
CEAI, Vol.19, No.4 pp. 72-83, 2017                                                                                                                  Printed in Romania 
 

A Semantic Wiki Approach to Enable Behaviour Driven Requirements Management 
 

Catarina Marques-Lucena*,**, Carlos Agostinho**, 
João Sarraipa**, Ricardo Jardim-Goncalves* 



*Departamento de Engenharia Electrotécnica, FCT, Universidade Nova de Lisboa,  
2829-516 Caparica, Portugal (e-mail: c.lucena@campus.fct.unl.pt) 

** Centre of Technology and Systems, CTS, UNINOVA  
2829-516 Caparica, Portugal (e-mail: cml@uninova.pt) 

Abstract: Poorly managed requirements are considered as one of the principal causes of projects failure 
and consequently companies struggle to find an effective solution for requirements elicitation and further 
management. The adoption of such solution becomes even more difficult when the collaboration between 
different departments (e.g. marketing and development) is necessary. To address this challenge, the 
authors propose a methodology for requirements management based on Semantic Wiki and Behaviour 
Driven Development (BDD). BDD allows developers and end-users to interoperate and encourages 
seamless collaboration between all project participants. It also certifies that requirements are treated 
properly by their associated developments through the connection of textual descriptions to functional 
tests. Semantic wikis can be an added value in requirements management due to their enhanced browser 
interface and collaborative knowledge sharing capability. They allow stakeholders to participate in 
requirements management independently of their location. This is of major importance to reduce the 
problem of lack of inputs from interested parties. Moreover, with semantic wikis adoption, end-users and 
ontologies can coexist in one system since wiki pages are presented in a human-readable format in 
parallel to their formal representation in ontologies. This knowledge representation supports companies’ 
decision-making by allowing managers to prioritize implementations, to keep a trace of requirements 
evolution, and reuse implementations when new requirements enter the system. 

Keywords: Requirements Management, Requirements Engineering, Semantic Wiki, Folksonomies, 
Behavior Driven Development 



1. INTRODUCTION 

Requirements Engineering concerns the analysis and 
documentation of requirements (Nuseibeh and Easterbrook, 
2000) and its classical approach is composed by 4 processes: 
1) elicitation; 2) analysis; 3) specification; and 4) validation 
(Finkelstein and Emmerich, 2000). Requirements 
Engineering is needed for planning the development process, 
assessing the impact of changes and testing the acceptance of 
outcomes (Hull et al., 2010).    

Well formulated requirements lead to quality products and 
services since they reflect the knowledge and strategies of 
companies' members (Rogstrand and Kjellberg, 2009). 
Consequently, techniques that allow all departments (e.g. 
marketing, developers) to contribute and collaborate in 
requirements management need to be implemented (Stegaru 
et al., 2015).  

This is even more notorious in the manufacturing sector, 
where usually companies engage in products development 
together with their customers and suppliers. Here, 
requirements elicitation from different teams, with different 
backgrounds, can result in a failure to capture and translate 
requirements into meaningful specifications resulting in 
delayed productions, increased costs and ultimately 

customers dissatisfaction (Barson et al., 2000; Bozarth and 
Edwards, 1997; Hausman and Montgomery, 1997). 
Therefore, a proper approach that allows both business and 
development requirements to coexist and collaborate is 
required (Coutinho et al., 2013; Grilo and Jardim-Goncalves, 
2013). That is the reason why Behaviour Driven 
Development approaches should be considered. 

In this paper, an assessment related to the benefits of using 
Behaviour Driven Approaches in requirements managements 
is conducted. Then, some well-known elicitation techniques 
and their associated advantages are summarized. It is 
followed by the state of the art analysis of relevant 
requirements management tools. In this study the added value 
of using semantic wikis in requirements management is 
highlighted. 

After this background study, the novel methodology for 
requirements management is presented in section 5. This 
methodology supported a framework for requirements 
management using wiki-based front-end modules (section 6). 
This semantic enriched framework allows both end-users 
(industrial partners) and technical teams to collaborate in 
requirements elicitation and further management. Finally, an 
application scenario is introduced and some conclusions and 
future work statements are presented. 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     73 

     

 

2. BEHAVIOUR DRIVEN DEVELOPMENT 

Behaviour Driven Development (BDD) is a specification 
technique that ‘automatically certifies that all functional 
requirements are treated properly by source code, through 
the connection of their textual description to automated tests’ 
(Solis and Wang, 2011). Adopting a similar definition, 
(Tavares et al., 2010) focus on the implication of BDD as a 
design technique and states that BDD is used to integrate 
products verification and validation in the design phase using 
an outside-in style, which implies thinking early on what is 
the client acceptance criteria before going into design of each 
part that composes the functionality. Other authors like 
(Keogh, 2010), argue that BDD is relevant in the whole 
product life-cycle, especially in the interaction between the 
business and software development. In addition, is also 
recognized that BDD permits to deliver value by defining 
behaviour, and it is focuses on learning by encouraging 
questions, conversations, creative explorations and 
feedback. In (Lazr et al., 2010) work it is highlighted the 
value of BDD for business domain and the interaction of 
business and developers, claiming that BDD allows 
developers and domain experts to speak the same 
language and encourages collaboration between all project 
participants. 

 

Fig. 1. From User Requirements to Business Applications: A 
BDD Paradigm. 

Fig. 1 illustrates how the communication between the 
business and development teams can be achieved in products 
and services development. At first, the User requirements are 
elicited and managed.  This is done in such a way that each 
requirement is written in a form of a user story, which 
structure intends to specify: 

 Who/Which business or project role is the driver or 
primary stakeholder of the story (the actor o derive 
business benefit from the story); 

 What effect the stakeholder wants the story to have; 
 What business value the stakeholder will derive 

from this effect. 
To accomplish this, the requirement user story template 
should take the form: 

 As a [X] 
 I want [Y] 
 So that [Z] 

Where Y is some feature, Z is the benefit or value of the 
feature, and X is the person (or role) who will take benefit of 
the feature.  

The defined User requirements, are then used to derive the 
Acceptance Criteria for a specified business application. 
Since a story’s behaviour is simply a business application 
acceptance criterion, if the system fulfils all the acceptance 
criteria, it is behaving correctly. Each acceptance criteria 
should take the form: 

 Given some initial context 
 When an event occurs 
 Then ensure some outcomes 

Using the proposed structure, user stories are written using an 
unambiguous language and the technical team can understand 
the purpose of each requirement and define some technical 
requirements from them. Unlike User Requirements, that are 
essentially descriptions of what the system is supposed to do, 
Technical Requirements are directives of how the system 
should be built, or whose components are demanded. 
Typically, each user requirement means one desired 
behaviour and should originate one or more Technical 
Requirements. These are tested by Functional Tests, whose 
should take the same form of the Acceptance Criteria (given, 
when, then). 

Each Technical Requirements can be used to accomplish 
several User Requirements. Thus, a N:N relationship exists 
between user requirements and technical requirements. The 
same happens with the relation between Technical 
requirements and Architectural Components. A technical 
requirement can be linked to one or more architectural 
components, as an architectural component can be used to 
implement one or more technical requirements. 

2.1. Requirements Engineering in the V-Model 

V-Models are used to provide a graphical representation of a 
system development lifecycle. In general, it provides the 
activities to be performed (e.g. in a form of requirements and 
architectural components definition) and the results that have 
to be produced during the product development (e.g. 
validation through several tests) (Clark, 2009). V-Models 
views development in terms of layers, each layer addressing 
the concerns proper to the corresponding stage of 
development (Hull et al., 2010).  

Quality of the 
design

Verification of the System

Validation of the System

Implementation

Integration Tests
Architectural 

Design

Functional Tests
Technical 

Requirements

Acceptance CriteriaUser Requirements

Not addressed

Project 
Definition

Project Test and 
Integration

Time  

Fig. 2. Requirements Engineering in the V-Model (based on 
(Hull et al., 2010)). 

The usage of Behaviour Driven Development approaches 
allows an ongoing interaction between Requirements 
Management and the developments phases of the system 



74                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

engineering. The V-Model of Fig. 2 Is used to summarize the 
basis relationships established between requirements and 
testing. Even though they are represented in the figure, the 
tests regarding the integration between architectural 
components were not considered in the proposed framework. 

3. PREPARATION STAGE FOR MANUFACTURING 
REQUIREMENTS ELICITATION 

Focusing on the manufacturing domain, and based on a 
previous work proposed by the authors of this article, 5 types 
of requirements were identified as a must:  Business 
Requirements, Functional Requirements, User-Interface 
Requirements, Transition Requirements, and Non-Functional 
Requirements (Marques-Lucena et al., 2015). In that work the 
authors also concluded that the brainstorming and 
brainwriting creative technique cover most of the identified 
requirement types preconditions.  However, one inherent 
characteristic that can be considered as a disadvantage is the 
low compliance related to the independency of stakeholder's 
location. This characteristic is the main catalyser for the 
authors work: to find a solution able to take the best of 
brainstorming and brainwriting techniques, and that reduces 
the impact of the stakeholder's location. 

Other techniques that show good performance in relation to 
the presented preconditions are focus group interviews, 
questionnaires and requirements workshops. Those 
techniques are currently used to incentive end-users and 
developers in the requirements elicitation process. Thus, the 
output of these elicitation techniques should be written and 
used as input of requirements management tools, starting the 
brainwriting technique from here.   

4. GOING BEYOND TRADITIONAL REQUIREMENTS 
MANAGEMENT TOOLS 

Requirements management entails being able: 1) to relate 
many different documents to obtain a synoptic view of these 
document relations; 2) to retrieve information from within 
those documents; 3) to create special document view; 4) to 
handle changes made across the set of documents in a 
consistent manner; and 5) to accommodate diverse 
documents structuring requirements and document types 
(Finkelstein & Emmerich, 2000). Meeting those demands, 
several tools have been developed and released almost every 
day. Indeed, information about several commercial 
requirements management tools can be accessed from the 
INCOSE Survey (INCOSE, 2002). Some of the most well-
known commercial tools are DOORS, RDD-100, 
RequisitePro, and CaliberRM. Beside those professional tools 
there are others largely used due its simplicity and lake of 
commercial costs. Examples are wikis, Microsoft Excel and 
Microsoft Word. Wikis can provide great value as a 
requirements management tool, including the incentive for 
stakeholder participation, the support for more consistent 
documentation through their simple and consistent layout, the 
improved search and traceability, the support for base lining 
and versioning requirements, and the support for 
collaborative requirements review (Beal, 2014).  

Simple tools such as Excel and Word can be used to quickly 
obtain good results in determining requirements. Experience 
has shown that when formulating requirements, it is 
important to choose a practical approach that suits the 
company’s organization and available resources. Good results 
can then be obtained with surprisingly simple tools. 
Furthermore, these tools are easy to use and do not generate 
any additional expenses. However, Excel and Word have its 
limits. For example, they require other tools for collaborative 
management, for instance Google Docs. 

Table 1. Requirement Management tools comparative 
study. 

 

The summary of Table 2 was built based on the previous 
tools' descriptions and on the survey made by (INCOSE, 
2002). It represents the compliance of well-known 
requirements management tools, represented on the top, in 
relation to the characteristics that define them as a good tool.  

It is possible to conclude that commercial tools have a high 
compliance in relation to the most of the characteristics 
considered. However, some companies may not be willing or 
even capable to afford them. In that case, solutions like wikis 
can be a better choice. Like represented in the table, they 
show similar results in comparison to commercial tools. Even 
though, they are still not fully compliant to some 
characteristics like: Requirements Classification; 
Requirements Derivation; and Visibility into existing links 
from source to implementation. Thus, the work here 
presented is focused on the adaptation of wiki-based modules 
so they can meet these demands and compete with 
commercial tools in requirements management. 

4.1. Semantic Wikis for Requirements Management Support 

Several requirements management works supported by wiki 
modules can be found in the literature. (Decker et al., 2007) 
promoted the collaboration between teams through the 
implementation of templates for communication 
establishment. However, these templates can be easily edited 
by stakeholders breaking the replication of requirements 
structure. This can be a rollback in what concerns 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     75 

     

 

requirements classification. The WikiWinWin approach 
creates a sequence of steps and instructions to guide 
stakeholders on requirements management work (Yang et al., 
2008). During each step, the system displays one or more 
tools with which the team can generate, organize, and 
evaluate concepts and information. An identified problem is 
related to the need of a ‘shaper’ role which function is to 
integrate, distil, organize & rewrite contributions of others. 
Hence the proper classification of requirements needs to be 
always supported a human entity. This could be avoided if 
the information was already inserted properly in the wiki 
interface. This is one of the challenges that the authors 
addressed. They also supported the derivation of 
requirements and their characteristics using proper templates 
for collaborative tagging. Thus, links can be generated 
between the several entities involved in requirements 
management (e.g.  user requirements, authors, acceptance 
criteria). That functionality improved both requirements 
derivation and links visualization between requirements and 
implementations. 

5. REQUIREMENTS MANAGEMENT METHODOLOGY 

The proposed methodology for requirements management 
starts with a Preparation step, where the selection of the 
more appropriated elicitation methods is a key to reduce the 
lack of inputs from stakeholders and developers. Several 
elicitation methods can be selected and used together to 
achieve better results. In this work, the authors considered 
brainwriting as a must since it covers the most of the 
precondition for good requirements elicitation. 

 

Fig. 3. Requirements Management Methodology. 

After this preparation step, the requirements management 
methodology represented in Fig. 3 starts with the Elicitation 
process. In this process, the requirements begin as ideas or 
concepts. These can be defined by a single individual, but 
usually are defined from group’s interactions. The novelty of 
the proposed methodology is that the elicited requirements 
are written as user stories describing in a comprehensible 
language what is expected from the system. 

Analysis concerns reviewing, analysing requirements in 
detail, and negotiating with stakeholders on which 

requirements should be considered (Software Engineering, 
2010). Thus, mechanisms that allow these interactions should 
be implemented. These include requirements approval and 
refinement. The analysis process also encompasses the 
transition from user to technical requirements and validation 
criteria definition. It means that, during user requirements 
analysis, the end-users should be able to provide the 
acceptance criteria for their requirements. Thus, a 
requirement is fulfilled when it behaves accordingly with its 
acceptance criteria; and the technical team should also be 
able to define the functional tests for the derived technical 
requirements. 

Requirements Specification describes the phase, where the 
requirements are brought into a suitable and unambiguous 
form. The idea of this phase is to make requirements readable 
and understandable by anyone that was not involved in the 
elicitation and/or analysis process. The Requirements 
Specification phase documents the agreed requirements at a 
certain level (Software Engineering, 2010). This is a core 
process in the proposed methodology. The authors want to 
come up with an approach that makes sure that, since the 
moment requirements and validation definitions are elicited 
and analysed, these are already described in an unambiguous 
way. This can be done, as an example, using strict forms that 
only allow requirements to be written in a certain way. 
Finally, requirements Validation is done by checking the 
compliance of user and technical requirements with their 
defined acceptance criteria and functional tests 
correspondingly. 

6. BDD BASED REQUIREMENTS MANAGEMENT 
FRAMEWORK 

The proposed BDD based requirements management 
framework was implemented adopting the work presented by 
(Marques-Lucena et al., 2015). In that work, the authors 
argued that the more communication, involvement, and 
interaction of people, more is the chance for organizations to 
expose tacit knowledge residing in individuals' heads. To 
meet this concern, they proposed to use wiki modules for 
domain experts to expose their knowledge.  

The novel proposed framework adapted the previous solution 
to keep-up with requirements management main steps: 
Elicitation; Analysis; Specification; and Validation (see Fig. 
3). Similarly, to the work that grounded the proposed 
framework, it relies on the collaborative aspects of Semantic 
wikis to allow collaborative contributions and further 
feedback from interested parties, which might not have the 
technical skill for complex solutions. Furthermore, due to 
wikis browser interface, this works allowed stakeholders to 
collaboratively participate in requirements management 
independently of their physical location. 

In the presented work, the classical wiki template was edited 
to incorporate as many templates as the entities that the 
system intends to represent (user and technical requirements, 
authors, etc.). This is the major contribution in terms of wiki 
front-ends adaptation for requirements management purpose. 
The mentioned templates were implemented accordingly with 
the BDD specifications of section 2. The usage of this 



76                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

templates allowed the replicability of requirements structure 
improving their classification and further analysis. 

Fig. 4 depicts the proposed framework for requirements 
management which is composed by four modules: 1) wiki 
front-end; 2) Synchronization module; 3) Ontology; and 4) 
Reasoning and Decision-Making Module. These are used to 
implement the sub processes of Fig. 3 methodology, namely: 
Elicitation, Analysis, Specification, and Validation. 

wiki DBWiki front-end
1

End Users + Technical 
Team

New requirements 
and/or requirements 

refinement

Requirements 
Formalization

Synchronization

Ontology

Requirements 
Knowledge Base

3

2

Reasoning and Decision-
Making

4

Brainwriting

Brainstorming
Workshops
Questioners

Focus Group Interview

Functional Tests Acceptance Criteria

Queries

Results
Questions

Answers

Information

Knowledge

Synchronization 
module

New Requirements and 
Requirements refinement

Wiki front-
end Wiki DB

 

Fig. 4. Requirements Management Framework. 

6.1. Requirements Elicitation and Analysis 

The requirements management process is established as a 
cyclic process, since requirements are constantly refined 
while domain participants increase their contextual 
knowledge about the system. Consequently, requirements 
become even more concrete, detailed and complex during a 
product or service development. Thus, important 
characteristics that a requirements management tool should 
address are documents enrichment, modifiability, changes 
tracking and comparison. Accordingly, with the study 
provided in section 4, the wiki-front end is compliant with 
all these characteristics and consequently were selected to be 
used in requirements elicitation. 

6.2. Requirements Specification 

Wikis are known by being collaboratively edited by domain 
experts based on the knowledge consulted. However, the 
content of wiki-based front-ends is characterized by being 
human readable only. This means that its content is not 
formalized to facilitate computerized use (e.g. reasoning). To 
overcome this issue, a synchronization module, composed 
by two sub-modules is used: 

 Requirements Formalization – Implemented 
following methodology of Fig. 5. By using it, wikis 
interface can be adapted to support the structured 
insertion of requirements from stakeholders despite 
knowing nothing about its syntax. 

 Synchronization – This module uses Wiki Data 
Base to detect any changes that have occurred in the 
front-end since it was last run and then updates the 
Requirements Knowledge Base accordingly.  

Finally, under the Requirements Specification process, the 
Requirements Knowledge Base is used to represent the 
knowledge about requirements and related elements (e.g. 
acceptance criteria, functional tests, authors). 

Taxonomy establishment

Knowledge Base 
establishment

Ontology establishment

0.a) Wiki software installation

1.a) Requirements’ categories creation

0.b) Wiki root creation

1.b) Classes hierarchy establishment

2) Requirements classifiers hierarchy 
establishment

3.a) Free values forms creation

4.a) Strict content forms creation (tagging 
purpose)

3.b) Data properties creation

4.b) Object properties creation

5.a) Requirements pages creation

6.a) Requirements pages content 
establishment

5.b) Instances creation

6.b) Instances’ classification

Wiki front end establishment Knowledge Base

Requirements Management 
Platform exists?

New Requirement from End-Users

Yes

No

 

Fig. 5. Methodology for wiki-based front-end contents 
formalization. 

Requirements Formalization Methodology 

This methodology, illustrated in Fig. 5, encompasses the 
design of an adapted wiki front-end and the ontology which 
will handle requirements associated knowledge. The first 
phase of the methodology consists in the knowledge base's 
classes taxonomy establishment. This phase is composed by 
the steps 0-2. In step 0 is made the preparation of the 
platform to handle the domain users' knowledge. In the step 
0.a) is made the software installation, and in step 0.b) is 
created the wiki root class in the ontology to represent the 
knowledge about the requirements. 

The process of assigning categories to other categories, in the 
proposed methodologies (step 1.b)), is used to build the 
ontology's instances taxonomy, being the tagging between 
them handled as the ontological relation `is a'. In the step 1.a) 
are created the necessary category pages to allow the 
elicitation and analyses of requirements. The classification of 
requirements' contents can be facilitated if a classifiers 
taxonomy of those contents is defined (step 2). This allows to 
better structure the gathered knowledge and visualize 
relations between Knowledge Base's instances.  

To guarantee the same structure between wiki articles under a 
category, the front-end was adapted through the development 
of forms. They encompass the possibility of insert free valued 
texts like requirements description sentences (step 3.a), and 
values that need to be inserted in a strict way to allow proper 
tagging between wiki pages (step 4.a). With that specification 
of wiki pages (requirements), is possible to proceed with the 
steps 3.b) and 4.b) of the methodology. In those steps, for 
each article section is created a data property or object 
property to represent the elicited knowledge in the ontology. 
The object properties allow the connection of the classes 
under the wiki root class and those under the classifiers 
taxonomy previously defined (step 4.b)). Data properties will 
represent knowledge that is not under that taxonomy (step 
3.b)). 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     77 

     

 

The process of assigning articles to categories, in the 
proposed methodology (steps 5 and 6) is be used to 
instantiate the ontology. This is done by creating an instance 
under the class with the article's category name (step 5). 
Then, based on HTML analysis of articles' content, the 
knowledge of its sections can be represented in the data and 
object properties of the previously created instance (step 6). 

6.3. Requirements Validation 

The requirements validation is done through the compliance 
analysis in relation to the acceptance criteria and functional 
tests gathered. However, the authors also considered that 
requirements validation could be complemented by the 
reasoning allowed from requirements specification. Thus, 
requirements validation is supported by the Reasoning and 
Decision Making Module. This module provides to the 
community structured and contextual information about 
requirements. One example is: Which are the most relevant 
architectural components to be added to the platform 
concerning the requirements priority? The capability of the 
ontology to answer these questions allows the coordination of 
efforts to the consortium, namely: Prioritize the requirements 
that are indicated as a priority; Prioritize the implementation 
of architectural components that embrace a larger number of 
user requirements. The reasoning on the formalized 
requirements can also be useful after architectural 
components' implementation. Let's consider that some 
management activity is need regarding one or more 
components. Then, the reasoning and decision-making 
module allows to verify which are the requirements that are 
compromised and notify the corresponding authors. 

7. IMPLEMENTATION OF THE REQUIREMENTS 
MANAGEMENT FRAMEWORK IN INDUSTRY 

The Sensing Liquid Enterprise1 concept has been introduced 
by the Future Internet Enterprise Systems (FInES) Research 
Cluster with the support of the European Commission. The 
FInES community acknowledge the fact that businesses are 
facing unprecedented challenges, given the current economic 
crisis, but also more systemic changes related to the shortness 
of resources, environmental changes, and ever changing 
societal needs. Therefore, our enterprises need innovative 
ideas to adapt to these changes and remain competitive, or 
sometimes, even simply survive in the digital era. The 
Sensing Enterprise concept is an attempt to reconcile 
traditional (non ‘pure’ Internet) organisations with the 
tremendous possibilities offered by the cyber worlds (from 
the clouds to the dust) (FInES Cluster, 2010; Moisescu and 
Sacala, 2016; Santucci et al., 2012). 

The OSMOsis applications for the Sensing Enterprise -  
OSMOSE2 project has the main objective of developing a 
reference architecture, a middleware and some prototypal 
applications for the Sensing-Liquid Enterprise, by 
interconnecting Real, Digital, and Virtual Worlds in the same 
way as a semi-permeable membrane permits the flow of 
liquid particles through itself (Agostinho et al., 2015). The 

                                                 
1 http://finespedia.epu.ntua.gr/Sensing_Enterprise.html 
2 http://cordis.europa.eu/project/rcn/189013_en.html 

worlds represent a way of organizing the structure of an 
entire manufacturing enterprise, and the business applications 
in three types of data management environments: Real 
World - related to data that comes directly from devices that 
is handled by physical components; Digital World - related 
to data management available in data and knowledge bases or 
Internet (big data); and Virtual World - related to specific 
management of data with the support of artificial intelligence 
related programs for specific simulations. 

The approach presented in this paper follows the necessity of 
implementing a requirements management tool able to handle 
the sensing liquid enterprise transition with the Requirements 
Engineering Methodology presented in Fig. 3. 

7.1. Wiki Front-End 

Requirements management tools can be considered as 
generic. That means they need to be configured to support 
specific requirements engineering and system development 
processes. That configuration can be supported by the 
creation of document templates, schemes of attribute and 
relation types, and document views. That kind of solution, if 
applied to wikis, could improve requirements characterization 
and requirements derivation. Thus, to facilitate the insertion 
of requirements in the wiki front-end, several extensions were 
developed following the left part of the methodology of Fig. 
5 to originate a form able to facilitate requirements creation 
and edition (see Fig. 6). The resulting form (requirements 
article template) is composed by checkboxes and text areas 
able to suggest the most suitable values to facilitate the 
tagging between pages and sections (step 4.a)). To handle 
description sentences, simple text areas are used (step 3.a)). 

The representation of the developed form can be observed in 
the left of Fig. 6, where is possible to verify that the usage of 
the form resulted in a well-structured article page to represent 
the requirement, which enables the synchronization with the 
ontology (steps 5.a) and 6.a)). The adapted wiki front-end, 
besides the elicitation of requirements through brainwriting, 
allows its analysis.  

First, requirements can be characterized by its: 1) Osmosis 
world: Real World, Digital World, Virtual World; 2) Type: 
Business; Functional; Non-Functional; User-Interface; and 
Transition Requirements; 3) Priority; and 4) Industrial 
Scenario. The priority is related with the relevance of the 
requirement in the scope of the project. In the OSMOSE 
project, two industrial scenarios are considered: aviation and 
automotive industry. 

Since requirements are handled in the wiki-front end, 
community users can refine the requirements any time, and 
follow its life cycle while they become even more clarified, 
focused, consistent, unambiguous and complete. At some 
point, the requirements are refined enough to be approved by 
the end-users. The approval of the requirements is made 
using the checkbox on the top of Fig. 6. Then, the technical 
team can start the derivation of technical requirements. Those 
are presented in the wiki front-end in a different category  

 



78                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

Fig. 6. Creation and edition of User Requirements form. 

(with a specific creation and edition template). The tagging 
between user requirements and technical requirements is 
supported by an extension able to suggest technical 
requirements while typing. Finally, the technical 
requirements can be approved by the technical team in the 
same way the user requirements were approved by the 
industrial team. The developed wiki front-end can be 
consulted through the OSMOSE project page3 or using the 
direct link4. 

BDD Implementation in requirements management 

BDD features were incorporated in the proposed tool to allow 
users to insert requirements: 1) user stories; 2) acceptance 
criteria; 3) and functional tests. in a structured way and 
following the "rules" described in section 2. As an example, 
for user stories gathering from industrial partners, User 
Stories form Fig. 6 was developed. It made sure that all user 
requirements were inserted using a proper format enabling 
the technical team to define technical requirements from 
them.  

Requirements Folksonomy 

The proposed solution goes towards the folksonomy concept 

                                                 
3 http://www.osmose-project.eu/ 
4 http://gris-dev.uninova.pt/osmose 

where the OSMOSE community collaboratively contributes 
for the requirements categorization process. During that 
process, the developed tool allows the establishment of tags 
between the wiki contents, namely between requirements and 
architectural components (developed solutions). The   
synchronization module is, then, able to translate that tagging 
into ontological relation allowing further management (e.g. 
traceability and reasoning). 

The wiki main page enables to navigate in the created 
folksonomy (Fig. 7), starting by consulting the several user 
requirements. Then, from each user requirement, several 
links (tags) can be used to access other information like 
technical requirements and authors. 

7.2. Ontology establishment for requirements specification 

The OSMOSE requirements knowledge base is a component 
which purpose is to capture OSMOSE requirements and its 
relation with other project elements (e.g. authors, 
architectural components). As explained along the paper, it 
also serves as a facilitator for requirements management, 
allowing different views of the information gathered from the 
wiki. Having this kind of knowledge specified would 
facilitate the search of specific information. 

  



CONTROL ENGINEERING AND APPLIED INFORMATICS                     79 

     

 

 

Fig. 7. Requirements pages tagging (folksonomy). 

Following the step 0.b) of methodology presented in Fig. 5, 
the class Knowledge Representation was created. Then, the 
main classes of the taxonomy for requirements representation 
were identified: 

 Authors - These are characterized in two groups: 
end-users and technical team; 

 User Requirements - Definitions of what the 
system should do; 

 Technical Requirements - Characterization of How 
the system should be implemented; 

 BDD Features - Composed by acceptance criteria 
and functional tests. 

 Variables - That will be controlled or monitored. 
These are identified in the Technical Requirements; 

 Actors - Participants of technical requirements (e.g. 
simulator and simulator programmer); 

The OSMOSE knowledge base structure is organized such a 
way that enables to represent conceptually the requirements 
classification features and the instances of the Wiki 
requirements, relating them both while keeping them 
physically separated. To achieve this, a classifiers taxonomy 
was build following the step 2 of the methodology for wiki-
based front-end contents formalization. 

In this step, the necessary information for requirements 
management is used to create the classifiers taxonomy. Based 
on it, the three main classes of the classifiers taxonomy are: 

 OSMOSE Technical Architecture - enables to 
define direct links between technical requirements 

and architectural components; 

 OSMOSE Features - used to classify requirements 
using concepts from the OSMOSE project (e.g. 
Industrial Domain, world; Osmosis Process); 

 Requirements Features - handles generic 
requirements features (e.g. priority, Status, 
Requirement Type).  

In the steps 3.b and 4.b of the methodology the data 
properties to handle free valued properties, and object 
properties to enable the representation of relations with the 
classifiers taxonomy are created (left part of Fig. 6). Two of 
the created data properties that are worth to highlight are the 
Wiki Page, which consists in a unique value that identifies an 
article in the wiki; and the Requirement Version that can 
range from the version 0 (requirement creation) to the version 
N (last version of the requirement). Thanks to the adoption of 
the Wiki page id, a unique value is associated to each 
requirement. Thus, future developments are clearly indexed 
to the original requirement contributing to its traceability. 

Like is represented in Fig. 8, a direct correspondence between 
the front-end and the ontology is achieved, and consequently, 
all the requirements content is successfully migrated. 

7.3. Synchronization Module 

The synchronization module runs periodically and starts by 
connecting to the wiki front-end database to verify if any 
changes occurred since its last run (see Algorithm 1). JDBC 
(Java Database Connectivity) is used to querying the 



80                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

Fig. 8. Direct correspondence between front-end and back-end establishment. 

   Algorithm	1:	Synchronization	
 
Establish database connection 
Get ‘recentchanges’ ܰܧ  
Foreach e in ܰܧ: 

If e(type) in {‘edit’, ‘insert’} then: 
Get page current HTML text 
Split HTML code in sections  ܵܰ  
Foreach s in ܵܰ: 

Map s(name) to ontology property  
O(property) = s(value) 

End 
Case e(type) is ‘edit’ then: 

Get e(wikiPage) instance  i 
O(version) = i(version) ++ 

Case e(type) is ‘insert’ then: 
O(version) = i 

Create instance O in ontology 
End  

front-end database. By querying the wikimedia table 
‘recentchanges’, the authors have access to the set of changed 
pages, and its type: edition, creation, or removal. If the 
change is an edition or a creation, through the link to the table 
text (links to new & old page text) it is possible to have 
access to the current content of the front-end page. After the 
collection of the recent changes the HTML of each article or 
category’s page is processed in order to create/ populate the 
necessary instances, data properties and object properties in 
the knowledge base. 

7.4. Reasoning and Decision-Making 

The formalization of the requirements in a knowledge was 
developed accordingly with Fig. 4 and supports management 
features like reasoning over requirements and their historical 
evolution. These management activities can be sub-

categorized, such as: 

 Change Management and Traceability; 

 Prioritize implementations; 

 Common requirements Analysis. 

Change Management and Traceability 

Requirements Traceability is considered as one of the most 
important characteristics for requirements management. 
Some important information can be retrieved from 
requirements evolution, or in some cases may be necessary to 
roll back to a past model representation (requirement 
representation). Since the ontology handles the different 
versions of a specific requirement taking (directly) into 
account its properties, it is possible to trace not only between 
specific dates, but also verify where a specific change occurs 
(e.g. what where the changes that a requirement suffers to 
become “Approved”?).  

Prioritize Implementations 

The defined ontology handles the knowledge about 
categorized user requirements (e.g. priority and status), their 
derived technical requirements and consequent architectural 
components. Therefore, some reasoning to prioritize 
implementations can be made: 

 Which are the approved user requirements that are 
considered a priority? 

o Selection of all user requirements whose priority has 
the value "mandatory" and status has the value 
"approved" 

 Which are the most relevant architectural 
components to be added to the platform concerning 
the user requirement priority? 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     81 

     

 

o For these requirements follow the path: User 
Requirements  Technical Requirements  
Architectural components. 

 Which are the user requirements that will take 
advantage of adding one or more architectural 
components to the architecture? 

o It is done following the path: Architectural component 
 Technical Requirements  User Requirements 

The capability of the ontology to answer these questions 
allows some coordination efforts of the partners, maximizing 
efficiency. 

Common requirements analysis 

The major part of the process for common requirements 
identification is automatic. However, it starts with the manual 
step of selecting, among the ontological properties available, 
the characteristics considered as relevant for common 
requirements election. This process uses the full ramification: 
user requirement  technical requirements   architectural 
components. Hence, several properties where elected both 
from the user and technical requirements: 

 User Requirements 
o Requirement Type 
o Technical Requirements links 
o OSMOSE World 
o Osmosis Process 

 Technical Requirements 
o Actors 
o Controlled Variables 
o Monitored Variables 
o Architectural Components links 

As part of the manual initial step, it is also defined the 
minimum shared characteristics (threshold) from which the 
requirements are considered common or not. 

 Algorithm	2:	Common	requirements	
 
Define threshold  ݄ܶ 
Get set of relevant requirements characteristics  ܰܥ 
Get all requirements with max version  ܴܰ 
Foreach r in  ܴܰ :  

Get list of relevant properties ܱܲܰ  defined by 
ܱܲܰ ൌ ሾ݌	࢘࢕ࢌ	݌	࢔࢏	ݎሺݏ݁݅ݐݎ݁݌݋ݎ݌ሻ	ࢌ࢏	݌ሺ݊ܽ݉݁ሻ	࢔࢏	ܰܥሿ

Foreach p in ܱܲܰ : 
Foreach re in ሺ	ܴܰ െ  :ሻ	ݎ

If re(p) == r(p) Then re(score) ++ 
End 

End 
If re(score) >= ݄ܶ Then r(common).add(re) 

End  

At this stage the automatic process can be executed. 
Therefore, for each requirement, the values of the elected 
properties are extracted and compared with the values of the 
full list of available requirements. If a property match, a score 
is associated to the requirement compared (1 for each 
characteristic). This is repeated for the set of characteristics 
selected at beginning, increasing the score each time there is 

a match. Afterwards, the group of requirements considered 
common with the one under analysis if the set that share a 
score above the threshold. The process is repeated for all 
requirements and all the distinct groups are identified.  

Using this algorithm, when a new requirement enters in the 
OSMOSE requirements management tool, the system can 
identify the most similar requirements and recommend 
implementations based on the ones used to develop already 
existing requirements. 

7.5. Execution and Validation of Results 

This section reports the compilation and consolidation of the 
technical requirements validation results. It is done by 
comparing the actual outcomes of a program execution with 
its expected behaviour. The complexity of the comparison 
depends on the complexity of the data to be observed. At the 
end of the analysis step, a test verdict is assigned. There are 
three major kinds of test verdicts: 

 Passed – If the program produces the expected 
outcome and the purpose of the test case is satisfied; 

 Partially passed – If the program produces only 
part of the expected outcome; 

 Failed – If the program does not produce the 
expected outcome. 

The Technical requirements were implemented using the 
OSMOSE Technical Architecture and their validation was 
done through behaviours comparison with the functional tests 
defined by the technical team. As represented in Table 2 
using a technical requirement associated to the context 
manager module of the architecture, each technical 
requirement can yield one or more functional test (validation 
scenario). Each one of them describe one expected behaviour 
of the system (technical requirement). A technical 
requirement is validated in it is compliant with all those 
behaviours. 

Table 2. Technical Requirements Tests and Validation of 
Results (illustration). 

Technical 
Requirement The system should have an events Knowledge Base

Scenario 1. Event persistence in the Context Manager

Given an event happening in a world
When the event is of relevance for the event history
Context Manager

Scenario 2. Event persistence in the Context Manager

Given relevant events in the past
When Stargate users open the event history
Then the Context Manager returns all relevant events

Acceptance 
Criteria

Acceptance 
Criteria

 

During the technical evaluation 41 requirements have been 
examined to be included in a prototype: 32% were not 
addressed since they did not fit the required functionalities 
while the remaining 68% were implemented and 
consequently validated. Following the process just explained 
for technical requirements validation it has been inferred that 
96% of the evaluated requirements were passed while 4% 
(one requirement) only partially passed.  



82                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

8. CONCLUSIONS 

On the proposed Requirements Engineering methodology, 
behaviour driven features where used to facilitate 
communication between end-users and technical teams. It 
was concretized in a wiki based tool for requirements 
management. Using it, users could collaboratively participate 
in the requirements management process through an intuitive 
front-end. Consequently, the lack of domain experts input in 
requirements elicitation was reduced, which was considered 
one of the main causes of project failure. The developed tool 
consists in a wiki which edition section was transformed into 
a form to facilitate inputs insertion. The developed forms 
allowed to keep requirements specification, namely their 
structure and style during its life cycle, addressing the 
modifiability of requirements.  

The proposed BDD based requirements management 
methodology was successfully implemented in the OSMOSE 
project when implementing the new sensing liquid enterprise 
concept. Using the proposed methodology and consequent 
framework, 92 User Requirements where elicited. Fig. 9. 
provides a summary of the number of requirements elicited 
accordingly with their type, OSMOSE World and Osmosis 
Process. From these requirements 49 where considered as 
mandatory for the project development. 

0 10 20 30 40 50 60

Functional

Non‐Functional

User‐Interface

Business

Digital

Real

Virtual

Liquid Stargate

Digitalization

Actuation

Virtualization

Augmentation

Enrichment

Simulation

R
e
q
u
ir
em

e
n
t 
Ty
p
e

O
sm

o
si
s 
W
o
rl
d

O
sm

o
si
s 
P
ro
ce
ss

 

Fig. 9. OSMOSE Outcomes in relation to User Requirements 
Elicitation. 

After User Requirements Elicitation and Refinement, 72 
Technical Requirements where derived and associated to 
OSMOSE Architectural Components (Agostinho et al., 
2016). The implemented methodology also supported the 

project coordination and validation through acceptance 
criteria and functional tests definition. Section 7.5 describes 
in detail the coverage of tests execution in relation to the 
defined requirements. 

As future work the authors want to implement the proposed 
methodology in the cyber physical systems area. A CPS 
(Cyber Physical System) is a system in which computing, 
communication and physical processes are so strongly 
connected that it is not possible to identify whether 
behavioural attributes are the results of computing, 
communication, control, physical laws or all of them working 
together (Dumitrache, 2010, 2011). It means that 
requirements elicitation of a system like this can be a 
complex tasks and for sure requires the involvement of 
several parties with distinct backgrounds (Dumitrache et a., 
2013). 

Therefore, the authors consider that the proposed approach 
could be a plus when applied to CPS, since it allows the 
collaboration of teams with different backgrounds. But to 
deal with such complex systems, some improvements are 
required, namely, the capability of handle more formal 
models when describing both Technical Requirements and 
Architectural Components.  

The authors also want to complement the proposed 
methodology with links to implementations release. Thus, 
every time that a piece of code is changed, it should be 
directly assigned to a new requirements and functional test, 
allowing companies to keep trace of their implementations. 

ACKNOWLEDGEMENTS 

This work is funded by FCT – Fundação para a Ciência e a 
Tecnologia within its Research Unit CTS - Centro de 
Tecnologia e Sistemas, with reference UID/EEA/00066/2013. 

REFERENCES 

Agostinho, C., Jesus, E., Sarraipa, J., & Lucena, C. (2016). 
Final User Requirement & PoC Specification. 

Agostinho, C., Sesana, M., Jardim-Goncalves, R., & 
Gusmeroli, S. (2015). Model-Driven Service 
Engineering Towards the Manufacturing Liquid-
Sensing Enterprise. In Proceedings of the 3rd 
International Conference on Model-Driven 
Engineering and Software Development (ModelsWard 
2015). Angers, France.  

Barson, R. J., Foster, G., Struck, T., Ratchev, S., Pawar, K., 
Weber, F., & Wunram, M. (2000). Inter-and intra-
organisational barriers to sharing knowledge in the 
extended supply-chain. In Proceedings of the eBusiness 
and eWork (pp. 18–20). 

Beal, A. (2014). The benefits of using a wiki to manage 
requirements. 

Bozarth, C., & Edwards, S. (1997). The impact of market 
requirements focus and manufacturing characteristics 
focus on plant performance. Journal of Operations 
Management, 15(3), 161–180. 

Clark, J. O. (2009). System of Systems Engineering and 
Family of Systems Engineering from a standards, V-



CONTROL ENGINEERING AND APPLIED INFORMATICS                     83 

     

 

Model, and Dual-V Model perspective. In Systems 
Conference, 2009 3rd Annual IEEE (pp. 381–387).  

Coutinho, C., Cretan, A., & Jardim-Goncalves, R. (2013). 
Sustainable interoperability on space mission feasibility 
studies. Computers in Industry, 64(8), 925–937.  

Decker, B., Ras, E., Rech, J., Jaubert, P., & Rieth, M. (2007). 
Wiki-Based Stakeholder Participation in Requirements 
Engineering. IEEE Software, 24(2), 28–35. 
http://doi.org/10.1109/MS.2007.60 

Dumitrache, I. (2010). The next generation of Cyber-Physical 
Systems. Journal of Control Engineering and Applied 
Informatics, 12(2), 3–4. 

Dumitrache, I. (2011). Cyber-physical systems-new 
challenges for science and technology. Journal of 
Control Engineering and Applied Informatics, 13(3), 
3–4. 

Dumitrache, I., Caramihai, S. I., & Stanescu, A. (2013). From 
Mass Production to Intelligent Cyber-Enterprise. In 
2013 19th International Conference on Control 
Systems and Computer Science (pp. 399–404).  

FInES Cluster. (2010). FINES Research Roadmap. Retrieved, 
August, 24, 2013. 

Finkelstein, A., & Emmerich, W. (2000). The future of 
requirements management tools. Information Systems 
in Public Administration and Law. 

Grilo, A., & Jardim-Goncalves, R. (2013). Cloud-
Marketplaces: Distributed e-procurement for the 
{AEC} sector. Advanced Engineering Informatics, 
27(2), 160–172.  

Hausman, W., & Montgomery, D. (1997). Market Driven 
Manufacturing. Journal of Market-Focused 
Management, 2(1), 27–47. 

Heslin, P. a. (2009). Better than brainstorming? Potential 
contextual boundary conditions to brainwriting for idea 
generation in organizations. Journal of Occupational 
and Organizational Psychology, 82, 129–145. 

Hull, E., Jackson, K., & Dick, J. (2010). Requirements 
Engineering (3rd ed.). New York, NY, USA: Springer-
Verlag New York, Inc. 

INCOSE. (2002). Tools Survey: Requirements Management 
(RM) Tools. Retrieved from 
http://www.incose.org/productspubs/products/setools/to
oltax.html 

Keogh, E. (2010). BDD: A Lean Toolkit. In Proceedings of 
Lean Software & Systems Conference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lazr, I., Motogna, S., & Pírv, B. (2010). Behaviour-Driven 
Development of Foundational UML Components. 
Electron. Notes Theor. Comput. Sci., 264(1), 91–105. 

Marques-Lucena, C., Agostinho, C., Marcelino-Jesus, E., 
Sarraipa, J., & Jardim-Gonçalves, R. (2015). 
Collaborative Management of Requirements using 
Semantic Wiki Modules. In 4th International 
Workshop on Cyber Physical Systems. 

Moisescu, M. A., & Sacala, I. S. (2016). Towards the 
development of interoperable sensing systems for the 
future enterprise. Journal of Intelligent Manufacturing, 
27(1), 33–54. 

Nuseibeh, B., & Easterbrook, S. (2000). Requirements 
Engineering: A Roadmap. In ISCE ’00 Proceedings of 
the Conference on the Future of Software Engineering. 

Rogstrand, V., & Kjellberg, T. (2009). The representation of 
manufacturing requirements in model-driven parts 
manufacturing. In International Journal of Computer 
Integrated Manufacturing (Vol. 22, pp. 1065–1072). 

Santucci, G., Martinez, C., & Vlad, D. (2012). The Sensing 
Enterprise. In In FInES Workshop at FIA 2012. 

Software Engineering. (2010). Requirements Engineering = 
Elicitation + Analysis and Negotiation + Specification 
or Documentation + Validation ! Retrieved from 
http://se-
thoughtograph.blogspot.pt/2010/01/requirement-
engineering-key-aspect.html 

Solis, C., & Wang, X. (2011). A study of the characteristics 
of behaviour driven development. In 2011 37th 
EUROMICRO Conference on Software Engineering 
and Advanced Applications (pp. 383–387). 

Stegaru, G., Danila, C., Sacala, I. S., Moisescu, M., & 
Stanescu, A. M. (2015). E-Services Quality Assessment 
Framework for Collaborative Networks. Enterp. Inf. 
Syst., 9(5-6), 583–606.  

Tavares, H. L., Rezende, G. G., dos Santos, V. M., Manhães, 
R. S., & de Carvalho, R. A. (2010). A tool stack for 
implementing Behaviour-Driven Development in 
Python Language. CoRR, abs/1007.1. 

Yang, D., Wu, D., Koolmanojwong, S., Brown, A. W., & 
Boehm, B. W. (2008). WikiWinWin: A Wiki Based 
System for Collaborative Requirements Negotiation. In 
Hawaii International Conference on System Sciences, 
Proceedings of the 41st Annual (p. 24).  


