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Abstract: This study investigates the robust H∞ control problem for dynamic positioning (DP) ships 
based on sampled-data. By using input delay approach, the DP ships system is converted to a time-
varying delay system. Sufficient conditions are derived to make the system exponentially stable and 
achieve the H∞ performance using Lyapunov stability theorems. Then, the H∞ sampled-data controller is 
obtained by analyzing the admissible condition to guarantee that the DP ships can maintain the desired 
position, heading and velocities. Simulation result is shown that the proposed method and the designed 
controller for DP ships are effective in the existence of varying environment disturbance. 
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

1. INTRODUCTION 

The dynamic positioning (DP) is a system which is controlled 
by computer, can keep a ship's desired position and heading 
or sail an exact track by using of active thrusters and 
propellers( see T. I. Fossen, 2002), has been employed in 
various vessel types, such as offshore support vessels, Semi-
submersible crane vessels, cruise ships, oceanographic 
research vessels and so on. Compared with the conventional 
anchor moored position-keeping methods such as jack-up 
barge and anchoring, the DP mode has its own advantages: 
High positioning accuracy and flexibility; Easy to be changed 
position; No anchor handling tugs needed; Not dependent on 
water depth and so on. With the expansion of ocean to the 
deeper water, the DP ships technology has attracted 
considerable attention and become an important research 
topic.  

In the beginning, proportional integral derivative (PID) 
controller was used and today are still used in DP system (see 
Fossen, 1994). Subsequently, Kalman filtering technology 
and optimal control were discussed (see Balchen et al., 1976; 
A. J. Sørensen et al., 1996; Xie, 2014). Recently, more 
advanced control algorithms have been proposed for DP 
ships. The estimators and nonlinear controllers were applied 
to deal with the vessel dynamics' intrinsic nonlinear 
characteristics (see Strand et al., 1999; Zhao et al., 2010; 
Wang et al., 2014). Vectorial backstepping techonology, 
which is used to guarantee the exponentially stable of DP 
ships system is presented in (Fossen et al., 1998; Snijders, 
2005). In (Loria et al., 2000), separation principle combined 
with PD-type control law is used to prove the globally 
asymptotically stable of DP ships. In (Fossen et al., 1999; Lin 
et al., 2013; Wang, 2012; Lindegaard, 2003), a passive 
nonlinear observer was designed to estimate the vessel 
velocity using Lyapunov methods. 

Robust H∞ control theory, since its inception by Zames, has 
received considerable attentions and made remarkable 
achievements during the past few decades (see Doyle, 2013; 
Francis, 1987; Zhou K et al., 1996). Recently, the H∞ robust 
control strategy has been proposed for DP ships (see Katebi, 
2011). In (Wang et al., 2012), based on mixed sensitivity, a 
robust controller is designed for the DP ships with uncertain 
model. In (Ngongi et al., 2015), the fuzzy controller for DP 
ships is designed using optimal H∞ control techniques based 
on T-S fuzzy model (see Wang et al., 2017a,b); In (You et al., 
2017), based on the mixed H∞ and µ-synthesis framework, 
the robust control problem for DP ships is discussed. 

In the last decades, sampled-data system has been an 
important topic, because modern control systems widely used 
the digital computers to control continuous-time systems. For 
example, in a DP ship (see Fig. 1), a variety of sensors, such 
as Differential Global Positioning System (DGPS) for 
obtaining higher accuracy and reliability position of ships; 
gyrocompasses for determining heading of ships; Vertical 
Reference Sensor (VRS), for determining the ship's roll pitch 
and heave; wind sensors for anticipating wind gusts etc. are 
used by digital computers to determine the ship’s motion 
state. The sensors produce continuous-time signals which are 
transformed into discrete-time control signals by being 
sampled and quantized with a microcontroller, and they will 
be transformed into continuous-time signals again by the 
zero-order holder. Until now, considerable research methods 
have been proposed for analysing these sampled-data systems 
(see Fridman, 2006; Wang et al., 2013; Rubagotti et al., 
2011; Lee, 2012; Wu, 2013; Chen et al., 2014; Abedi, 2015; 
Chen, 2015; Wang et al., 2016a,b; Moarref, 2016; Liaquat, 
2016; Wang et al., 2017). Input delay approach (see Fridman 
et al., 2004; Wang, 2016; Liu, 2015; Krishnasamy, 2015; 
Chen, 2015; Wu, 2014), is one of the main methods proposed 
by (Fridman et al., 2004). In the approach, the sampling 
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period can be converted to a bounded time-varying delay. 
Moreover, the sampling distances are not required to be 
constant, which is its most significant advantage. Besides, the 
approach can be applied to uncertain sampling systems (see 
Gao et al., 2010), which is difficult for traditional lifting 
techniques to deal with. 

It should be pointed out that, the control methods existing in 
literatures for DP ships are mainly focused on the design of 
continuous-time controller for continuous-time model. 
However, the DP ships system, commonly utilizes embedded 
computers for producing discrete-time control signal. So, the 
results obtained from the existing methods can’t be applied 
directly for DP ships control systems. Hence, in view of the 
advantage of the input delay approach mentioned above, how 
to design sampled-data controllers directly for DP ships using 
the input delay approach is an important and meaningful 
question. To the best of our knowledge, literature cannot be 
found to consider the issue, which motivated the paper to 
handle the sampled-data control problem for DP ships, and it 
has significance both in practice and theory. 

In this brief, the issue about H∞ control for DP ships based on 
sampled-data is discussed. The DP control system is 
transformed to a time-delay system by input delay approach. 
In terms of LMI approach, adequate conditions are 
established to make the system exponentially stable with 
prescribed H∞ performance using Lyapunov stability 
theorems. Then, the H∞ sampled-data controller is obtained to 
guarantee that the DP ships can maintain the desired position, 
heading and velocities under the external disturbances like 
waves, wind, ocean currents. Finally, a simulation of DP ships 
is provided to demonstrate that the proposed method is 
effective. 

 

Fig. 1. DP ships control system. 

2. PROBLEM FORMULATION 

The mathematical model of DP ships is described as follows: 
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where  Tx y  represents the ship’s position x, 

position y and heading ψ related to the earth-fixed frame. 
 Tp v r  represents the ship’s velocity of the body-fixed 

frame, where p represents surge velocity, v represents the 
sway velocity and r represents the yaw velocity. Similar to 
(Wang et al., 2014), the body-fixed coordinate system is 
shown in Fig.2.  J   represents the transformation matrix of 
the two frames mentioned above; u represents the vector of 
control force and moment; w represents a disturbance vector 
including waves, wind, ocean currents; M and D represent the 
inertia and linear damping matrix respectively.  

 

Fig. 2. Coordinate systems of DP ships. 

As the heading ψ is very small, and it can be obtained that 

3 3( ) .J I               (3) 

Under the condition (3), the linearized low frequency motion 
of the model is got as follows: 
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In this paper, the state variables of DP ships are assumed to 
be measured at the sampling instant 0 = t0 < t1 < t2 < … < tk < 
…, that is, in the interval tk≤t≤tk+1, only x(tk) is available. The 
sampling period follow the assumption that it is bounded by a 
constant d, that is, 

1 , 0, 0,k kt t d k d                 (6) 

Considered the state-feedback control law as follow, 

1( ) ( ) ( ), ,k k k ku t u t Kx t t t t               (7) 

where kt represents the sampling instant, ( )ku t  represents the 

discrete-time control signal, K is a state-feedback gain 
matrix. By substituting (7) into (1), then 
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Remark 1: Note that both discrete and continuous signals is 
included in system (8), which is more different and practical 
than the existing continuous-time control method for DP 
ships system. Besides, because the parameter uncertainties 
exist in the system, it is difficult for the traditional lifting 
technique to deal with the problem. 

The paper’s purpose is to find the state feedback gain to 
satisfy the following requirements: 

1) The system (8) with ( ) 0w t   is exponential stable, if 

there exist scalars 0   and 0   ,then  
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2) To reject the varying environment disturbances like waves, 
ocean currents and wind, the closed-loop system is assumed 
to satisfy that 
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Then, by input delay approach, the state-feedback controller 
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where the time-varying delay ( )t is piecewise-linear 
satisfying  
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Thus, the sampled-data system in (8) is converted to a system 
with time-varying delay as follow: 
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3. MAIN RESULTS 

The H control problem for sampled-data DP ships is studied 
in this section. By establishing Lyapunov-Krasovskii 
functional, adequate condition is obtained to guarantee the 
exponentially stability of the system. Then the sampled-data 
controller is designed by analysing the stabilization 
condition. 

Theorem 1: Given scale d> 0, α> 0, γ>0, the closed-loop 
system (12) is exponentially stable with H  performance  , 
if there exist symmetric positive-definite matrices Z , P , Q , 
Mi, Ni, i=1,2,3,4 such that 
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Proof.  First, considered the following Lyapunov-Krasovskii 
functional  
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Calculating the derivative of ( )V t , it can be obtained that: 
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Using the Leibniz-Newton formula, for any matrices of 
proper dimension Mi, Ni, i=1,2,3, the equations can be 
obtained as follow: 
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Similarly, it can be obtained that 
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Substituting (19)-(21) into (18) that 
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Since Z>0, then the last two parts in (22) are all less than 0. 
According to Schur complement, (10) implies that 
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Thus, according to Definition 1, the system (12) is 
exponential stability. The proof is completed. 
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Now, the H  performance will be considered for system 
(12). By choosing the same Lyapunov-Krasovskii functional 
given in (11), using the following equations to replace the 
(19) and (20), 
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  is defined in (15).

 

By Schur complement, (13) guarantee 
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            (35) 

So, it can be obtained from (33) and (35) that 

2( ) ( ) ( ) ( ) ( ) 0T T ty t y t w t w t e V t                         (36) 

Therefore, from (36), 2 2|| ( ) || || ( ) ||y t w t can be got for all 

nonzero  2( ) 0,w t L  , then the H∞ performance is 

established. 

Remark 2: Theorem 1 gives a sufficient condition to solve the 
exponential stability problem for system (12). Besides, it 
should be pointed out that using the free-weighting matrices 
can reduce conservativeness of proposed delay-dependent 
results (see (Fridman et al., 2004b, 2005c; Suplin et al., 
2007). In addition, it is worth noting that in this work the 
value of decay rate α is free and can be chosen for different 
situations, which is more excellent and significant than the 
result existing in sampled-data systems. 

Now, the H∞ sampled-data controller (7) will be designed 
based on Theorem 2. 

Theorem 2: Given scales d> 0, α> 0, γ>0, the system (12) is 
exponentially stable under the assumption that  the sampling 
period is bounded by a constant d, that is, 

1 , 0k kt t d k     if there exist symmetric positive-

definite matrices Z, P ,Q , Hi, Ri, i=1,2,3,4, such that the 
LMIs hold as follow :                                                                
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Moreover, a suitable controller with H  performance   in 
forms of (7) is designed to satisfy the proposed conditions. 
And the control gain matrix K  is obtained as 

1K KP            (39) 

Proof: By noticing that 1 2PZ P Z P    
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and pre-multiplying and post-multiplying (13) by £ and £T 
respectively, (37) and the following inequality can be 
obtained: 
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      (42) 

By Schur complement, (41) is equivalent to (37). The proof is 
completed. 

Remark 3: According to the Theorem 2, sufficient conditions 
are provided to deal with the robust H∞ control problem for 
DP ships based on sampled-data, and the proper sampled-
data controller is proposed. Noted that the conditions are 
formulated by means of LMI, which is easy to be determined 
by standard numerical software. The tool provided by LMI 
technique is effective for designing the sampled-data 
controller of DP ships. Moreover, the proposed methods of 
the work can be extended to other ships easily. 

4. NUMERICAL EXAMPLES 

For validating the effectiveness of the proposed methods, a 
numerical simulation is carried out for a DP ship with 
environment disturbance in the section. The DP ship’s main 
parameters are referenced to the Ship Handling Simulator 
designed by the Institute of Navigation Jimei University. The 
length and beam of vessel are respectively 170m and 25.8m, 
tonnage is 2.4×107 kg, draft is 9.5m. The M and D in model 
(1) are given by: 
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Using the parameters given above and formula (3), the 
system matrices for DP model can be obtained. The extern 

disturbances like waves, wind, ocean currents are considered in 
the simulation. The direction and significant height of wave 
are respectively 150° and 5.5 m. The direction and speed of 
current are respectively 100° and 0.25 m/s. The direction and 
speed of wind are respectively 225° and 10 m/s. The ship’s 
initial position and heading is ηi = [0m 0m 0°], and body-
fixed velocities vi = [2m/s -2m/s 0.4°/s]. The final desired 
state is ηf = [10 10 4°], vf = [0m/s 0m/s 0°/s]. Assuming the 
sampling interval d=1.0s, the minimum value achieved by 
Theorem 2 to guarantee H∞ performance γmin=1.630. Then, 
the value of feedback gain matrix is obtained that 

0.0332 0 0 2.1871 0 0

0 0.8548 0.178 0 1.5367 1.308

0 0.178 0.652 0 0.0303 0.2838

K

  
    
   

 

The simulation results are shown in Fig. 3-5. Fig. 3 and Fig. 4 
show the ship’s x direction and y direction, Fig. 5 shows the 
ship’s heading ψ, which are respectively response of the 
proposed controller.  

From the Fig. 3-5, it can be seen that the settling time for the 
x position 2s; the settling time for the y position is 3.5s, and 
there is no overshoot and steady state error for x and y 
position; the settling time for heading ψ is 8s, though there 
exist an overshoot for heading ψ, it is no more than 20%, and 
the steady state error is nearly to zero. The main performance 
parameters (overshoot, rise time settling time) are shown in 
table1. 

This indicates that the proposed sampled-data H∞ controller 
can stabilize the ship and keep the ship at the desired target 
position and heading.  

Table 1. The main performance parameters of x, y and ψ. 

Parameters x y ψ 

Rise time 1.2s 2.7s 2.1s 

Overshoot time 0 0 18% 

Settling time 2s 3.5s 8s 

To assess the system’s robustness performance, the 
sensitivity function S, control sensitivity function C is 
described respectively as follow. 

 
 

1

1

S I GK

C K I GK





 

 
                                                                (43) 

where G represents the ships nominal mode, S represents the 
effect of the input disturbances. C represents the control 
signals’ frequency content which determines the modulation 
of thruster.  

In order to reduce the influence of the low-frequency 
disturbances such as current and wind, and the thruster 
modulation to a lower level, weighting functions 

sW  and 
cW , 

which are used to weight sensitivity function S, control 
sensitivity function C respectively, are selected as follow
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where the amplitude of 
sW at low frequency should be large 

to achieve a good tracking performance and disturbance 
rejection ability; a high pass filter should be selected for 

cW  

to ensure that the desired controller rolls off at high 
frequency. 

The singular value plots for the sensitivity function and 
control sensitivity functions are described in Fig. 6-7. They 
are all bounded by the weightings respectively.Fig.6 shows 
that the sensitivity function S rolls off at low frequency range 
which indicates that the performance of disturbance rejection 
is good. Fig.7 shows that the control sensitivity function C 
rolls off at high frequency which indicates that the high 
thruster modulation is avoided and the ware for thruster is 
minimized. So, from Fig. 6-7, it is shown that the proposed 
sampled-data H∞ controller has a good performance. 

Velocities [u v r] response of the controller is shown in Fig. 
8-10, which indicates that the velocities [u v r] tend to zero 
during a short time (about 4.5s). That is, the designed 
sampled-data H∞ controllers can stabilize the ship’s velocities 
and guarantee robust H∞ control performance under the 
external disturbance like waves, wind, ocean currents. 

 

Fig. 3. Position of the x direction of the ship. 

 

Fig. 4. Position of the y direction of the ship. 

 

Fig. 5. Heading ψ of the ship. 

 

Fig. 6. Singular value plots of sensitivity functions. 

 

Fig. 7. Singular value plots of control sensitivity functions. 

 

Fig. 8. Surge velocity u of the ship.  
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Fig. 9. Sway velocity v of the ship. 

 

Fig. 10. Yaw rate r of the ship. 

5. CONCLUSIONS 

In the paper, the H∞ robust control technique for sampled-
data DP ships is proposed. Using the input delay approach, 
the ship DP system is transformed to a time-varying delay 
system. By using the Lyapunov approach, sufficient 
condition is derived to guarantee the exponential stability of 
DP ships system. Finally, from a DP ship simulation, the 
connection between simulations results and H∞ control is 
shown that : 

1) Under the extern environment disturbance, the designed 
sampled-data H∞ controller can make the ship’s position 
achieve the desired target value in a short settling time 
and without overshoot. 

2) Though there exists an overshoot for heading ψ and the 
settling time is longer than that of the ship’s position, it 
can be stabilized by the proposed sampled-data H∞ 

controller after a short time. 
3) To guarantee that the closed-loop system is robust, the 

performances in terms of sensitivity functions are 
introduced. Then the H∞ controller performance is shown 
using frequency response and time-domain simulations. 
Simulations results show that the ship’s velocities are 
stabilized by the sampled-data H∞ controller under the 
external disturbance, which indicated that the proposed 
sampled-data H∞ controller for the DP ships is effective 
and robust. And the proposed methods can be extended 
to other ships. 

In future, the new sliding mode control method (see Wang et 
al., 2017a,b) will be studied for sampled-data DP ships 
system. 
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