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Abstract: The response performance and speed follow-up performance of the slewing bearing control 
system affect the whole equipment performance directly. The core of the system is PID controller, 
however, whether the optimal parameters could be found or not seriously affects the performance of the 
controller. In this paper, the mutation operation of genetic algorithm (GA) was introduced and the 
particle mutation part was taken to particle swarm optimization (PSO) to overcome the deficiency of 
falling into local optimal solution and eliminate the influence on system performance resulted from the 
improper selection of initial controller parameters, which was called adaptive mutation particle swarm 
optimization (AMPSO). And based on the AMPSO, a simplified particle mutation rule was presented 
and the mutation object was expanded to the entire population of the particles compared to AMPSO, 
which is called improved adaptive mutation particle swarm optimization (IAMPSO). The simulation 
show that the Kp, Ki parameters obtained by this algorithm is superior to that of the original PSO 
algorithm; and the experiment verified the effectiveness of this proposed control strategy. 
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1 INTRODUCTION 

Slewing bearing is a type of mechanical parts widely used in 
engineering machinery, wind turbines, offshore platforms and 
other large mechanical structures. Its main function is to 
connect two structural parts and enable relative rotation of 
them, and the working loads are mostly pressured to it. It is 
similar to plain bearing, but it also has some different 
characteristics: gear transmission, heavy loads, low speed, 
various structure forms and poor working conditions 
(Amasorrain et al., 2003). Its operating status directly affects the 
whole equipment performance and determines the response 
characteristic of the device control unit, such as the wind 
steering system of wind turbine. Therefore, research on 
improving the slewing bearing motion control level has great 
significance for efficient operation of wind turbine and other 
equipments. The core of slewing bearing motion control 
system is PID controller, it is simple, mature and practical, 
but whether the optimal parameters seriously affect the 
performance of the controller (Xing et al., 2007). Slewing 
bearing motion control system requires fast response speed 
and anti-jamming capability, while PID controller tuned by 
traditional methods cannot meet these requirements well 
(Xing et al., 2007; Ji et al., 2010). So it is necessary to find an 
effective parameter tuning method of PID controller to 
improve the system performance. 

In recent years, artificial intelligence (AI) algorithm provides 
a new way for PID controller parameters tuning. Particle 
swarm optimization (PSO) has been listed as a topic of 
discussion by IEEE international conferences on evolutionary 
computation (CEC) due to its simple algorithm structure,

 

high efficiency and other characteristics (Tang, 2010). Many 
researchers applied PSO into PID controller parameters 
tuning (Gaing, 2004; Nasri et al., 2007). However, original PSO 
algorithm is easily falling into local optimum solution, which 
affects its optimization ability (Eberchart and Kennedy, 1995; 
Hou et al., 2014). (Kennedy, 2000) himself improved PSO 
algorithm firstly with cluster centers instead of particle best. 
This change improved the algorithm performance, but the 
cluster calculation made the algorithm more complex. (Shi 
and Eberchart, 2001) proposed a fuzzy-rules-based method of 
adjusting inertia weight ω dynamically. It is developing 
appropriate membership functions and fuzzy rules to 
determine the inertia weight increment by evaluating the 
current best performance and the current inertia weight. The 
disadvantage of this method is that the development of fuzzy 
rules requires expert knowledge which is poor and difficult to 
obtain before the complex system being optimized, so this 
method is difficult to achieve. Another way is to construct a 
new algorithm. Integrating the algorithm which has strong 
local search ability into PSO algorithm brings a new ground 
of new algorithms construction. Literatures (Lu and Hou, 2004; 
Yang et al., 2008) improved PSO algorithm based on this idea 
and achieved good results. However, literature (Lu and Hou, 
2004) introduced too many parameters, which result in the 
extremely complex algorithm; literature (Yang et al., 2008) 
only performed mutation operation to the m particles which 
own best fitness value, which is lack of global optimization. 
This paper summarizes the experience of the above-described 
improved algorithms, presents an improved adaptive 
mutation particle swarm optimization (IAMPSO) algorithm 
based on the idea of algorithm fusion, thus the PI parameters 
in internal velocity loop were optimized to improve the 
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performance of slewing bearing motion control system. 

2. EQUIVALENT MODEL OF MECHANICAL 
TRANSMISSION 

As shown in Fig. 1, slewing bearing mechanical structure 
mainly includes slewing bearing, drive gear, servo reducer 
and motor. The outer ring of slewing bearing meshes with the 
drive gear and the transmission ratio of them is i1; the drive 
gear connects to the output shaft of reducer and the ratio is i2; 
the output shaft of motor connects to the input shaft of 
reducer; the slewing bearing is driven by the motor through 
the transmission parts mentioned above. During operation, 
the speed of slewing bearing is ω, the speed of the drive gear 
is ωH same as the output shaft of reducer and the speed of the 
input shaft of reducer is ωr same as the output shaft of motor. 

 
Fig. 1. Simplified model of slewing bearing mechanical 
structure. 

In this study, the slewing bearing mechanical structure is 
divided into two sub-parts: gear train part and servo drive 
part. Without considering the stiffness, the moment of inertia 
in the mechanical transmission parts can be transferred to the 
motor shaft according to the superposition principle (Shi, 
2007). The kinetic energy of gear train part is the sum of the 
kinetic energy of drive gear and outer ring of slewing bearing, 
and the servo drive part’s is the sum of reducer's and motor's. 
The kinetic energy of planet carrier, ring gear, sun gear and 
three planet gears make up the kinetic energy of reducer. The 
moment of inertia of reducer and motor can be learned by 
buyer’s guide, so the moment of inertia of each part can be 
obtained just by calculating the kinetic energy of gear train 
part. The kinetic energy of gear train part can be expressed 
as: 
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where Jd is the moment of inertia of drive gear; Jl is the 
moment of inertia of outer ring of slewing bearing. The 
equivalent kinetic energy of this part can be depicted as: 
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Hence, the equivalent moment of inertia of the gear train part 
is: 
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Take servo drive part into consideration, the moment of 

inertia of the mechanical structure can be all converted to the 
motor shaft as: 

eqrm JJJJ                                   (4) 

where J is the moment of inertia of the whole equivalent, Jm 
is the moment of inertia of motor rotor and Jr is the moment 
of inertia of reducer. i1 is calculated according to the number 
of teeth of drive gear and slewing bearing; i2 is checked by 
reducer manual; the drive gear and slewing bearing are 
modeled in Pro-E by actual size, then export Jd, Jl. Take the 
amounts above into formula (3) and Jeq can be obtained. Jm 

and Jr are checked by relevant manuals; Therefore the 
moment of inertia of each part can be obtained and converted 
to the motor shaft as formula (4) with the final result of 
J=51.18×10-4 kg·m2. 

3. PI CONTROLLER OPTIMIZED by IAMPSO 

3.1 Improvement of original PSO 

When looking for food in a large field, the most simple and 
effective way for the bird flock is to search the surrounding 
area of the bird nearest to the food. Inspired by the way the 
birds looking for food, Kennedy and Eberhart proposed the 
theory of PSO algorithm in 1995 for the purpose of solving 
the problem of function extreme value optimization (Eberhart 
and Kennedy, 1995). 

A brief description of PSO algorithm theory: there is a group 
of random ‘particles’ in D-dimensional search space, each 
particle is likely to be a potential solution to the problem. 
Each particle has its own position and velocity, the position 
of the ith particle in D-dimensional space can be written as 
Xi=(xi1,xi2,…,xiD)T, and the velocity is Vi=(Vi1,Vi2,…,ViD)T 
similarly. The velocity of the particle moving in 
D-dimensional space determined the moving direction and 
distance with respect to original position. According to the 
objective function of the problem to be solved, the fitness 
value corresponding to each particle can be calculated, and 
the value decides the possibility of the particle to be the 
optimal solution. The particles are characterized by position, 
velocity and fitness value of these three parameters. The 
individual extreme value of a particle is written as 
Pi=(Pi1,Pi2,…,PiD)T and the global extreme value is 
Pg=(Pg1,Pg2,…,PgD)T similarly. In each iteration, the velocity 
of each particle adjusts dynamically to update their position 
according to these two extreme values (Pi and Pg), that is, 
moving closer to the optimal solution continuously till 
finding it. 

In each iteration, the velocity and position of the ith particle 
are expressed as: 
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where ωi is inertia weight; c1 and c2 are acceleration factors; 
r1 and r2 are random numbers in [0,1]; i=1,2,…,n; d=1,2,…,D; 
k is the current iterations; Xid is particle position; Vid is 
particle velocity. In order to prevent the blind search, the 
velocity is generally limited in a range of [-Vmax,Vmax]. 
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PSO algorithm has some advantages such as simple operation, 
fast convergence and wide universality. However, there exists 
a serious shortcoming: easily falling into premature 
convergence. That is, in the later period of iteration, the 
particles getting higher and higher degree of similarity, and 
the algorithm may fall into partial optimum solution and 
hardly getting out, thus miss the global optimal solution (Zhao 
et al., 2013). By observing the running process of PSO, we 
found that many particles' position is beyond the set spatial 
extent in each cycle. Duo to the algorithm rules limit, these 
particles are placed at the edge of the search space after they 
out. More and more particles are stacked, causing particle 
with high similarity, what is not conducive to find the global 
optimal solution. If the "marginalization" of the particles 
were broken up and redistributed, the "particle accumulation" 
problem would be solved. The particle distribution changing 
process is shown in Fig. 2. 

 

Fig. 2. Schematic Diagram of Particle distribution before and 
after the algorithm improvement. 

To solve this problem, the mutation operation of GA was 
introduced to PSO to reset the particles in a certain 
probability, which is called adaptive mutation particle swarm 
optimization (AMPSO). However, the general AMPSO 
model has so many parameters resulting in the complex 
calculation. And because AMPSO just perform mutation 
operation to some particles instead of all particles, it is 
difficult to obtain the global optimized solution. Thus, based 
on the AMPSO, a simplified particle mutation rule was 
presented and the mutation object was expanded to the entire 
population of the particles compared to AMPSO. Not only 
does this operation reduce the similarity of the particles, but 
also it expands their search space which makes the particles 
jumping out of the current position and searching in a larger 
space, and increases the possibility of finding better value. 

The specific implementation process is as follows: the 

position of the ith particle in D-dimensional space is k
idX after 

k iterations. Set a mutation threshold pm as mutation 
condition, if this particle meets the mutation condition, 
mutation occurs, if not, keeps the original position. The 
mutation rule is adding random perturbation to the particle 
position, described as: 
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where η is a random variable subjected to Gaussian 
distribution [0, 1]; r is random number in [0, 1]; and select a 
suitable value for pm according to the actual situation. 

After that, an improved adaptive mutation particle swarm

optimization (IAMPSO) algorithm came into being. The 
particles of the new algorithm own the ability to self-reset 
and the "marginalization" particles can self-select a new 
position, which makes the particle similarity significantly 
decreased. Not only has the IAMPSO kept the advantages of 
PSO, it has also avoided the complex structure of AMPSO, 
expanded the search space of the particles, overcame the 
problem of the searching results easily falling into partial 
optimum solution and increased the probability of finding the 
global optimal solution. 

3.2 Optimization performance test of IAMPSO 

In order to verify the global optimization ability of IAMPSO, 
three typical functions are utilized to test the algorithm 
performance and comparison with PSO is given. 

Test function 1: Rosenbrock. This function is a typical 
morbid secondary multimodal function, although the valley 
where the minimum value located is easily to be searched, 
there is a very narrow valley between local optimum and 
global minimum while general optimization algorithm easily 
fall into the trap of local optimum. Therefore, this function is 
commonly used in algorithm performance test, which is 
expressed as: 
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Test function 2: Griewangk. This function is continuous and 
has a plurality of minimum values which distributes with a 
certain regularity and is difficult to converge to global 
minimum, which is expressed as: 

]600,600[

1cos
4000

1
)(

1 1

2











  

 

i

n

i

n

i

i
ii

x

i

x
xxf

               (9) 

Test function 3: Rastrigin. This function is a typical nonlinear 
multimodal function whose peak shape is fluctuating, so it is 
difficult to find the global optimum, which is expressed as: 
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The optimization performance comparison experiment of 
PSO and IAMPSO was done with the three test functions 
mentioned above. Set the particle swarm m=30, the number 
of dimensions D=2, inertia weight ωi=0.6, acceleration 
factors c1=c2=2, velocity range [-1, 1], maximum iterations 
500, mutation threshold pm=0.9, the global minimum as 
optimization goal. When the algorithm running greater than 
500 iterations or the iterative error lesser than 10-5, terminate 
the algorithm and output the results. The evaluation basis is 
the average value of 50 times experiments, and the results are 
shown in Table 1. 
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Table 1. Results Comparison of the Two Algorithms. 

Test function Algorithm Global minimum Error Iterations 

Rosenbrock 
PSO (1.0006,1.0013) 4.8982×10-7 223 

IAMPSO (1.0001,1.0002) 9.7693×10-9 171 

Griewangk 
PSO (102.25,94.8362) 7.396×10-3 214 

IAMPSO (100,100) 3.5826×10-6 221 

Rastrigin 
PSO (0,0) 1.6462×10-10 178 

IAMPSO (0,0) 1.4963×10-10 138 

As can be seen from the test results, to Rosenbrock and 
Rastrigin, PSO and IAMPSO can both get the global optimal 
solution, but the iteration times of IAMPSO is significantly 
less than PSO, it means that IAMPSO converges faster than 
PSO with the same solution accuracy; to Griewangk, PSO 
cannot get the global optimal solution and ultimately falls 
into local convergence, while IAMPSO can achieve the goal 
and prevent falling into local optimum under the premise of 
convergence rate. 

Conclusions of the tests: the proposed IAMPSO has faster 
convergence rate, more accurate search results and better 
parameter optimization ability than PSO, which can be 
applied to PI controller parameters optimization to improve 
the slewing bearing motion control system performance. 

3.3 PI controller optimization by IAMPSO 

Generally PMSM is driven by servo amplifier. It adopts 
three-loop control mode, including position loop, velocity 
loop and current loop. Among them, current loop is the 
inner-loop of velocity loop; position loop is the outer-loop of 
the controller and in series with velocity loop. Current loop 
determines the dynamic performance of the control system, 
whose parameters are determined by system inherent 
characteristics which should not be changed artificially. 
Velocity loop controls the system by PI controller, mainly 
affects the response speed, positioning accuracy and 
anti-interference ability of the system. The performance of 
velocity loop directly determines the performance of 
position loop and affects the whole system performance 
significantly (Wang et al., 2012). So this study mainly aimed 
at optimizing the velocity loop PI parameters for the 
preferable control performance. 

In computer control system, the form of PI controller is 
discrete case: 
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where u(k) is the output value of the kth sampling time; e(k) 
is the control error of the kth sampling time; Kp, Ki are the 
proportional and integral coefficients of the PI controller. 

The performance of PI controller mainly depends on 
whether the optimization of Kp and Ki is reasonable. If it is, 
the control error will be reduced as much as possible until  
the requirement is satisfied. 
 

To apply the algorithm proposed above to parameter 
optimization, it is necessary to establish the fitness function 
to evaluate the particle performance, that is, the performance 
evaluation indicator of PI controller. Generally we use 
overshoot, rise time and steady-state error to evaluate the 
controller performance. However, because of the interaction 
of the various parameters, it is almost impossible to make all 
indicators achieve the best, so we need to weigh the 
influence of the various parameters on the system 
performance. Meanwhile, there is strict requirement for 
positioning accuracy of slewing bearing in engineering 
applications, so we mainly focus on the changes of the 
systematic error over time. In this study, error property index 
ITAE is selected to evaluate the system response 
performance (Zheng et al., 2016), which is defined as: 
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where e(t) represents the deviation between the specified 
value and the actual value. This formula can be transformed 
as a discrete case: 

tkektFF kk   )()(1                           (13) 

where Fk-1, Fk represent the ITAE indexes at the (k-1)th and 
kth sampling point, t(k) represents the time of kth sampling 
point, e(k) represents the deviation between the specified 

value and the actual value, Δ t represents the sampling 
interval. 

Regard formula (13) as objective function, and then use 
IAMPSO to find the global optimal solution of the objective 
function, that is, the optimal Kp, Ki value. The process is 
shown in Fig. 3. 

 

Fig. 3. IAMPSO-PI controller. 

The specific steps of PI controller optimization by IAMPSO 
can be expressed as: 
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1) Particle swarm initialization: define the search space of 
Kp, Ki parameters and generate initial swarm X in the space; 

2) Input each set of particles Xi=(xi1,xi2)
T into the control 

system and run, calculate the fitness value Fj corresponding 
to each set according to formula (13); 

3) If Fj<Fj-1, Pi updated to Xi; if Fj=min[F], Pg updated to Xi; 

4) Update the velocity and position of each particle 
according to formula (5) and (6); 

5) Mutation: mutation operation on the particles according to 
formula (7), if mutation occurs, new particle position 
obtained; 

6) If the maximum number of iterations reached or system 
performance requirements met, take Pg as the final result of 
Kp, Ki parameters, if not, return to Step 2 and continue the 
iteration. 

4. SYSTEM SIMULATIONS AND EXPERIMENT 

4.1 Simulation results 

The system simulation model was established based on the 
mathematical model of slewing bearing motion control 
system. In the MATLAB environment, the simulation model 
was established by simulink based on the equivalent model 
of mechanical transmission, mathematical model of motor 
and PI controller model; the control algorithm in the form of 
m file is written based on the theory of PI controller 
optimization by IAMPSO. Through joint debugging of 
simulation model and control algorithm, the influence on 
slewing bearing motion control system by the velocity loop 
PI controller optimized by IAMPSO can be observed. 

 

 

Fig. 4. Simulation model of the system. 

Table 2. Control system parameters. 

Parameter Unit Value Parameter Unit Value 

Rated current I A 11 Stator resistance Rs Ω 1.5 

Rated torque Te N·m 9.55 Rotor flux ψf Wb 0.243 

Rated speed n r/min 2000 Pole pairs Pn  3 

Inductance Ld、Lq mH 5.7 Moment of inertia J kg·m2 51.18×10-4 

 

As shown in Fig. 4, the simulation model mainly includes PI 
controller, system response performance calculation module, 
dq/abc conversion, inverter, PMSM and measurement 
module. Among them, dq/abc conversion, inverter and 
PMSM make up the current loop; the current loop and PI 
controller make up the velocity loop; the position loop is not 
added in the simulation model because it belongs to the 
outer-loop of the system and has no effect on the inner-loop; 
the system response performance calculation module 
established by formula (12) connects the simulation model 
and control algorithm; in addition, dq/abc conversion, 
inverter and measurement module are the fixed connection 
module, so they are added to the system directly but not 
modeled here. According to the chosen optional types of the 
system, the relevant parameters are determined and input into 
the simulation model. The chosen parameters are depicted in 
Table 2. 

After that, the control algorithm parameters were determined. 
In IAMPSO, the particle swarm m=100, the number of 
dimensions D=2, inertia weight ωi=0.6, acceleration factors 
c1=c2=2, velocity range [-1, 1], mutation threshold pm=0.9, PI 
controller parameters Kp=[0, 10], Ki=[0, 1], maximum 
iterations 100 and minimum fitness value 1 were all set. 
When the iteration times of the algorithm is more than 100 or 
the fitness value is lesser than 1, the algorithm terminates and 
the results are obtained. The control algorithm was written 
based on the settings described above. 

Simulation starts after the steps above is completed. The 
specific connection mode between simulation model and 
control algorithm can be described as follows: input the Kp, 
Ki parameters generated by control algorithm into the PI 
controller of simulation model; run the model and obtain 
system response performance indicator; input the indicator 
into control algorithm and run the algorithm. The joint 
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debugging is achieved and the iteration keeps ongoing in 
such a cycle. In operation, the PMSM adopts the control 
mode of id=0, given speed 500r/min and the load is the 
moment of inertia converted to the motor shaft. 

In order to illustrate the optimization capability of the 
algorithm proposed in this research, original PSO and 
IAMPSO to the optimization of velocity loop PI parameters 
are applied separately. The fitness value evolutionary process 
and the Kp, Ki parameters optimization process for the two 
methods are shown in Fig. 5 and Fig. 6; and the control effect 
is shown in Table 3. 
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Fig. 5. Fitness value evolutionary process. 
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(a)Kp optimization process 
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(b) Ki optimization process 

Fig. 6. Kp, Ki optimization process 

From Fig. 5, two optimization methods both make the fitness 
value gradually decreasing along with the iteration, that is to 
say, they both improve the system response performance 
gradually. The difference is that the fitness no longer changes 
after the 40th iteration of PSO. Thus it can be seen that the 
algorithm has been trapped into partial optimum solution and 
is not able to improve the system performance any more. 
However, IAMPSO skipped this area and continued to search 
for better solution. The number of effective iterations of 
IAMPSO compared to PSO is up to more than 40 times. The 
same iteration law can be found by observing Kp, Ki 

optimization process in Fig. 6. It is worth mentioning that 
PSO searches the range of [0, 0.1] approximately in the Ki 
optimization process, while the IAMPSO’s is [0, 0.6] 
approximately much larger than the PSO’s. It shows that 
IAMPSO is able to search in a larger space than PSO and 
increase the probability of finding optimal parameters. 

Table 3. Results comparison of the two control strategies. 

 Kp Ki tr/ms ts/ms σ/% F ΔF 

PSO-PI 3.1772 0.0138 37.7640 66.5969 4.09 1.4466 0.0654 

IAMPSO-PI 3.4763 0.4837 29.0924 49.5418 1.57 1.4315 0.0805 

 

The parameters and system performance indicators obtained 
are listed in Table 3. The PI controller parameters optimized 
by PSO is [3.1772, 0.0138], while by IAMPSO is [3.4763, 
0.4837]. The parameters optimized by IAMPSO are greater 
than PSO’s. Compared to the system using the parameters 
optimized by PSO, the rise time tr of the system using the 
parameters optimized by IAMPSO is shortened by 
12.6716ms, the adjustment time ts is shortened by 17.0551ms 
and the overshoot σ is reduced by 2.52%. Furthermore, by 
comparing the fitness values reduced by the two control 
strategies, it can be seen that IAMPSO improved the system 
performance by 18.7% more than PSO. All the simulation 
described above illustrate that the IAMPSO proposed in this 
paper has better optimization capability than original PSO. 

 

4.2 Experimental verification 

The slewing bearing motion control system was designed and 
the physical system platform was built as Fig. 7 according to 
the research needs. The system was mainly consisted of 
controller (PC monitoring software and lower machine PLC), 
servo drive system (servo amplifier and PMSM) and 
controlled object (slewing bearing). Among them, PC 
monitoring software acted as human-machine interface, PLC 
acted as command transmission and data processing unit, 
servo drive system acted as actuator, and the system adopted 
dual closed-loop control mode. In actual operation, the PC 
monitoring software sent commands to PLC according to the 
control requirements which contained specified pulse 
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frequency and number, where the frequency controlled the 
speed of slewing bearing and the number located slewing 
bearing; PLC received commands from the host and sent 
pulse signal to servo amplifier; servo amplifier output voltage 
signal generated by the internal three-loop controller and 
electronic gear to the PMSM, and positioning was detected 
by encoder; in order to avoid the PMSM running at low 
speed stage and reduce system interference, servo reducer 
was added to the system because of the PMSM instability at 

low speed stage; the PMSM connected with slewing bearing 
and controlled it through servo reducer and drive gear. PC 
monitoring software monitored the whole system in real-time 
by reading the PLC operating status information and inner 
information of servo amplifier. The main function of the 
software was to monitor the consumed number of pulses, 
speed, torque, operating voltage and current of PMSM and 
other information. 

 

Fig. 7. Slewing bearing motion control system. 

The PI controller parameters corresponding to two control 
strategies were obtained by simulation. The ultimate goal of 
this study is to improve the response performance of slewing 
bearing motion control system, so two sets of parameters on 
the system need to be verified, the experimental equipment 
was the established physical system platform, which is shown 
in Fig. 7 above. In the experiment, the parameters were input 
into servo amplifier and the system operate, thus the real-time 
speed of PMSM through PC monitoring software was got. 
Set the motor speed in the experiment same as the simulation 
for the purpose of improving the comparability. Set the 
program running process as the motor accelerates from 
locked state to 500r/min and operates at constant-speed after 
acceleration, and the sampling period is 1ms. Figure 8 
describes the PMSM operation speed curve and the system 
performance indicators are shown in Table 4. 

The measurement error is unavoidable because of the 
interference of external environment to the system, 
meanwhile, due to the low sampling precision and graphical 
display precision, the speed curve in Fig. 8 is a little different 
with the actual situation, but it reflects the change trend of 
motor speed substantially. It can be seen from Fig. 8 that the 
motor started from zero-speed at the zero-position and finally 
stabilized at 500r/min in accordance with the program 
commands. On the other hand, by comparing the 
experimental results in Table 4 with the simulation results in 
Table 3, it shows that the experimental results are a little bit 
worse, that is to say, the rise time of the experiment is greater 
than the corresponding rise time of the simulation under the 
same control strategy, adjustment time and overshoot as well. 
This is mainly caused by the precision of the experimental 
equipment itself. Even the existence of such a situation, it 
still has research value to do comparative analysis based on 

the two groups of experiments. 
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Fig. 8. PMSM operation speed curve. 

As seen in Table 4, the rise time tr, adjustment time ts and 
overshoot σ of the system using PSO-PI controller are 48ms, 
91ms and 7.32% respectively, while the corresponding 
indicators of the system using IAMPSO-PI controller are 
37ms, 60ms and 3.18%, respectively. The results show that 
the overshoot of the system using IAMPSO-PI controller is 
significantly smaller than the overshoot of the system using 
PSO-PI controller, besides, the rise time and adjustment time 
are shortened and the speed stability is better in 
constant-speed-running period. In summary, the dynamic 
characteristic of the system is significantly improved by 
IAMPSO. The reason could be concluded by analyzing the 
parameters optimized by the two control strategies. As we 
know, the Kp, Ki values optimized by IAMPSO are greater 
than PSO’s. When system overshoot occurs, the greater the 
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Kp value is, the faster the system response speed is and the 
better the ability to suppress overshoot is, therefore, the 
system using IAMPSO-PI controller has shorter acceleration 
time and smaller overshoot; on the other hand, the greater the 
Ki value is, the lesser the steady-state error is, so the system 
using IAMPSO-PI controller has less speed fluctuation. 

Table 4. Results comparison of the two controllers. 

 tr/ms ts/ms σ/% 

PSO-PI 48 91 7.32 

IAMPSO-PI 37 60 3.18 

5. CONCLUSIONS 

To improve the response performance of slewing bearing 
motion control system, the IAMPSO algorithm is proposed to 
optimize the internal velocity loop PI controller parameters of 
the system. The simulation shows that the Kp, Ki parameters 
obtained by this algorithm is superior to that of the original 
PSO algorithm; and the experiment verified the effectiveness 
of this proposed control strategy. It can be seen that the 
control strategy based on IAMPSO algorithm optimizes the 
slewing bearing motion control system indeed. By this study, 
a novel way to improve the motion control level of slewing 
bearing is provided. 
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