
CEAI, Vol.11, No. 3, pp. 6-15, 2009 Printed in Romania

A distributed version of Han’s method for

DMPC using local communications only

Dang Doan ∗ Tamás Keviczky ∗ Ion Necoara ∗∗

Moritz Diehl ∗∗∗ Bart De Schutter ∗

∗ Delft University of Technology, Delft, The Netherlands
(e-mail: {m.d.doan,t.keviczky}@tudelft.nl, b@deschutter.info)
∗∗ Automatic Control and Systems Engineering Department,
Politehnica University of Bucharest, Bucharest, Romania

(e-mail: i.necoara@ics.pub.ro)
∗∗∗ K.U.Leuven, Heverlee, Belgium

(e-mail: moritz.diehl@esat.kuleuven.be)

Abstract: The study of Distributed Model Predictive Control (DMPC) for dynamically coupled
linear systems has so far typically focused on situations where coupling constraints between
subsystems are absent. In order to address the presence of convex coupling constraints, we
present a distributed version of Han’s parallel algorithm for a class of convex programs. The
distributed algorithm relies on local iterative updates only, instead of system-wide information
exchange as in Han’s parallel algorithm. The new algorithm then provides the basis for a
distributed MPC method that is applicable to sparsely coupled linear dynamical systems with
coupled linear constraints. Convergence to the global optimum, recursive feasibility, and stability
are established using only local communications between the subsystems.
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1. INTRODUCTION

Model predictive control (MPC) is the most successful
advanced control technology implemented in industry due
to its ability to handle complex systems with hard input
and state constraints (Maciejowski, 2002; Mayne et al.,
2000; Garćıa et al., 1989). The essence of MPC is to
determine a control profile that optimizes a cost criterion
over a prediction window and then to apply this control
profile until new process measurements become available.
Then the whole procedure is repeated and feedback is
incorporated by using the measurements to update the
optimization problem for the next step.

For control of large-scale networked systems, centralized
MPC is considered impractical, inflexible, and unsuitable
due to information exchange requirements and computa-
tional aspects. The subsystems in the network may belong
to different authorities that prevent sending all necessary
information to one processing center. Moreover, the op-
timization problem yielded by centralized MPC can be
excessively large for real-time computation. In order to
deal with these limitations, distributed model predictive
control (DMPC) has been proposed for control of such
large-scale systems, by decomposing the overall system
into small subsystems (Jia and Krogh, 2001; Camponogara
et al., 2002; Rawlings and Stewart, 2008). The subsystems
employ distinct MPC controllers that only solve local opti-
mization problems, use local information from neighboring
subsystems, and collaborate to achieve globally attractive
solutions.

Approaches to DMPC design differ from each other in
the problem setup. For systems with decoupled dynamics
Dunbar and Murray (2006) proposed a DMPC scheme
focusing on multiple vehicles with coupled cost functions,
and utilizing predicted trajectories of the neighbors in
each subsystem’s optimization. A DMPC scheme with a
sufficient stability test for dynamically decoupled systems
was proposed by Keviczky et al. (2006), in which each
subsystem optimizes also over the behaviors of its neigh-
bors. Richards and How (2007) proposed a robust DMPC
method for decoupled systems with coupled constraints,
based on constraint tightening and a serial solution ap-
proach. For systems with coupled dynamics and decoupled
constraints Venkat et al. (2008) proposed a distributed
MPC scheme, based on a Jacobi algorithm that deals with
the primal problem, using a convex combination of new
and old solutions. Other research related to the DMPC
field is reported by Jia and Krogh (2002); Du et al. (2001);
Li et al. (2005); Camponogara and Talukdar (2007); Mer-
cangoz and Doyle III (2007); Alessio and Bemporad (2007,
2008); Necoara et al. (2008). A recent survey on DMPC is
(Scattolini, 2009).

The DMPC algorithm proposed in this paper is able to
handle linear time-invariant dynamics with linear dynam-
ical couplings, and the presence of coupled linear con-
straints. Each local controller will only need to communi-
cate with its direct neighbors (which will be a very limited
number, depending on the sparsity of the network) to
exchange predictions, which are iteratively updated by the
local controllers. The algorithm can be implemented using
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only local communications. In order to simplify our exposi-
tion, the proposed algorithm relies on an MPC framework
with a zero terminal point constraint for achieving global
feasibility and stability. However, the proposed algorithm
can also be extended to other MPC framework in which
the optimization problems have convex cost functions and
subject to convex constraints, provided that the local
stabilizing terminal controllers are available.

This paper is organized as follows. The problem setup is
described in Section 2. A specific system class composed
of a finite series interconnection of coupled oscillators is
described in Section 3 in order to help illustrate the main
aspects of our approach. In Section 4, the centralized MPC
problem is formulated and the underlying optimization
problem is stated. This problem can be solved using a
parallel computing scheme based on Han’s method, which
is summarized in Section 5. The paper’s main contribution
is then presented in the form of a distributed algorithm
exploiting the structure of the optimization problem for
local communications, followed by the proof of its equiv-
alence to Han’s algorithm in Section 6. As a consequence
of this equivalence, the proposed DMPC scheme using
this distributed optimization procedure achieves the global
optimum upon convergence and thus inherits feasibility
and stability properties from its centralized MPC coun-
terpart. The simulation results in Section 7 illustrate the
properties of the DMPC scheme for the example setup
with the coupled oscillators. Section 8 concludes the paper
and indicates some directions for future research.

2. PROBLEM DESCRIPTION

2.1 Subsystems and their neighborhood

Consider a plant consisting of M subsystems. The dynam-
ics of each subsystem are assumed to be influenced directly
by only a small number of other subsystems. Moreover,
each subsystem i is assumed to have local linear coupled
constraints involving only variables from a small number
of other subsystems.

Based on the couplings, we define the neighborhood of
subsystem i, N i, as the set of indices of subsystem i and the
subsystems that have either a direct dynamical or linear
constraint coupling with subsystem i. In Figure 1, we
demonstrate this with a map where each node stands for
one subsystem, the dotted links show constraint couplings
and the solid links represent dynamical couplings.

In order to benefit from an increased computational speed
when using a distributed algorithm, the couplings in dy-
namics and constraints between subsystems are assumed
to be sparse, or equivalently, the size of each neighborhood
N i is relatively small in comparison with the total number
of subsystems M .

2.2 Coupled subsystem model

We assume that each subsystem can be represented by a
discrete-time, linear time-invariant model of the form:

xi
k+1 =

∑

j∈N i

Aijxj
k + Bijuj

k, (1)
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Fig. 1. A map showing the constraint couplings (dotted
links) and dynamical couplings (solid links) between
subsystems. In this example, N 4 = {4, 1, 2, 5}.

where xi
k ∈ R

ni

and ui
k ∈ R

mi

are the states and control
inputs of the i-th subsystem at time step k, respectively.

2.3 Linear coupled constraints

Each subsystem i is assumed to have local linear coupled
constraints involving only variables within its neighbor-
hood N i. Within one prediction period, all constraints
that subsystem i is involved in can be written in the
following form

∑

j∈N i

N−1∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq (2)

∑

j∈N i

N−1∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq (3)

in which N is prediction horizon, ceq and c̄ineq are column

vectors, and Dij
k , Eij

k , D̄ij
k , and Ēij

k are matrices with
appropriate dimensions.

3. COUPLED OSCILLATORS SETUP FOR
ILLUSTRATIVE PURPOSES

Although our approach is developed for systems as general
as (1) with sparse dynamical and constraint couplings
among the subsystems, we will illustrate the method on an
example system composed of a finite series interconnection
of coupled oscillators.

Let us now briefly describe this specific problem setup
involving coupled oscillators. The system consists of M
oscillators that can move only along the vertical axis, and
that are coupled by springs that connect each oscillator
with its two closest neighbors. An exogenous vertical force
will be used as the control input for each oscillator. The
setup is shown in Figure 2.

Each oscillator is considered as one subsystem. Let the
superscript i denote the index of the oscillators. The
continuous-time dynamics equation of oscillator i is then
defined as

mai
t = k1p

i
t−fsv

i
t +k2(p

i−1
t −pi

t)+k2(p
i+1
t −pi

t)+F i
t , (4)

where pi
t, vi

t, and ai
t denote the position, velocity, and

acceleration of oscillator i at time t, respectively. The



8 Control Engineering and Applied Informatics

pi

F 1 FM

k1

k1

k1
k1

k2

k2

k2

k2
m

1 2
3

M i

Fig. 2. Setup with coupled oscillators

control force exerted at oscillator i is F i
t . The system

parameters are k1, k2, m, and fs, representing respectively
the stiffness of the vertical spring at each oscillator, the
stiffness of the springs that connect the oscillators, the
mass of each oscillator, and the friction coefficient for
movement of the oscillators.

The positions of the subsystems are required to satisfy the
coupled constraints:

∣
∣
∣
∣p

i
t −

pi−1
t + pi+1

t

2

∣
∣
∣
∣
≤ 1, i = 2, ..., M − 1, ∀t (5)

which means that each oscillator must not deviate too far
from the middle of its two closest neighbors.

The control objective is to regulate the system from a
non-zero initial state (which is assumed to satisfy the
constraints) to the equilibrium.

Based on dynamical couplings and constraint couplings,
the neighborhood of each subsystem inside the chain is
defined to contain itself and its two closest neighbors:
N i = {i−1, i, i+1}, i = 2, . . . , M−1, while for the two ends
N 1 = {1, 2} and NM = {M, M − 1}. We define the state
vector as xi

t = [pi
t, v

i
t]

T , and the input as ui
t = F i

t . The
discretized local dynamics with a proper sampling time is
represented by the following equations:

xi
k+1 = Aiixi

k + Ai,i−1xi−1
k + Ai,i+1xi+1

k + Biiui
k (6)

in which Aij ∈ R
2×2, ∀i, j and Bii ∈ R

2×1, ∀i.

4. CENTRALIZED MPC PROBLEM

We will formulate the centralized MPC problem for sys-
tems of the form (1) using a terminal point constraint
approach that imposes that all states are steered to 0 at
the end of the prediction horizon. Under the conditions
that a feasible solution of the centralized MPC problem
exists, and that the point with zero states and inputs is in
the relative interior of the constraint set, this MPC scheme
ensures feasibility and stability, as shown by Mayne et al.
(2000) and Keerthi and Gilbert (1988). The algorithm
proposed in this paper will also work with any other
centralized MPC approach that does not require terminal
point constraint, given assumpion that the subsystems
have local stabilizing terminal controllers. We will further
assume without loss of generality that the initial time is
zero.

4.1 Choice of decision variable

The optimization variable of the centralized MPC problem
is constructed as a stacked vector of predicted subsystem
control inputs and states over the prediction horizon:

x =
[(

u1
0

)T
, . . . ,

(
uM

0

)T
, . . . ,

(
u1

N−1

)T
, . . . ,

(
uM

N−1

)T
,

(
x1

1

)T
, . . . ,

(
xM

1

)T
, . . . ,

(
x1

N

)T
, . . . ,

(
xM

N

)T
]T

(7)

Recall that ni and mi denote the numbers of states
and inputs of subsystem i. The number of optimization
variables for the centralized problem is thus:

nx = N

M∑

i=1

mi + N

M∑

i=1

ni (8)

4.2 Cost function

The cost function of the centralized MPC problem is
assumed to be decoupled and convex quadratic:

J =

M∑

i=1

N−1∑

k=0

((
ui

k

)T
Riu

i
k +

(
xi

k+1

)T
Qix

i
k+1

)

(9)

with positive definite weights Ri, Qi, ∀i.

It can be rewritten using the decision variable x as

J = xT Hx (10)

in which the Hessian H is a block-diagonal, positive
definite matrix

H =

[
R 0
0 Q

]

(11)

where R and Q are block-diagonal, positive definite
weights and are built from Ri and Qi as follows:

R = diag( R̃, . . . , R̃
︸ ︷︷ ︸

N times

) with R̃ = diag(R1, . . . , RM )

Q = diag( Q̃, . . . , Q̃
︸ ︷︷ ︸

N times

) with Q̃ = diag(Q1, . . . , QM )

Remark 4.1 The positive definiteness assumption on Qi

and Ri and the choice (7) of centralized variable without
eliminating state variables will help to compute the inverse
of the Hessian easily, by allowing simple inversion of each
block on the diagonal of the Hessian.

4.3 Problem formulation

The centralized MPC problem is defined as:
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min
x

xT Hx (12)

s.t.

xi
k+1 =

∑

j∈N i

Aijxj
k + Bijuj

k,

i = 1, . . . , M, k = 0, . . . , N − 1 (13)

xi
N = 0, i = 1, . . . , M (14)

∑

j∈N i

N−1∑

k=0

Dij
k xj

k + Eij
k uj

k = ceq, i = 1, . . . , M (15)

∑

j∈N i

N−1∑

k=0

D̄ij
k xj

k + Ēij
k uj

k ≤ c̄ineq, i = 1, . . . , M (16)

Remark 4.2 For the coupled oscillators example, the
centralized optimization problem at each sampling step
has 3MN degrees of freedom, subject to 2M(N +1) scalar
linear equality constraints and 2MN + 2(M − 2)(N −
1) scalar linear inequality constraints. Each equality or
inequality constraint involves only a few variables, with at
most 8 variables appearing in each of them.

4.4 Centralized optimization problem

We can rewrite the problem (12)–(16) in a compact form
as

min
x

xT Hx (17)

s.t. aT
l x = bl, l = 1, . . . , neq

aT
l x ≤ bl, l = neq + 1, . . . , s

with s = neq + nineq.

Remark 4.3 Note that all bl are scalars and all al

are vectors. For the coupled oscillators example, we have
neq = 2M(N + 1), nineq = 4MN − 2M − 4N + 4, and
bl = 0, l = 1, . . . , neq. Due to sparse couplings between
subsystems, al has very few non-zero elements. Each
parameter al contains at most 8 non-zero elements (out
of 3MN elements). Recall that H is block-diagonal with
positive definite blocks of size ni×ni, where for the coupled
oscillators example all ni = 2.

In the following sections, Han’s parallel algorithm for a
class of convex programs will be described and a dis-
tributed version exploiting the problem structure will be
developed and applied to this optimization problem.

5. HAN’S ALGORITHM

First, we summarize the main elements of Han’s method
(Han and Lou, 1988) for a class of convex programs,
followed by a simplified version for the case of definite
quadratic programming. The main idea of Han’s algorithm
is to solve the dual problem of the centralized optimization
using parallel computations in an iterative scheme.

5.1 Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s
algorithm is the following:

min
x

q(x) (18)

s.t. x ∈ C , C1 ∩ · · · ∩ Cs

where C1, · · · , Cs are closed convex sets and C 6= ∅, and
where q(x) is uniformly convex and differentiable on R

nx .
The function q(x) is uniformly convex if there is a constant
ρ > 0 such that for any x1, x2 ∈ R

nx and for any λ ∈ (0, 1)

q(λx1+(1−λ)x2) ≤ λq(x1)+(1−λ)q(x2)−ρλ(1−λ)‖x1−x2‖
2

Algorithm 1. Han’s method for convex programs
The algorithm is an iterative procedure. We use p as
iteration counter of the algorithm. We use a superscript
(p) to denote the values of variables computed at iteration
p.

Let α be a sufficiently large number 1 and define y(0) =

y
(0)
1 = · · · = y

(0)
s = 0, with y(0),y

(0)
l ∈ R

nx , l =

1, . . . , s, and x(0) = ∇q∗
(
y(0)

)
with q∗ being the conjugate

function 2 of q. For p = 1, 2, . . . , we perform the following
computations:

1) For l = 1, . . . , s, find z
(p)
l that solves

min
z

1

2
‖z + αy

(p−1)
l − x(p−1)‖

2

2 (19)

s.t. z ∈ Cl

2) Assign

y
(p)
l = y

(p−1)
l + (1/α)

(

z
(p)
l − x(p−1)

)

(20)

3) Set y(p) = y
(p)
1 + · · · + y

(p)
s

4) Compute

x(p) = ∇q∗
(

y(p)
)

(21)

Remark 5.1 Han’s method essentially solves the dual
problem of (18), so that y(p) converges to the solution of
the dual problem:

min
y

q∗(y) − δ∗(y|C) (22)

in which δ(x|C) is the indicator function, which is 0
if x ∈ C and ∞ otherwise. The conjugate function of
δ(x|C) is δ∗(y|C) = sup

x∈C yT x. Due to Fenchel’s duality
theorem (Rockafellar, 1970), a value y∗ is an optimizer of
(22) if and only if x∗ = ∇q∗ (y∗) is the solution of (17).

Remark 5.2 The optimization (19) is to find the projec-

tion of x(p−1) − αy
(p−1)
l on the set Cl, its dual problem

is

min
y

(α/2)‖y
(p−1)
l − y‖2 + x(p−1)T

y − δ∗(y|Cl) (23)

The update formula (20) gives y
(p)
l = ∇φ

(

z
(p)
l

)

, where

φ(z) is the cost function of (19). Fenchel’s duality also

guarantees that y
(p)
l = ∇φ(z

(p)
l ) is the solution of (23),

since z
(p)
l is the solution of (19).

1 α is a design parameter that has to be sufficiently large. With
α ≥ s/ρ Han’s method will converge (Han and Lou, 1988). For
positive definite QPs we can choose ρ as one half of the smallest
eigenvalue of the Hessian matrix. A smaller α leads to a faster
convergence rate, but an α that is too small could lead to convergence
problems as will be illustrated in Section 7.
2 The conjugate function of a function q(x), x ∈ R

nx is defined

by: q∗(y) = sup
x∈Rnx

(
y

T
x − q(x)

)
. The conjugate function q∗ is

always convex (Boyd and Vandenberghe, 2004).
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The uniform convexity of q is used to derive a contraction
inequality:

(x(p) − x(p−1))T (y(p) − y(p−1)) ≤
s

2ρ
‖y

(p)
l − y

(p−1)
l ‖

2

2

(24)

Convergence of ‖y(p) − y(p−1)‖2 → 0 and ‖x(p) − x(p−1)‖2
→ 0 as p → ∞ can be shown using (24) and the implicit
meaning of (23).

Han and Lou (1988) also showed that their algorithm
converges to the global optimum if q(x) is uniformly
convex and differentiable on Rnx and C1, · · · , Cs are closed
convex sets and C , C1 ∩ · · · ∩ Cs 6= ∅.

5.2 Han’s algorithm for definite quadratic programs

In case the optimization problem has a positive definite
cost function and linear constraints as in (17), the opti-
mization problem (19) and derivative (21) have analytical
solutions, and then Han’s method becomes simpler. In the
following we revise how the analytical solutions of (19)
and (21) can be obtained when applying Algorithm 1 to
problem (17).

Remark 5.3 The result of simplifying Han’s method
in this section is slightly different from the original one
described in Han and Lou (1988), to correct the minor
mistakes we found in that paper.

As in (17), each constraint x ∈ Cl is implicitly expressed
by a scalar linear equality or inequality constraint. So (19)
takes one of following two forms:

min
1

2
‖z + αy

(p−1)
l − x(p−1)‖

2

2 (25)

s.t. aT
l z = bl

or

min
1

2
‖z + αy

(p−1)
l − x(p−1)‖

2

2 (26)

s.t. aT
l z ≤ bl

First consider (26):

• If aT
l

(

x(p−1) − αy
(p−1)
l

)

≤ bl, then z
(p)
l = x(p−1) −

αy
(p−1)
l is the solution of (26). Substituting this z

(p)
l

into (20), leads to the following update of y
(p)
l :

y
(p)
l = y

(p−1)
l + (1/α)

(

x(p−1) − αy
(p−1)
l − x(p−1)

)

⇒ y
(p)
l = 0 (27)

• If aT
l

(

x(p−1) − αy
(p−1)
l

)

> bl, then the constraint

is active. The optimization problem (26) is to find
the point in the half-space aT

l z ≤ bl that minimizes

its distance to the point x(p−1) − αy
(p−1)
l (which is

outside that half-space). The solution is the projec-

tion of the point x(p−1) − αy
(p−1)
l on the hyperplane

aT
l z = bl, which is given by the following formula:

z
(p)
l = x(p−1) − αy

(p−1)
l −

aT
l

(
x(p−1) − αyl

)
− bl

aT
l al

al

(28)

Substituting this z
(p)
l into (20), leads to:

y
(p)
l = y

(p−1)
l +

1

α



−αy
(p−1)
l −

aT
l

(

x(p−1) − αy
(p−1)
l

)

− bl

aT
l al

al





= −
aT

l

(

x(p−1) − αy
(p−1)
l

)

− bl

αaT
l al

al (29)

Then defining γ
(p)
l = aT

l

(
x(p−1) − αy(p−1)

)
−bl yields

y
(p)
l = −

γ
(p)
l

αaT
l al

al (30)

If we define γ
(p)
l = max{aT

l

(
x(p−1) − αy(p−1)

)
− bl, 0},

then we can use the update formula (30) for both cases.

Similarly, for the minimization under equality constraint

(25), we define γ
(p)
l = aT

l

(
x(p−1) − αy(p−1)

)
− bl and the

update formula (30) gives the result of (20).

Now consider step 4) of Algorithm 1. As shown by Boyd
and Vandenberghe (2004), the function q(x) = xT Hx with
H being a positive definite matrix, is strongly convex and
has the conjugate function:

q∗(y) =
1

2
yT H−1y (31)

⇒ ∇q∗(y) = H−1y (32)

Consequently, in Han’s algorithm for the definite quadratic
program (17), it is not necessary to compute z(p), and y(p)

can be eliminated using (30), which leads to the following
simplified algorithm:

Algorithm 2. Han’s method for definite quadratic
programs
The optimization problem to be considered is (17). As
discussed in Han and Lou (1988), we choose α = s/ρ,
where s = neq + nineq is the number of constraints and ρ
is one half of the smallest eigenvalue of H .

For each l = 1, . . . , s, compute

cl =
−1

αaT
l al

H−1al (33)

Initialize γ
(0)
1 = · · · = γ

(0)
s = 0 and x(0) = 0. For

p = 1, 2, . . . , we perform the following computations:

1) For each l corresponding to an equality constraint

(l = 1, . . . , neq), compute γ
(p)
l = aT

l x(p−1) + γ
(p−1)
l −

bl.
For each l corresponding to an inequality constraint

(l = neq + 1, . . . , s), compute γ
(p)
l = max{aT

l x(p−1) +

γ
(p−1)
l − bl, 0};

2) Set

x(p) =

s∑

l=1

γ
(p)
l cl (34)

Note that Han’s method splits up the computation into s
parallel subproblems, where s is the number of constraints.
However, although Algorithm 2 is simpler than the original
form in Algorithm 1, it still requires a global update scheme
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and the parallel problems still operate with the full-sized
decision vector. Implementing the scheme in a DMPC
system, where the goal is to reduce the size of local
computations and to rely on local communication between
subsystems only, is not straightforward. In the following
section, we will exploit the structure of the problem (17),
resulting in a distributed algorithm that does not require
global communications.

6. DISTRIBUTED ALGORITHM FOR THE
CENTRALIZED MPC OPTIMIZATION PROBLEM

For the algorithm presented in this section, we use M local
controllers attached to M subsystems. Each controller i

then computes γ
(p)
l with regard to a small set of constraints

indexed by l. Subsequently, it performs a local update
for its own variables, such that the parallel local update
scheme will be equivalent to the global update scheme in
Algorithm 2. Note that for the centralized MPC problem
(12)–(16), H is block-diagonal, which will be used in this
section.

6.1 Initialization of the algorithm

The parameter α is chosen as in Algorithm 2 and stored
in the memory of all local controllers.

We also compute s invariant values cl as in Algorithm 2:

cl =
−1

αaT
l al

H−1al, l = 1, . . . , s (35)

in which each cl corresponds to one constraint of (17).
Since H−1 is block-diagonal, cl is as sparse as the corre-
sponding al. We can see that cl can be computed locally by
a local controller with a priori knowledge of the parameter
al and the weighting blocks on the diagonal of H that
correspond to the non-zero elements of al. Note that H−1

is computed easily by inverting each block of H , and has
the same structure as H .

We assume that each local controller i knows its local dy-
namics, and the input and state weights of its neighbors in
the cost function. Then each local controller i can compute
the cl associated with its dynamic equality constraints.

6.2 Assign responsibility of each local controller

Each local controller is in charge of updating the variables
of its subsystem. Moreover, we also assign to each local
controller the responsibility of updating some intermediate
variables that relate to several equality or inequality con-
straints in which its subsystem’s states or inputs appear.
The control designer has to assign each of the s scalar
constraints to one of the M local controllers 3 such that
the following requirements are satisfied:

• Each constraint is taken care of by one and only one
local controller (even for a coupled constraint, there
will be only one controller that is responsible).

• A local controller can only be in charge of constraints
that involve its own variables.

3 Note that s is often much larger than M .

Let Li denote the set of indices l that local controller i is
in charge of. The first requirement above can be written
compactly as

Li ∩ Lj = ∅, ∀i, j (36)

L1 ∪ · · · ∪ LM = {1, . . . , s} (37)

Note that this division is not unique and has to be
created according to a procedure that is performed in the
initialization phase.

Let us now demonstrate this task with the coupled os-
cillators example: controller i is in charge of 2(N + 1)
equality constraints (corresponding to local dynamics (13)
for xi

k+1 and (14) for its terminal state xi
N ), and 2N

inequality constraints for bounding its inputs. In addition,
for i = 2, . . . , M−1 there are 2(N−1) additional inequality
constraints for the coupled constraints (16).

We also define LN i as the set of indices l corresponding
to the constraints that are taken care of by subsystem i or
by any neighbor of i:

LN i =
⋃

j∈N i

Lj (38)

If a local controller is in charge of the constraints indexed
by ℓ, then it computes cℓ using (35) and exchanges these
values with its neighbors. Then each local controller i
stores {cℓ}ℓ∈L

Ni
in its memory throughout the optimiza-

tion process.

6.3 Iterative procedure

The distributed algorithm consists of an iterative proce-
dure running within each sampling interval. At each iter-
ation, four steps are executed: two steps are communica-
tions between each local controller and its direct neighbors,
and two are computation steps that are performed locally
by controllers in parallel. Since feasibility is only guar-
anteed upon convergence of Han’s algorithm, we assume
that the sampling time used is large enough such that the
algorithm can converge within one sampling interval.

For consistency of notation, in this algorithm p is also used
to denote the iteration step. Values of variables obtained
at iteration p are denoted with superscript (p).

Definition 6.1. (Index matrix of subsystems). In order to
present the algorithm compactly, we introduce the index
matrix of subsystems: each subsystem i has a square
matrix I

i ∈ Rnx×nx that is diagonal, with an entry on
the diagonal being 1 if it corresponds to the position of a
variable of subsystem i in the vector x, and 0 otherwise. In
short, I

i is a selection matrix such that the multiplication
I

ix only retains the variables ui
0, . . . , u

i
N−1, x

i
1, . . . , x

i
N of

subsystem i in its nonzero entries. We have the following
relation:

M∑

i=1

I
i = I (39)

Definition 6.2. (Self image). We denote with x(p)|i ∈ R
nx

the vector that has the same size as x, containing

u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N (i.e. the values of i’s vari-

ables computed at iteration p) at the right positions, and
zeros for the other entries. This vector is called the self
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image of x(p) made by subsystem i. Using the index matrix
notation, the relation between x(p)|i and x(p) is:

x(p)|i = I
ix(p) (40)

Definition 6.3. (Neighborhood image). Extending the con-

cept of self image, we denote with x(p)|N i

the neighborhood
image of subsystem i made from x. At step p of the

iteration, subsystem i constructs x(p)|N i

by putting the
values of its neighbors’ variables and its own variables to
the right positions, and filling in zeros for the remaining

slots of x. The neighborhood image x(p)|N i

satisfies the
following relations:

x(p)|N i

=
∑

j∈N i

x(p)|j (41)

x(p)|N i

=




∑

j∈N i

I
j



x(p) (42)

By definition, we also have the following relation between
the self image and the neighborhood image made by the
same subsystem:

x(p)|i = I
ix(p)|N i

(43)

Algorithm 3. Distributed algorithm for the central-
ized MPC optimization problem

Initialize with p = 0, x
i,(0)
k = 0, u

i,(0)
k = 0, ∀i, k 6= 0 (this

means x(0)|i = 0, ∀i, and the centralized variable x(0) = 0),

and γ
(0)
l = 0, l = 1, . . . , s (recall that s is the number of

constraints of the centralized optimization problem).

Next, for p = 1, 2, . . . , the following steps are executed:

1) Communications to get the updated main vari-
ables
Each controller i communicates with its neighbors j ∈
N i to get updated values of their variables, contained
in x(p−1)|j . Vice versa, i also sends its updated
variables in x(p−1)|i to its neighbors as requested 4 .

After getting information from the neighbors, con-

troller i constructs the neighborhood image x(p−1)|N i

using formula (41).
2) Update intermediate variables γl in parallel

In this step, the local controllers update γl corre-
sponding to each constraint l under their responsibil-
ity. More specifically, each local controller i updates
γl for each l ∈ Li in the following manner:
• If constraint l is an equality constraint (l =

1, . . . , neq), then γ
(p)
l = aT

l x(p−1)|N i

+γ
(p−1)
l −bl.

• If constraint l is an inequality constraint (l =

neq + 1, . . . , s), then γ
(p)
l = max{aT

l x(p−1)|N i

+

γ
(p−1)
l − bl, 0}.

3) Communications to get the updated interme-
diate variables
Each local controller i communicates with its neigh-

bors to get updated γ
(p)
l values that the neighbors

just computed in step 2).

4 Since x
(p−1)|i only has few non-zero elements, which are

u
i,(p−1)
0 , . . . , u

i,(p−1)
N−1

, x
i,(p−1)
1 , . . . , x

i,(p−1)
N

, to save time in commu-
nications only these values need to be transmitted by subsystem i.

4) Update main variables in parallel

Local controller i uses all γ
(p)
l values that it has (by

communications and those computed by itself) to
compute an assumed neighborhood image of x:

x
(p)|N i

assumed =
∑

l∈L
Ni

γ
(p)
l cl (44)

Note that x
(p)|N i

assumed has the same structure as

x(p−1)|N i

. However, it is not the exact update of

the neighborhood image, instead x
(p)|N i

assumed is only an
assumed neighborhood image. An interpretation will
be given later (see Remark 6.4 below).

Then controller i selects the values of its variables

in x
(p)|N i

assumed to construct the new self image:

x(p)|i = I
ix

(p)|N i

assumed (45)

which contains u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N .

After updating their variables, each local controller
checks the local termination criteria. When all local
controllers have converged 5 , the algorithm stops and
the local control actions are implemented, otherwise
the controllers proceed to step 1) to start a new
iteration.

Remark 6.4 : Interpretation of the assumed neigh-
borhood image
At the end of step 4), each local controller i has an

assumed neighborhood image x
(p)|N i

assumed of x that contains
information within its interest (i.e., has non-zero values
only corresponding to the variables within its neighbor-
hood). However, controller i knows exactly only its own
variables, while the variables of i’s neighbors contained

in x
(p)|N i

assumed are the assumption of controller i (since i
does not know the interaction between its neighbors and
their other neighbors, thus their updates will be different
from what i assumes for them). Therefore, i only extracts

u
i,(p)
0 , . . . , u

i,(p)
N−1, x

i,(p)
1 , . . . , x

i,(p)
N from x

(p)|N i

assumed and throws
away the other values. The real neighborhood image will be
made in the next iteration after i receives updated values
of its neighbors. In fact, for the actual implementation of
the algorithm, we can combine (44) and (45) since we do

not need to use x
(p)|N i

assumed.

Remark 6.5 The equivalence between global and local
update schemes will be shown later in Section 6.4 by
proving that

x(p) =

M∑

i=1

x(p)|i (46)

where x(p) is the centralized variable update resulting from
the global update scheme in Algorithm 2, while x(p)|i are
the updates at the end of step 4) in Algorithm 3.

Remark 6.6 Note that in all steps of Algorithm 3,
there is no explicit optimization performed by the local
controllers. This does not mean that the local DMPC
problems are missing. On the contrary, there are in fact

5 Checking the termination criteria in a distributed fashion requires
a dedicated logic scheme, the description of which is omitted for
brevity.
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local optimization problems. However, their solutions can
be computed locally by an explicit formula. Indeed, due
to the fact that the centralized MPC problem (12)–(16) is
a definite quadratic program with linear constraints, local
optimization problems have analytical solutions, as shown
in Section 5.2.

6.4 Proof of equivalence to Han’s algorithm using a global
update scheme

In Algorithm 2, at step 2), the centralized variable x(p) is
updated via a global update scheme. In Algorithm 3, by
the local update scheme we obtain x(p)|i for i = 1, . . . , M .
The equivalence of these two algorithms is stated in the
following proposition:

Proposition 1. Applying Algorithms 2 and 3 to the same
problem (17) with the same parameter α, at any iteration
p, the following properties hold:

a) γ
(p)
l are the same in Algorithms 2 and 3, for all

l ∈ {1, . . . , s}.

b) x(p) =
∑M

i=1 x(p)|i, in which x(p) is calculated in

Algorithm 2 while x(p)|i, i = 1, . . . , M are calculated
in Algorithm 3.

As a consequence, Algorithm 2 and Algorithm 3 are
equivalent.

Proof: The proposition will be proved by induction.

It is clear that properties a) and b) hold for p = 0.

Next, we will show that if the two Algorithms 2 and 3
are equivalent at iteration p − 1, they will be equivalent
at iteration p. By induction, this implies that they will be
equivalent for all iterations.
Now consider iteration p, and assume that the properties
a) and b) hold for all iterations before iteration p.

First, we prove property a). For any l and i such that
l ∈ Li, we have:

aT
l x(p−1) = aT

l

M∑

j=1

I
jx(p−1)|j (47)

= aT
l




∑

j∈N i

I
jx(p−1)|j +

∑

j 6∈N i

I
jx(p−1)|j





Due to the definition of neighborhood, a subsystem outside
N i does not have any coupled constraints with subsystem
i. Therefore, aT

l

∑

j 6∈N i I
jx(p−1)|j = 0, which leads to:

aT
l x(p−1) = aT

l

∑

j∈N i

I
jx(p−1)|j = aT

l x(p−1)|N i

(48)

The second equality holds due to (41). Equation (48)

guarantees that γ
(p)
l computed at step 1) of Algorithm 2

and at step 2) of Algorithm 3 are the same.

Now we consider property b), where the main argument is

the following: In order to calculate x
(p)|N i

assumed, subsystem i

uses all γ
(p)
l and cl that involve any variable of i; thus the

updates of i’s variables in x
(p)|N i

assumed are equal to the updates

of i’s variables made by the centralized scheme in x(p) (in
step 4) of Algorithm 2). The vector x(p)|i only contains

values of i’s variables selected from x
(p)|N i

assumed. Similarly, the
updates made by each other subsystem for its variables are
guaranteed to be the same as the results of the centralized
update scheme. Making the sum of all x(p)|i is similar to
composing them into one vector, which leads to x(p).

More specifically, we can express the formula of x(p)|i

computed in Algorithm 3 as

x(p)|i = I
ix

(p)|N i

assumed = I
i

∑

l∈L
Ni

γ
(p)
l cl

⇒
M∑

i=1

x(p)|i =
M∑

i=1

I
i

∑

l∈L
Ni

γ
(p)
l cl (49)

Note that in the following equations, x(p) refers to the
update of the decision variable computed by (34) in
Algorithm 2, which we can express as

x(p) =

M∑

i=1

I
ix(p) =

M∑

i=1

I
i

s∑

l=1

γ
(p)
l cl (50)

in which the first equality is due to the relation (39), the
second equality is from (34).

Recall that cl has the same structure as al, and if l 6∈
LN i then al and cl do not have any non-zero values at
the positions associated with variables of subsystem i.
Therefore

I
i

s∑

l=1

γ
(p)
l cl = I

i




∑

l 6∈L
Ni

γ
(p)
l cl +

∑

l∈L
Ni

γ
(p)
l cl





= I
i

∑

l∈L
Ni

γ
(p)
l cl (51)

The equality (51) shows that (50) and (49) are equivalent,
thus proving the equality in property b):

x(p) =

M∑

i=1

x(p)|i (52)

2

The equivalence of Algorithms 2 and 3 leads to the
following result.

Corollary 2. Problem (17) can be solved using Algo-
rithm 3, which has the same convergence property as Han’s
algorithm 2 for definite quadratic programs.

This allows us to implement a DMPC scheme using
Algorithm 3 that does not need global communications: in
the DMPC scheme, no computation using global variables
is required; moreover, each local controller only needs to
communicate with its direct neighbors and the information
to exchange is the updates of their predicted variables.

6.5 Convergence, feasibility, and stability of the DMPC
scheme

Convergence, feasibility and stability properties of the
DMPC scheme using Algorithm 3 are established by the
following propositions:

Proposition 3. Assume that Qi and Ri are positive definite
for i = 1, . . . , M , and (12)–(16) has a feasible solution.
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Then Algorithm 3 converges to the centralized solution of
(12)–(16) at each sampling step.

Proof: In Han and Lou (1988) it is shown that Han’s
method is guaranteed to converge to the centralized so-
lution of the convex quadratic program (17) under the
conditions that q(x) is uniformly convex and differen-
tiable on R

nx and (17) has a feasible solution. Due to
the assumption on the positive definiteness of Qi and Ri,
and the assumption that (12)–(16) has a feasible solution,
such conditions hold for the centralized MPC problem
(12)–(16). Hence, Corollary 2 implies that the distributed
scheme in Algorithm 3 converges to the centralized solu-
tion. 2

Proposition 4. Assume that at every sampling step, Algo-
rithm 3 converges. Then the DMPC scheme is recursively
feasible and stable.

Proof: By letting Algorithm 3 converge at every sampling
step, the centralized solution of (12)–(16) is obtained.
Recursive feasibility and stability is guaranteed as a conse-
quence of centralized MPC with terminal point constraint,
as shown by Mayne et al. (2000) and Keerthi and Gilbert
(1988). 2

7. SIMULATION RESULTS

In this section, we present the results from simulating the
proposed DMPC scheme on the coupled oscillators setup
of Section 3.

From physical laws we have derived the continuous dy-
namics of the coupled oscillators system (see (4)). Then we
have used the first-order Euler forward method to trans-
form the continuous dynamics into discrete dynamics of
the form (6). For a given sampling time Ts these discretized
dynamics are represented by the following matrices:

Aij =

[
0 0
0 0

]

, ∀j 6∈ N i

Ai,i−1 =

[
0 0

Tsk2 0

]

, i = 2, ..., M

Aii =

[
1 Ts

Ts(k1 − 2k2) 1 − Tsfs

]

, i = 1, ..., M

Ai,i+1 =

[
0 0

Tsk2 0

]

, i = 1, ..., M − 1

Bij =

[
0
0

]

∀j 6= i

Bii =

[
0
Ts

]

, i = 1, ..., M

The following parameters were used in the simulation
example:

k1 = 0.4, k2 = 0.3

fs = 0.4, Ts = 0.5, m = 1

M = 20, N = 15

Qi =

[
2 0
0 1

]

, Ri = 10

The physical limitation of inputs and bounds on states are
given as
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Fig. 3. Normalized norm of difference between the central-
ized and the distributed solutions versus the iteration
step p for different values of α.

|F i| ≤ 100, i = 1, . . . , M

|pi| ≤ 2, i = 1, . . . , M

|vi| ≤ 2, i = 1, . . . , M

Moreover, the discrete-time version of the coupled con-
straints (5) should also be satisfied.

The control objective is to stabilize the system from a cer-
tain initial disturbed state. The DMPC scheme proposed
in Section 6 is applied to this regulation problem.

In Figure 3, we show the evolution in the first sampling
interval of the normalized 2-norm error between the so-
lution of Algorithm 3 and the centralized optimum for
problem (12)–(16) as a function of the iteration step p,
for different values of α. Clearly, as more iterations are
performed, the error reduces. Although in Han and Lou
(1988) the recommended design parameter α is α0 = s

ρ
,

we have performed simulations with different values of α
to show the influence of α on the convergence speed. We
see that with the recommended α = α0, the convergence
speed is very low, and that when α is smaller, the algo-
rithm converges faster. However, we cannot reduce α too
much, there is a lower limit of α so that the algorithm
still converges. In fact, we illustrate in Figure 4 that the
algorithm diverges for α = 0.00001α0.

Through our simulation experiments, we have observed
that besides α, the cost function and constraint matrices
also have a notable influence on the convergence speed of
the algorithm. Studying and characterizing this influence
in detail will be a topic for future research.

8. CONCLUSIONS

This paper has presented a distributed version of Han’s
method and proposed its use for distributed model pre-
dictive control of a class of linear time-invariant system
with coupled dynamics and coupled linear constraints.
The proposed approach makes use of local communica-
tions only between directly connected subsystems, which
is especially beneficial in the case of sparse subsystem
interconnection topologies. Global optimality is achieved,
leading to feasibility and stability. We have illustrated the
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proposed optimization scheme for distributed MPC with
a simulation example involving coupled oscillators.

Our future research includes a detailed convergence anal-
ysis to gain insight into and to characterize the influence
of different parameters on the convergence speed, and to
determine the conditions for a finite-iteration algorithm.
We will perform an extensive comparison between the
proposed algorithm and other dual decomposition meth-
ods that can be applied for DMPC. Other topics are
finding efficient communication schemes for checking the
termination criteria, and relaxing the terminal point con-
straint requirement by finding a method relying on only
local communications to compute local terminal stabilizing
controllers.
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