system is
. updated. At bag step + 1, a new optimization will be then

Next we present how we calculagegiven the state of the local Solved over the nexy bags.

system at™*. Let 7"*** be the length of the time window over The main advantage of decentralized MPC consists in a smalle
which we compute the link release rate. Tt:gevanaﬁ?ée can  computation time than the one needed when using centralized
be derived using empirical data. #f" < 7"** we consider control due to the fact that we now compute for each junction,

G = ¢ with (" the maximum number of DCVSs per jhgependently, the solution of a smaller and simplified -opti
time unit that can cross a junction using maximum speed. Hization problem.

tert > rrate et nja* denote the number of DCVs that left the
outgoing linki within the time window[t*'* — 77 ¢"*]. Then, g 3 pigributed model predictive control
if nj** > 0 the fixed release rate of linkout of S, to be used P

rate

during the entire prediction period is giveny= ”z_t while  One may increase the performance of tieeentralized con-
Trare trol proposed above by implementingdistributed approach

if nj*'¢ = O we setg = e with 0 <& < 1. that uses additional communication and coordination betwe
Now we want to determine the arrival time of bag, ; with ~ neighboring junctions. Data will be communicated between
j € {1,..., N} atits end point. LeS!*** denote the junction consecutive levels of influence. A level of influenceonsists
that bagby ; will cross next, wherd = w*-°"*(k + j) and of junctions for which we compute the local control indepen-

let Sdest be the end point of bal,. ;. Then, for each possible dently. Let us now assign levels of influence to each junction

k+j
router € Rf‘%’fﬁj, WhereRf‘;’j:j is the set of routes frorij*** 2 If S, would be directly connected to an unloading station, thEpk - =
tO S%?:;, we pl’ediCt the t|me When bdg_H W|” arl’ive at S%?:; %1% if Sz’lext is S(Iies]t_’ andf_lli]rclij — smax jf Sz’xext is S(I;i‘is]t with rmax g

via router as follows: large nonnegative scalar.
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S, Sey 2. compute independently local switching sequences for
U Vlevelk — 1 influence levelx taking into account the control on
- influence levek — 1

3. end for
levelx ___ iy =={7 77 levels Every time some bag has crossed some junction we update the
level x 4 1 local control of junctions in the network as follows. Assume
S that some bag has just crossed junctigrat levelx. Then, we
Ses Lo ) oL update the control dij*** at levelx + 1, S} at levels + 2,

levels +1 ) D VT o _Jlevelk+1

and so on until levekC, whereS?¢*t is the junction connected

ln

to S;°** via the outgoing link: € {0, 1} of Spext.

Note that the controllers of the junctions on levehave to
wait for the completion of the computation of the switching
sequences of the controllers on the previous level befaré- st
ing to compute their future control action. Therefore, when

omparing with decentralized MPC, such distributed MPC may
%rlnprove the performance of the system, but at the cost ofnigh

omputation time due to the required synchronization in-com
puting the control actions.

level k + 2 level k + 2

Fig. 5. Levels of influence.

in the network. We assign influence levielto each junction
in the network connected via a direct link to a loading statio
Next, we consider all junctions connected by a link to som
junction with influence level, and we assign influence levl
to them. In that way we recursively assign an influence lev
to each junction with the constraint that at masinfluence
levels are assigned to a given junctiorisee Figure 5 where
{51; 52, 83, 54, S5, 56} c {17 2; sy S})

In this section we consider that the communication of thertit
actions is performed downstream. This means that the lo . .

controller gf each junction on influence level = 1 solves W@hen using centralized MPC, at each bag stephe future

the local optimal control problem has described in Secti@n 5 route seque_nce(k +1),7(k+2),.. 'éﬁﬁctojtv) 'S co.mpu_ted
After computing the optimal switch control sequence, eacPver an horizon ofV bags so that/, " =" (r(k)) is min-
junction with influence levet communicates to its neighboring imized subject to the system’s dynamics and the operational
junctions at levek + 1 which bags (out of all the bags over constraints. So, the control has an integer representdtiare-
which we make the prediction for the corresponding junctiofPre, to solve the optimization problem Bne could use e.ge-

with influence levelx) will enter the incoming link of the nhetic algorithms simulated annealing, or tabu search (see e.g.
junction at levels + 1 and at which time instant. Next, we Rowe (2002), Dowsland (1993), Glover and Laguna (1997)).
iteratively consider the junctions at levets= 2. 3, etc. until
level of influencelC, werek is the largest level of downstream control variables for switch-in and switch-out at junctisn

influence assigned in the network. Then, for each junction g, esent the positions or 1 that the switch-in and switch-
influence levek > 1, we compute a local solution to the local j ¢ of S, should have when the DCV carrying bagill pass
MPC problem as presented next. the junction. Hence, also in these cases, the control Jariab
AssumeS, with s € {1,...,S} to have assigned influence has an integer representation. In order to solve the oitiz
level x > 1. For the sake of simplicity of notation, in the problem B one can use integer optimization once more.
remainder of this subsection, we will not explicitly indiea

the subscripts for variables that refer to junctioS,. Let 6. CASE STUDY

S;"" denote the neighboring junction 8f connected via the
incoming link! of S, (accordinglySy**" has assigned influence
level x — 1). Then, we compute a local solution f8g to the
local MPC problem over an horizon of

5.4 Optimization methods

Recall that when using decentralized or distributed MPE, th

In this section we compare the proposed control methodslbase
on a simulation example.

1 1
N = min (]Vrmax7 Z (n?orizon + Z Nl)) 6.1 Set-Up
£=0

=0 We consider the network of tracks depicted in Figure 6 with

bags whereV; is the horizon of the local MPC problem#t™. g |5ading stations, 1 unloading station, and 10 junctions. W
Note that in this approach'o<\(T, z(t;,), u(k), v(k)) de- have considered this network because on the one hand it is

scribes the local dynamics of junctiép with its incoming and  SimMPIe, allowing an intuitive understanding of and insigint
outgoing links and additional data from neighboring juang  the operation of the system and the results of the contral, an
(if any). because on the other hand, it also contains all the relevant

elements of a real set-up.
The computation of the local control is performed according

the following algorithm: We assume that the velocity of each DCV varies betwemi's

andv™** = 20m/s, being controlled by on-board collision
Algorithm 2. Distributed computation of local control gvo_ldancg co.ntrollers. The lengths of the track segmems ar
1 for = 110 K do indicated in Figure 6.

In order to faster assess the efficiency of our control methed
3 The constraint that at mostyay influence levels are assigned to a junction@ssume that we do not start with an empty thWOI'k but with a
influences the computational complexity. network already populated by DCVs transporting bags.
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6.2 Scenarios g 107
=
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For the ca_libration of the _vvc_eighting parameters we have ddfin £ o O go o O, 95 o - O oy oog
27 scenarios, each consisting of a strear2if bags. g o g b 0 p "o Bo o
o u]
. . . 4
We have also considered different classes of demand profile: g 10°f 0o 0° 40,90 %0 O_ O, o, O.]
. . . . are 5 (0] O lo) Oo (0] o (o]
at each loading station and different initial states of the-s 2 °© o5 o o O "n
tem where60 DCVs evenly distributed on links are already x centr. MPC (N=4)
transporting bags in the network, running from loadingistest O distr. MPC (N=5)
Ll, LQ, ceey Lg to jUnCtionSS4, SQ, Sl, 83, S7, from S; to S», 3 O dec. MPC (N=5)
an_q from$S; to Sg..Thelr position att, and th_ew static pri- 107, 5 10 15 20 25
orities (o;) are assigned randomly. In scenarigs. .6 it is scenario index
considered that all the bags have to be loaded onto the same (b) computation time

plane. In scenarids . . ., 27, we consider that the group of bags

transported by DCVs through the network befardiave to be  Fig. 7. comparison of the proposed control approaches.
loaded onto plane A. The rest of the bags have to be Ioadeag

onto plane B. Moreover, plane A departs earlier than plane

B. Also, in scenariod, ..., 18 we analyze the performance Based on simulations we now compare, for the given scenarios
of the baggage handling system when the last bag that enteiig proposed control metholisin Figure 7 we plot the results
the system can arrive in time at the corresponding end poipbtained when using centralized, decentralized, and cespe
if the DCV has an average speedl@fm/s, while in scenarios tively distributed MPC. Note that the lower the performance
19,...,27, we examine the situation where the transportatiojhdex Jtt is, the better the performance of the baggage han-
of the bags is very tight (the last bag that enters the systegiiing system is.

can only arrive in time at the corresponding end point if the . .
shortest path is used and its DCV is continuously running witC!€arly the best performance of the system is obtained when
maximum speed). using centralized switch control. However, centralizedtoal

becomes intractable in practice when the number of junsi®n
large due to the large computation timeequired. The simula-
tions indicate that both decentralized MPC and distribit&d

6.3 Results offer a balanced trade-off between computation time and opt
mality. However, the results confirm that the communicatibn
the intended control action between neighboring juncti@ym

In order to solve the optimization problems of centraliz#ie;  increase the performance of the system, but at the cost gébig
centralized, and distributed MPC we have usedgéreetic al-  computational effort.

gorithm of the Matlab optimization toolbdXenetic Algorithm

and Direct Search implemented via the functioga with multi-

ple runs since simulations show that this optimization téghe

gives good performance, with the shortest computation.time recall that when comparing the proposed control approasieesompute
Note that we have used the functiga with its default options  the closed loop performance index given by (3).

for bitstring population. 5 The simulations were performed on a 3.0 GHz P4 with 1 GB RAM.
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