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Abstract: This paper presents a framework for the development of a motion controller to optimize the 
tracking control of position and orientation of a differentially-driven wheeled mobile robot (WMR) in 
indoor environments using the visual feedback provided by an overhead camera. The visual information 
is processed to generate a collision-free trajectory for the WMR towards its destination. While traversing 
the planned trajectory, the extent of WMRs deviation in actual and desired posture is continuously 
checked via the visual feedback and motor-encoders. Two-layered control architecture is proposed for 
optimal visual-servoing of the WMR. The Proportional-Integral (PI) controllers are used as low-level 
motor speed controllers. An Adaptive-Fuzzy-Tuned-Proportional-Derivative (AFT-PD) control scheme is 
implemented in the high-level controller to remove the tracking errors. The Fuzzy-Logic (FL) controller 
serves to auto-tune the PD coefficients. The center(s) of the output membership functions of these FL 
controllers are adaptively updated via the least-squares method. The tracking performance of the 
proposed AFT-PD controller is compared with the PD controllers tuned by Particle-Swarm-Optimization 
(PSO) algorithm. The experimental results of the AFT-PD and PSO-PD control schemes are presented to 
validate the efficiency and robustness of the proposed scheme.  

Keywords: Wheeled mobile robot, visual-servoing, self-tuned proportional-integral-derivative controller, 
adaptive fuzzy-logic controller, least-square method, particle swarm optimization. 

1. INTRODUCTION 

The increased utilization of wheeled mobile robots (WMRs) 
in various fields requires them to be equipped with robust 
closed-loop motion controllers to perform complex tasks with 
precision in real-time. These controllers depend on the 
feedback of a reliable sensing technique to learn the position 
and orientation of the WMR in the x-y plane. Usually, optical 
shaft encoders and digital compass (magnetometer) are 
mounted appropriately on the WMR for this purpose. 
Unfortunately, the error accumulations in these sensor 
readings tend to corrupt the results. An alternative approach 
to enhance the position measurement and tracking control of 
a WMR is to employ the visual-servoing method. This 
technique integrates mainly a vision sensor, in addition to 
other sensors (if needed), with the WMR. By mounting a 
downward-facing camera on the ceiling, the posture of a 
WMR can be directly obtained. The feedback from the 
overhead camera is processed in real-time to plan and 
generate a collision-free path. The attained visual information 
is fed to the controller which moves the WMR to track the 
reference trajectory with minimum deviation. The parametric 
uncertainty in an un-calibrated camera degrades the position 
information of the WMR. However, the effects of inadequate 
camera calibration can be completely compensated through a 
properly fabricated tracking controller.  

Vision based indoor mobile robot navigation is a vast area.

 The utilization of downward facing (overhead) cameras has 
been very effective in indoor mobile robot navigation 
applications. The use of local model predictive controller in 
improving the trajectory tracking accuracy and time 
performance of a differentially driven mobile robot via robot 
vision has been discussed in (Pacheco et al., 2008). Recently, 
the fuzzy tracking controllers for vision guided WMRs have 
gained a lot of momentum (Keighobadi and Menhaj, 2012; 
Yu et al., 2014). Researchers have proposed and rigorously 
studied various dynamic and novel path planning strategies 
for WMRs (Yu et al., 2011; Yazici et al., 2014; El-sheikh et 
al., 2016). The robustness in visual-servoing tasks is 
improved by developing a control law that depends on 
second-order error-dynamics of the system (Hammouda et 
al., 2014). Lyapunov-based controllers can also effectively 
stabilize the error in position and orientation, of a WMR, 
which are deduced by two different cameras (Wang and 
Wang, 2012). The artificial neural network has also proven 
very effective in the establishment of robust tracking control 
schemes for WMRs, as demonstrated in (Rossomando et al., 
2012; Ye, 2015). A sliding-mode trajectory tracking 
controller for WMRs is proposed in (Rossomando et al., 
2014) that uses adaptive neural-network to implement an 
equivalent control in the vicinity of the sliding manifold.  
Different tracking control techniques yielding good results in 
visual-servoing of non-holonomic mobile robots have been 
presented in (Nitulescu, 2007; Killpack et al., 2010; Yang et 
al., 2012; Wang et al., 2014). 
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This paper outlines the implementation of a model-free and 
adaptive trajectory tracking controller in a differentially 
driven WMR. The controller is equipped with the proposed 
adaptive fuzzy-tuned (AFT) mechanism as well as the widely 
used PSO technique to optimally tune the PD coefficients. 
The visual information from the overhead camera is used to 
generate a poly-line trajectory of the shortest collision-free 
path towards the destination. The desired velocity profiles, 
extracted from the reference trajectory, are wirelessly 
communicated to the WMR. In order to minimize the 
tracking deviations, the current posture of the WMR is 
compared with its desired counter-part. The tracking errors 
are fed to the adaptive PD controllers. The performances of 
the two controllers (AFT-PD and PSO-PD) are comparatively 
analyzed by studying the path deviations exhibited by the 
WMR when it moves along a sequence of way-points 
defining the path, under the influence of each controller.  

2. EXPERIMENTAL SETUP 

For reliable indoor navigation and tracking control of WMR, 
the overhead camera captures and feeds the images of the 
navigation area to the Open-CV library (Gonzalez and Taha, 
2008). It extracts the information related to the orientation 
and position of the WMR based upon the color of its 
orientation- and centroid-marker. The obstacles and the 
background are distinguished and identified based upon their 
distinct colors as well. The foreground is extracted. The 
threshold setting removes noise from the external light 
sources. The obstacles are grown. The visibility graph helps 
to compute all possible paths from the WMRs current 
location to the destination. The A* algorithm is used to find 
the shortest, safest collision free path using the adjacency 
matrix. The motors are rotated accordingly to traverse on the 
path. The camera keeps on capturing images at regular 
intervals. The successive frames are compared to check and 
see if the WMR has deviated from the actual path. The 
proposed controller keeps the WMR aligned with the planned 
trajectory with minimum error. The physical experimental 
setup and the WMR chassis is shown in Fig. 1(a) and (b) 
respectively. The image of environment is shown in Fig. 2. 

2.1 Hardware setup 

A web-cam is used to provide visual feedback. It is mounted 
at a height of 12 feet and is directly tethered to the computer.  

  

(a)                                             (b) 

Fig. 1. (a) Experimental setup, (b) WMR chassis. 

 

Fig. 2. Navigational environment for the experiment. 

This camera covers an approximate area of 7.2 m2 (3.0 m × 
2.4 m). Once an optimal trajectory is planned, the velocity 
profiles and correctional commands are serially transmitted 
over a wireless link to the low-level speed controller running 
in an 8-bit embedded microcontroller at the WMR. The speed 
controller generates pulse-width-modulated (PWM) motor 
control instructions to actuate the direct-current (DC) geared 
motors via a dual H-Bridge motor driver circuit. The optical 
encoders installed at the motor shafts monitor the actual 
direction and speed of motor rotation. A two-wheeled 
differentially driven robot is used as shown in Fig. 1(b). It 
contains two independently driven motorized wheels and an 
unpowered castor-wheel.  

2.2 Software setup 

The differentiation between background and foreground is 
done by eliminating the background from the image via 
thresholding method. The color of the foreground (WMR and 
obstacles) has a higher contrast from the background (floor 
carpet). After suppressing the background, resulting image 
contains only the information of obstacles and WMR The 
obstacle detection is done by counting the total number of 
obstacles in the configuration space. The contours of the 
obstacles are approximated as a polygon and the coordinates 
of their vertices are extracted. A red-colored marker is placed 
at the center of the top plate of WMR, to identify its position 
in the area of navigation. It is differentiated from all other red 
regions in an image on the basis of its area. Similarly, the 
green-colored marker on the WMR tells us about the 
orientation (heading direction) of the WMR (Hovarth and 
Engedy, 2010). The obstacles are grown considering the 
maximum dimensions of the robot. The obstacles close to 
each other are merged into a single obstacle. All the path 
planning is done on the grown configuration space. The 
visibility graph (VG) provides all possible paths from the 
robot’s current position to the destination position along the 
edges of the intervening obstacles, as shown in Fig. 3. The 
information regarding inter-node connection along the path is 
stored in an adjacency matrix. 

 

Fig. 3. Possible paths given by Visibility Graphs Algorithm. 
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Fig. 4. Shortest path given by A* algorithm. 

The A* algorithm is used to search and identify the VG for a 
shortest path, as shown in Fig. 4. The computed path consists 
of several sub-paths, making it a poly-line trajectory (Persson 
and Sherf, 2014; Shojaeipour et al., 2010). 

3. CONTROL SYSTEM DESIGN 

The classical proportional-integral-derivative (PID) 
controllers are the most efficient feedback controllers used in 
the process control industry today. However, they lack 
robustness when used independently. The online auto-tuning 
of PID controllers via soft-computing techniques yields faster 
rates to converge the tracking errors (Tandan and Swarnker, 
2015; Bhatti et al., 2015). Therefore, in this paper, a model-
free and intelligently optimized classical (PD) tracking 

controller is presented. The main objective of a tracking 
controller is to enable the WMR to optimally follow the 
desired path, under time constraint and in the presence of 
bounded disturbances. The desired trajectory formulated by 
the image-processing tool is composed of a sequence of 
straight line (or curved) segments. The corresponding 
spatiotemporal information associated with the path is 
transformed into a sequence of fixed way-points.  

The block diagram of the proposed control architecture is 
shown in Fig. 5. It constitutes of a two layered control 
structure; namely, a high-level and a low-level motion 
controller. If the WMR gets displaced from the desired path, 
the controller brings it back on the path immediately. The 
high-level controller observes the entire image space, using 
successive frames, to evaluate the tracking (or deviation) 
errors. Based on these errors, it generates a correctional 
command to minimize the errors and passes it on to the low-
level controller. The low-level acquires feedback from the 
motor encoders. It is responsible to align the WMR with the 
path tangent. It achieves this target by updating the speeds of 
the motorized wheels according to the desired and 
correctional profile(s) provided by the trajectory planner and 
the high-level controller respectively. Furthermore, it makes 
sure the wheels continue to rotate at the revised speeds.

Fig. 5. Proposed trajectory-tracking control scheme. 
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Fig. 6. Posture of WMR 

The way-points consist of desired position and orientations, 
also known as the pose vector (posture), of the WMR. The 
posture of WMR is used to calculate the velocity profile of its 
wheels at each way-point of the trajectory. The control law 
uses the tracking errors, between the actual and desired 
posture, to decide whether the WMR should move or turn. 
The spatiotemporal information associated with the desired 
trajectory as well as the actual posture of the WMR, as shown 
in Fig. 6, is represented by the pose vectors given in (1) and 
(2) respectively.  

ௗݍ ൌ 	 ሾݔௗ, ,ௗݕ                                                         (1)		ௗሿ்ߠ

ݍ ൌ 	 ሾݔ, ,ݕ                                                        (2)					ሿ்ߠ

At any given instant, ‘x’ is the lateral position, ‘y’ is the 
longitudinal position and ‘θ’ is the orientation of WMR. In 
the proposed research, the wheel-radius (R) of the 
differentially driven robot is 0.0325 meters and the distance 
between the two wheels (2L) is 0.12 meters. The angular 
velocities of the actuated wheels on left and right (ωl and ωr) 
of the WMR are chosen as the input of the kinematic model 
as shown in (3). The WMR motors are assumed to have no 
slippage. 

߱௪ ൌ 	 ሾ߱ ߱ሿ்				                                                            (3) 

The relationship of the linear velocity (υ) and the angular 
velocity (ω) of the WMR with the angular velocities of the 
actuated wheels is given by (4) (Solea et al., 2009). 
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High-level controller 

The main task of the high level motion controller (mentioned 
as ‘tracking controller’ and shaded blue in Fig. 5) is to nullify 
the tracking errors by introducing a correctional turning-
offset in the angular velocity of the wheels. The high level 
controller (HLC), along with the trajectory planner, is 
implemented in the personal computer. The sampling 
interval, TS, used for HLC is 1.0 milli-second (ms). 

The visual feedback is received and the corresponding 
motion control commands are sent serially, over a wireless 
link, by the high-level controller. It records the deviation in 
the desired and the actual posture (pose vector). The 
deviation error consists of error in x-position (lateral), y-
position (longitudinal) and orientation. The posture-error (or 

tracking-error) vector is given by (5) and is clearly illustrated 
in Fig. 7. These three errors are concurrently fed to three 
distinct PD controllers. 

 

Fig. 7. Trajectory tracking errors. 
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where, ex is the lateral error, ey is the longitudinal error and eθ 
is the orientation error. 

In order to optimize the available computational resources, 
the ‘I’ controller is avoided. Three PD controllers are used to 
individually take care of ex, ey, and eθ; denoted as PDx, PDy, 
and PDθ. The control law governing this strategy is given in 
(6).  

ሺ݊ሻݑ ൌ ሺ݊ሻ݁ࡼ	 	ࡰ ቂ
ሺሻିሺିଵሻ

்ೄ
ቃ																		              (6) 

where, kP and kD are the adaptively tuned PD coefficients. 
The initial coefficients, tuned via trial-and-error method, are 
provided in Table 1.  

A. Stochastically optimized controller 

The Particle-Swarm-Optimization (PSO) algorithm is a 
population-based stochastic optimization technique. The 
stochastic optimization of the PD coefficients surpasses the 
classical tuning techniques such as Ziegler-Nichols and 
Cohen-Coon method (Girirajkumar et al., 2010). This meta-
heuristic algorithm begins with a random initial population of 
candidate solutions, called ‘particles’, and searches through 
the space to converge to the best-fit solution. 

Table 1. PD coefficients. 

PD Controller kP kD 
Lateral-position (PDx) 1.347 7.881×10-3

Longitudinal-position (PDy) 1.361 8.134×10-3 
Orientation (PDθ) 1.736 10.826×10-3 

The initial search space of PD coefficients for PSO is taken 
as [0, 2]. Each particle has a position and velocity associated 
to it. The equations to update the velocity (Vi) and position 
(Xi) of a particle ‘i’ are given in (7) and (8) respectively.  

ܸ ൌ ݓ	 ܸ  	ܾଵݎଵሺ ܲ െ 	 ܺሻ 	ܾଶݎଶ൫ ܲ െ	 ܺ൯																				  (7) 

ܺ ൌ 	 ܺ  	 ܸ																																																																													    (8) 

where, 
b1, b2 are the cognitive coefficients 
r1, r2 are random real numbers in the interval [0, 1] 
w is the inertia-weight 
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The optimizer serves to evaluate, store, and compare the 
fitness value of each particle with the best fitness value, also 
known as "local-best" (Pi), available so far. The function used 
to evaluate the fitness of the particles based on the current 
error, eq(n), is given in (9).  

ݏݏ݁݊ݐ݅ܨ ൌ
ଵ

ଵାమሺሻ
																																																							               (9) 

If a better fitness value is achieved then it is set as the new Pi. 
The particle with best fitness value among all the particles in 
the population is chosen as the "global-best" (Pg) (Gharghory 
and Kamal, 2012). The inertia-weight (w) of the optimizer 
decreases from 1 to 0 in each iteration, and converges the 
search space to best-fit solution. It is given by (10).  

ݓ ൌ ௫ݓ	 െ	ቀ
௪ೌೣି	௪

ௗೌೣ
ቁ ݀																																																(10) 

where, 
dmax is the maximum number of iterations  
d is the current number of iteration 

The flowchart of the PSO algorithm is shown in Fig. 8. The 
PSO algorithm optimally tunes the kP and kD coefficients of 
the three PD controllers, at each sampling interval, as shown 
in Fig. 9 (Djoewahir et al., 2013).  

 

Fig. 8. Flowchart of PSO algorithm. 

 

Fig. 9. PSO-PD controller. 

B. Intelligently optimized adaptive controller 

The fixed PD coefficients lead to slow convergence of 
tracking error and decrease the tolerance of the system to 
uncertain disturbances. Therefore, an adaptive-fuzzy 
mechanism is employed for the proper online tuning of the 
PD coefficients. The heuristic construction of the 
membership functions and rule bases for a Fuzzy-Logic 

Controller (FLC) proves to be insufficient to cater the 
unprecedented dynamic variations in practical control 
systems. Hence, the least-squares method proposed by 
(Elshazly et al., 2014) is used to adaptively tune the centers 
(ci) of the output fuzzy membership functions. This technique 
removes uncertainties associated with the linguistic variables. 
The control architecture of the Adaptive Fuzzy Tuned - PD 
(AFT-PD) controller is shown in Fig. 10. The adaptive 
inference mechanism uses the current fuzzy controller output, 
tracking error and its rate-of-change as the inputs to update 
the centers of the output membership functions (MF). This 
way, the online PD-coefficient tuning based on the rule bases 
defined by the expert’s experience can be avoided. The fuzzy 
system is defined by (11) or (12). 
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where, 
uCOA is the control value based on centre-of-area 
µ(c) is the grade value of MF  
ci is the value of the center of output MF 

Using the substitution given in (13), the expression of uCOA 
can be simplified as given in (14). 
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Fig. 10. Proposed AFT-PD controller. 

The uCOA can be further reduced to the form given in (15). 

ைݑ ൌ   (15)																																																																											ሺܿሻߚ߮	

where, 
φሺcሻ ൌ δሺcሻ ൌ 	 ሾδଵ, δଶ, . . , δ୬ሿ 
βሺcሻ ൌ 	 ሾcଵ, cଶ, . . , c୬ሿ 

The corresponding error function can be defined by the (16). 
Using the error vector in (17), the expression for the error 
function in (16) can be re-written as (18). 

݁ ൌ ைݑ	 െ        (16)																																																													ሺܿሻߚ߮	

ሺ݊ሻܧ ൌ 	 ሾ݁ଵ, ݁ଶ, . . , ݁ሿ்                                                      (17) 

ሺ݊ሻܧ ൌ ைݑ	 െ  (18)                                                           ߚ߮	

The squared error is defined by (19). 

ܧ்ܧ ൌ ைݑை்ݑ	 െ ைݑ்்߮ߚ2	 	(19)               ߚ்்߮߮ߚ 

The squared error can be minimized by partially 
differentiating it with respect to β, and then putting the 
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resultant expression equal to zero. Thus, the least square 
estimate of β can be evaluated according to (20). 

ௌߚ ൌ ሺ்߮߮ሻିଵ்߮ݑை                                                      (20) 

The FLC updates the MF centre based on the changes in error 
dynamics. Mamdani model is applied with some modification 
to attain the optimal parameters. The rule-base of kP and kD is 
shown in Table 2 and 3 respectively. The linguistic variables 
of the input MF are defined as; Negative-Big (NB), Negative-
Small (NS), Zero (ZE), Positive-Small (PS) and Positive-Big 
(PB). The linguistic variables of the output MF are; Small 
(S), Medium (M) and Big (B). The input and output MFs are 
shown in Fig. 11 and 12 respectively.  

Table 2. Fuzzy rule base for kP. 

 NB NS ZE PS PB ܙ܍∆ |	ܙ܍

NB B M S M B 
NS M M S M M 
ZE S S S S S 
PS M M S M M 
PB B M S M B 

Table 3. Fuzzy rule base for kD. 

 NB NS ZE PS PB ܙ܍∆ | ܙ܍

NB M S S S M 
NS B M S M B 
ZE B B M B B 
PS B M S M B 
PB M S S S M 

 

Fig. 11. Input membership function. 

 

Fig. 12. Output membership function, 

C. Fusion of controller outputs  

The sum of control outputs from the PDx and PDy controller 
(ux and uy) provides the position control command, upos, as 
given by (21). The output of the PDθ controller is uθ.  

௦ሺ݊ሻݑ ൌ ௫ሺ݊ሻݑ	 	ݑ௬ሺ݊ሻ																																																	    (21) 

These control outputs contribute in deciding the extent of 
turning required by the WMR to stay on track. The eθ might 
increase abruptly while correcting the ex and ey. The 
contradiction in concurrent attempts to correct the position 
and orientation slows down the convergence and tracking 
process. As a remedy, the control outputs (upos and uθ) are 
fused via an adaptive complimentary filter (ACF), as shown 
in (22).  

∆߱ሺ݊ሻ ൌ ሺ݇ሻ ൈ ௦ሺ݊ሻݑ 	ሺ1 െ ݇ሻ ൈ       (22)															ఏሺ݊ሻݑ

The value of the ‘k’, a real number belonging to [0, 1], is 
dynamically varied online via a dedicated FLC tuner. The ex 
and ey serve as the input of the FLC tuner. This summing 
technique adaptively prioritizes the tasks of position 
correction and orientation correction during path-traversal. 
When WMR is off the track, the priority is given to position 
correction. Once it reaches the desired position, then the 
priority is given to orientation correction. The fuzzy rule base 
of the tuner is given in Table 4.  

Table 4. Fuzzy rule base for k. 

ex | ey NB NS ZE PS PB 

NB B B M B B 
NS B M S M B 
ZE M S S S M 
PS B M S M B 
PB B B M B B 

The input and output MFs of the tuner are similar to those 
shown in Fig. 11 and 12 respectively. However, the value of 
‘c’ in the output MF is fixed at 0.5 in this case. The sum of 
the desired angular velocity (ωD) and ∆ωc, given in (23), 
generates the correctional angular speed (ωc) to appropriately 
turn the WMR. 

߱ሺ݊ሻ ൌ ߱ሺ݊ሻ േ ∆߱ሺ݊ሻ																																																		     (23) 

3.1 Low-level controller 

The low-level controller (LLC) contains PI speed controllers 
for the actuation of the two DC motors of WMR. The 
associated control law is given in (24). 

ሺ݊ሻݑ ൌ ሺ݊ሻ݁ࡼ	 	ൣࡵ ௌܶ ∑ ݁ሺ݊ሻ൧                                (24)  

where, kP and kI are the adaptively tuned PI coefficients. 

This controller is implemented in an 8-bit microcontroller. 
The sampling interval (TS) is 1.0 ms. The LLC ensures 
precise velocity tracking of the motorized wheels. It is shown 
in the grey-shaded area of Fig. 5 (Braunl, 2008). The desired 
linear velocity (υD) of robot is provided by the trajectory 
planner. The linear velocity command is transformed into 
angular velocity (ωl and ωr) of the wheels and then fed to the 
motors. The shaft encoders monitor the actual speed and 
direction of motor rotation (Nl and Nr). An additional PIoffset 
controller is deployed in the low-level controller. The input to 
this PI controller, given in (25), is the turning command 
issued to WMR with respect to the current wheel rotations. 
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The PIoffset controller generates a compound offset (∆ωwh) 
control command which is added (or subtracted) to the 
velocity command of the two wheels, as shown in (26).  

݁ఠ|ఠ ൌ ሺ߱| െ	 ܰ|ሻ േ	∆߱௪																																								    (26) 

Based on the values of eωl and eωr, the PIleft and PIright 
controllers generate appropriate PWM commands to drive the 
motors. The coefficients of PI controllers, shown in Table 5, 
are tuned via the Ziegler-Nicholas method (Bequette, 2003). 

4. TESTS AND RESULTS 

Before formally testing the proposed scheme, the correctional 
contributions rendered by the constituent modules of the 
control architecture in optimizing the overall trajectory 
tracking performance of the WMR are to be validated.  
Therefore in this section, first of all, the LLC and ACF 
designs are individually analyzed. 

Table 5. PI coefficients. 

PI Controller kP kI 

Left motor 21.283 1.483×104 
Right motor 22.655 1.434×104 

Correction offset 6.668 4.153×104 

The PIoffset controller in the LLC serves to correct the yaw 
rotation of WMR along the path. In the absence of any 
turning command, it synchronizes the velocities of the two 
motors. This enables the WMR to move on a straight-line 
path with minimum deviation. Both motors are rotated at 1.8 
rad/s. The response acquired from the motors without the 
PIoffset controller is shown in Fig. 13. A tuned PIoffset is then 
introduced and the experiment is repeated. The resulting 
response is shown in Fig. 14. The difference between the 
motor velocities without and with the PIoffset is represented in 
Fig. 15(a) and 15(b) respectively. The PIoffset has drastically 
reduced the difference and has synchronized the velocities. 
The absolute-maximum-error (AME) and root-mean-square-
error (RMSE) between the velocities, inferred from Fig. 15, 
is provided in Table 6. 

 

Fig. 13. Right and left motor velocity without PIoffset, 

 

Fig. 14. Right and left motor velocity with PIoffset. 

 

 
(a) 

 
(b) 

Fig. 15. Difference in motor velocity (a) without PIoffset, (b) 
with PIoffset. 

Table 6. Summary of motor velocity difference 

Control structure AME (rad/s) RMSE 

LLC without PIoffset 0.300 0.262 
LLC with PIoffset 0.138 0.048 

 
(a) 

 
(b) 

Fig. 16. Trajectory tracking (a) without adaptive fusion, (b) 
with adaptive fusion. 

The adaptive fusion of the control outputs (upos and uθ) also 
improves the trajectory tracking performance. The WMR is 
made to track the reference trajectory shown in Fig. 16. It is 
intentionally displaced from the actual starting point. In the 
first trial, the value of k (in ACF) is kept constant at 0.5. As 
shown in Fig. 16(a), without the adaptive fusion, the WMR 
converges very slowly towards the path. It maintains a 
constant Euclidean distance (error) of 0.04 m from the path. 
On the contrary, the WMR quickly returns to the nearest 
desired way-point on the path and tracks it accurately when k 
is dynamically tuned, as shown in Fig. 16(b). 

The response of the PSO-PD and AFT-PD controllers is 
initially tested with a unit-step input. A step input of 1.0 rad. 
is applied to the orientation controller (PDθ) in HLC with the 
PSO based tuning mechanism. The response is shown in Fig.
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17. In the second trial, the same input is applied to the 
orientation controller that is equipped with the proposed AFT 
mechanism. The resulting response is shown in Fig. 18. The 
summary in Table 7 shows that the transient and steady state 
response of the AFT-PD controller is better than that of PSO-
PD controller.  

 

Fig. 17. PSO-PD controller response. 

 

Fig. 18. AFT-PD controller response. 

Table 7. Summary of controller step-response. 

Controller Overshoot Rise time (s) 
Steady-state 
error (rad.) 

AFT-PD None 0.32 ±0.008 
PSO-PD None 0.92 ±0.079 

The poly-line trajectory shown in Fig. 4 is used to further test 
the tracking performance and validate the effectiveness of the 
proposed AFT-PD controller over the PSO-PD controller. 
The following three unique test-cases are employed.  

a. Case A: The WMR moves on the path normally.  
b. Case B: The WMR moves on the path while carrying an 

additional mass of 0.25 kg (as a mechanical disturbance). 
c. Case C: The WMR moves on the path while bounded 

perturbations are added in its angular velocity commands.  

The trajectories traversed by the WMR in real-time when 
analyzed using the three test-cases, under the influence of the 
AFT-PD and PSO-PD tracking controllers, are shown in Fig. 
19.  

 

 

 

Fig. 19. Trajectory tracking in case A, B, and C. 

 

 

 

Fig. 20. Lateral errors (ex) for case A, B and C. 

The lateral errors (ex) of the WMR for the case A, B, and C 
are shown in Fig. 20. The longitudinal errors (ey) of the 
WMR for the case A, B, and C are shown in Fig. 21.  
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Fig. 21. Longitudinal error (ey) in case A, B, and C. 

 

 

 

Fig. 22. Orientation error (eθ) for case A, B, and C. 

The orientation errors (eθ) of the WMR, for the case A, B, 
and C are represented in Fig. 22. The Table 8 summarizes the 
results of a total of six real-time experiments conducted using 
the three test-case for each of the two high-level trajectory 
tracking controllers. The tracking controller implemented 
with the PSO-PD controller demonstrates a slower 
convergence rate, and exhibits comparatively larger trajectory 
deviations in all test-cases. Consequently, a lot of time is 
spent on nullifying these trajectory errors. The AFT-PD 
controllers have proven to be most efficient and robust. They 
exhibit faster convergence rate and comparatively smaller 
deviations from the desired trajectory. For AFT-PD, in case 
A and B, the absolute maximum values of lateral and 
longitudinal errors stay under 0.031 m and the maximum 
absolute values of orientation error is under 0.35 rad. The 
maximum absolute error in case C is induced due to 
artificially generated perturbations. However, the AFT-PD 
controller efficiently rejects these disturbances and returns 
the WMR to path within 1.20 s. in the worst case scenario. 
The controller assists the WMR to converge to the nearest 
desired way-point very quickly. Using the proposed control 
strategy, the WMR stays mostly on the path. 

5. CONCLUSION 

This paper addresses the validity of an adaptive fuzzy tuned 
classical control solution for the precise trajectory tracking by 
WMRs. It considers only error dynamics of the system. 
Unlike the model-based techniques, the proposed system 
does not rely upon the knowledge of the dynamic model of 
the WMR.  

Table 8. Summary of experimental results. 

High-level 
controller 

Case 
ex ey eθ 

AME (m) RMSE AME (m) RMSE AME (rad.) RMSE 

PSO-PD 
A 0.058 0.013 0.039 0.012 0.490 0.042 
B 0.076 0.036 0.052 0.019 0.349 0.072 
C 0.084 0.067 0.060 0.026 1.152 0.182 

 

AFT-PD 
A 0.017 0.003 0.013 0.004 0.003 0.002 
B 0.031 0.009 0.027 0.008 0.345 0.045 
C 0.071 0.018 0.045 0.009 1.117 0.084 
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The intelligent robotic system presented in this paper 
contains two layers of control system integrated with a robust 
adaptation mechanism to make the overall design more 
robust and responsive to changes in WMRs posture caused 
by parametric uncertainties and random disturbances. It 
efficiently converges the tracking error (eq) to zero. The 
Table 6 authenticates the introduction of an additional PI 
controller in the LLC to turn the WMR precisely on the path 
as well as to synchronize the motor velocities. The efficacy of 
the adaptive fusion of control outputs to fasten the 
convergence and optimize the trajectory tracking is clearly 
illustrated in Fig. 16. The WMR equipped with the proposed 
AFT-PD as well as the PSO-PD based high-level controller is 
tested via the three test-cases on the same trajectory; the 
normal case (A), the mechanically disturbed case (B) and the 
randomly perturbed case (C). The results of real-time 
experiments clearly demonstrate the optimal performance of 
the proposed high-level tracking controller even in the 
presence of bounded exogenous disturbances. In the PSO-PD 
controller, the tracking error exceeds abnormally at certain 
occasions and converges very slowly afterwards. This leads 
to an overall slower system response. The observations 
summary shown in Table 7 and 8 clearly manifests that the 
high-level controller with AFT-PD controller is superior to 
the PSO-PD controller. The high-level controller’s 
performance can be further optimized by analyzing and 
retrofitting different soft-computing, evolutionary and 
intelligent adaptation mechanisms with the conventional 
classical controllers. A hybrid of advanced non-linear control 
schemes involving back-stepping, sliding-mode, linear 
quadratic regulators and model-predictive controllers can also 
be implemented to enhance the tracking performance. 
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