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Abstract: In this paper, several methods used for detection and isolation of different types of faults 
which can affect a wind turbine are presented. These methods can be divided into two categories: model-
based methods (designing a state-space estimator is considered) and methods based on the wind turbine’s 
signals analysis (in both frequency and time domains). A benchmark model implemented in Matlab and 
Simulink of a real wind turbine (Odgaard, et al., 2009) is used to test these fault detection and isolation 
methods. The faults considered in this model affect some of the sensors and the actuators of the wind 
turbine. The developed methods are implemented as Simulink blocks and placed in the wind turbine’s 
benchmark model, allowing an online detection and isolation of the considered faults. The obtained 
results are then analysed. 
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

1. INTRODUCTION 

The need for energy and especially for electrical energy has 
increased impressively in the last century. According to 
(Sathyajith, 2006), the growth rate of energy consumption 
over a year is 3.2% for developing countries (due to the 
population increase and the development of technologies) and 
1.5% for industrialized countries.  

Nowadays, the most energy is produced using non-renewable 
resources: coals, natural gases and oil. The disadvantages 
implied by the usage of these resources (excessive pollution 
level, high extraction and transportation costs, exposure to 
various hazards, almost total consumption of these resources) 
have determined a change towards usage of renewable 
resources in recent years. 

Thus, the interest in wind power has increased due to its 
advantages, leading to numerous research works, 
governmental agreements and construction of numerous wind 
turbines of different sizes and powers all over the world. The 
advantages of wind power are: reduced production costs of 
electrical energy, reduced construction time of the systems 
which use this type of energy to produce electricity (wind 
turbines), the global availability and the absence of any usage 
costs of this resource, the dependence on countries rich in oil 
and natural gases is eliminated and also, devastating 
accidents (as in the case of nuclear plants) cannot occur 
anymore (Mukund, 1999; Chiras, 2010). On the other hand, 
the wind power has some disadvantages too: the winds have a 
variable behaviour in time - over several years (a long-term 
prediction can be made after acquiring information during 30 
years), over a year (the wind power varies depending on the 
season: usually, during winter and autumn the winds are 
stronger), over a day (diurnal changes) and short-term 
variations (turbulences, gusts), (Manwell, et al., 2009). Thus, 

a wind turbine produces electrical energy over 65% - 80% of 
a year and generates the maximum power only on 10% of the 
operating time. There are also some other disadvantages, but 
their effects are less important: the level of noise produced by 
a wind turbine during the operating time is similar with the 
noise of a running refrigerator (55 dB), interference of wind 
turbines with radio and television signals, the wind turbines 
are responsible for the death of less than one bird for each 
10.000 birds killed by human activities and the effect of the 
wind turbines on the natural environment is very reduced 
because these systems are usually built in those areas where 
power lines which had modified the environment already 
exist (Chiras, 2010; American Wind Energy Association, 
n.d.). The electrical power developed by a wind turbine has 
increased impressively from 50 kW in 1985 up to 10 MW in 
2015 at the same time with the dimension (the rotor diameter 
increased from 15 meters up to 190 meters). The price of the 
electrical power produced experienced a dramatic fall 
between 55 cents in 1980 and 4 cents in 2014 for a kWh 
(ABB, 2011; American Wind Energy Association, 2014). 

The rising popularity of wind turbines due to their advantages 
has determined an increase in the study of maintenance 
solutions for these systems. The repair and maintenance costs 
represent a significant part of the operating price of a wind 
turbine. The offshore placement of the wind turbines implies 
higher costs than the onshore placement. Thus, various types 
of systems which detect and isolate the faults which may 
occur during the operation of a wind turbine have been 
developed over the years. The reasons of designing very 
effective such systems are that an early and prompt detection 
of a fault can extend the lifetime of the wind turbine, reduce 
the repair costs and can determine a change of its operating 
parameters to avoid the total shutdown of the turbine, even if 
its operation is not optimal (Ozdemir, et al., 2011; 
Tabatabaeipour, et al., 2012). 
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The subject of fault detection and isolation for a wind turbine 
has been considered in various papers. A review of some of 
these articles is made in (Odgaard and Stoustrup, 2012). 
Other contributions in this field are: (Wenxian and Tavner, 
2008; Esbensen and Sloth, 2009; Wenxiu and Fulei, 2010; 
Hajiabady, et al., 2014). Some other papers presenting fault 
detection and isolation methods which can be also applied 
also for the case of a wind turbine are: (Venkatasubramanian, 
et al., 2003; Mendes, et al., 2006; Lee, 2008; Poulsen and 
Niemann, 2009). 

In this paper, different types of faults which can affect a wind 
turbine are studied and methods of detecting them are then 
provided. These methods are tested using a benchmark model 
of a wind turbine (Odgaard et al., 2009) implemented in 
Matlab and Simulink. In order to do this, the Fault Detection 
and Isolation (FDI) methods are designed for operating in 
real-time and implemented as Simulink blocks. 

The paper is organized as follows: Sections 2 briefly presents 
the components and the operation of a wind turbine. In 
Section 3 it is presented and explained the wind turbine’s 
benchmark model implemented in Simulink (Odgaard, et al., 
2009) which is used in this paper for testing the FDI methods. 
Section 4 contains the description of the applied FDI 
methods. The obtained results are detailed in Section 5. 
Finally, the conclusions are given in Section 6. 

2. COMPONENTS AND OPERATION OF A WIND 
TURBINE 

To transform the kinetical energy of the winds into 
mechanical energy and then into electrical energy, various 
solutions have been developed. The main criterion to classify 
these solutions is the type of rotor’s axis. Thus, the wind 
turbines can have vertical or horizontal axis. Because the 
vertical axis wind turbines can use winds from any direction, 
their construction is simpler (it is not needed a yaw rotational 
system like in the case of horizontal axis wind turbines; the 
gearbox and the generator are placed on the ground, not 
inside the nacelle). So, the maintenance operations are easier 
to perform. Although, this type of wind turbine has some 
major drawbacks: a starting system is required because exists 
some aerodynamically dead-zones from which the turbine 
cannot start on its own, reducing at the same time the 
efficiency of the system. A precise control of the wind 
turbine is required because a strong wind may determine the 
blades to spin at a very high speed (Sathyajith, 2006). 

Most of the wind turbines used nowadays have horizontal 
axis due to their advantages: low cut-in wind speed and easy 
furling. They have mechanisms that can adjust the yaw angle 
of the nacelle and the pitch angles of the blades in order to 
control the outputted electrical power and to protect the 
construction from strong winds. The need of having these 
mechanisms together with the position of the gearbox and the 
generator in the nacelle implies a more complex and 
expensive design of the wind turbine (Sathyajith, 2006). 

The horizontal axis wind turbines can be classified according 
to: number of blades (single bladed, two bladed, three bladed 
or multi bladed), direction of receiving the wind (up-wind or 
down-wind), number of rotors (single or multiple), position 

of the wind turbine (onshore or offshore) and quantity of 
produced power (low, medium or high). 

Further on, the paper will be focused on wind turbines having 
horizontal axis, three blades and a single rotor facing the 
wind directly (up-wind). 

A wind turbine consists of three main components: a tower, a 
nacelle and a rotor. The main purposes of the tower is to 
support the nacelle and the turbine at the optimum height 
obtained after the design process and to sustain the entire 
structure unaffected by the vibrations caused by the 
variations of wind speed. The wind contains less turbulences 
at high altitudes so higher towers are preferred. However, a 
very high tower implies the occurrence of stability issues 
(Khaligh and Onar, 2010). For a high power wind turbine, the 
tower is usually tubular (made of concrete or steel) or 
latticed. For a low power wind turbine, the tower can be 
sustained by cables (Mukund, 1999). According to the type 
of used tower and the soil in which the turbine is constructed, 
different foundations can be used (e.g. slab, mono-pile and 
multi-pile) (Burton, et al., 2001). 

The rotor is the most important and prominent component of 
a wind turbine. It transforms the kinetic energy received from 
the winds into mechanical rotational energy. This energy is 
applied to the shaft connected with the rotor (Wagner and 
Mathur, 2009). This shaft, together with the blades and the 
hub, are the main components of the rotor.  

Blades of a wind turbine and wings of an airplane have the 
same basic principles of working. Because the wind turbines 
work in a different environment (which implies often 
changings of wind speed and wind direction), certain details 
are considered in their design process in particular (Wagner 
and Mathur, 2009). Blades of the modern wind turbines are 
made with aerofoil sections (one half of the blade is rounded, 
whereas the other half is almost flat). Thus, areas with 
different pressures are formed above and below the blade 
according to Bernoulli’s theorem. The difference between the 
pressures implies the appearance of a force which rotates the 
rotor. Different characteristics of the blades are chosen (e.g. 
type of material, length, and lightning protection) according 
to the desired performances of the wind turbine (Sathyajith, 
2006). 

In order to control the output power, some wind turbines 
(named pitch controlled wind turbines) have mechanisms 
inside the hub for rotating the blades around their pitch axis. 
The turbine’s controller checks the values of the generated 
power using a certain sampling period. When this power is 
higher than a threshold value, a signal is sent to the blade 
pitch mechanism which turns the rotor blades out of the 
wind. Contrary, when the generated power is too low, the 
blades are turned back into the wind (Wagner and Mathur, 
2009). Also, this pitch system is useful in case of an 
emergency situation. By rotating the blades such that the 
aerodynamic forces are at the lowest values and activating 
simultaneously the breaks, the rotation of the rotor can be 
stopped much faster. These systems have an energy 
accumulator in order to continue to work for a short time if 
the energy supply is interrupted (Gasch and Twele, 2012). 
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The blades are connected one to each other through a hub. 
This is one of the critical components of the rotor because 
requires a proper design and has to be built from a suitable 
material in order to ensure high strength qualities (Sathyajith, 
2006). The spinner is a capsule which covers the hub, has an 
aerodynamic shape and protects the hub and the pitch 
systems against bad weather effects (rain drops, snow, dust).  

Usually, the components of the drive train and those of the 
electrical system are enclosed in a nacelle (Fig. 1) which can 
be connected with the tower through a rotational mechanism 
(called yaw system) or through a fixed joint. The drive train 
includes all the rotating parts of a wind turbine and those 
components which assure them the proper functionality: hub, 
shafts, gearbox, clutch and bearings. All these components 
form a functional unit and have to be considered always 
together (Hau, 2013). The rotor is connected through the hub 
with the low-speed shaft which transmits the rotational 
energy to the gearbox. This component transforms the 
rotational speed of the rotor to the speed required by the 
generator and delivers it through the high-speed shaft (Gasch 
and Twele, 2012). The generator converts the rotational 
speed to electric energy which is then adapted to the required 
voltage and frequency of the electrical grid through a 
transformer and two inverters (AC-DC and DC-AC) (Wagner 
and Mathur, 2009; Hau, 2013). 

 

Fig. 1. The main components of a horizontal axis wind 
turbine (1 – blade, 2 – blade support, 3 – pitch angle actuator, 
4 – hub, 5 – spinner, 6 – low-speed shaft support, 7 – low-
speed shaft, 8 – safety lights, 9 – gearbox, 10 – mechanical 
breaks, 11 – hydraulic cooling device, 12 – generator, 13 – 
inverters, controller and protection device, 14 – transformer, 
15 – anemometer, 16 – frame of the nacelle, 17 – tower, 18 – 
yaw driving device) (ABB, 2011). 

Besides the components of the drive train and the electric 
system, there are also secondary components inside the 
nacelle (Fig. 1) which have important roles: cooling, heating, 
lubricating, breaking, data acquisition, maintenance, alarming 
and safety-signalizing (Hau, 2013).  

The main purpose of the control system of a wind turbine is 
to allow it to function completely autonomous. Moreover, the 
wind turbine has to function in a safe manner in any 
conditions without affecting itself or the environment. In 
order to do this, the possible faults which can occur have to 
be detected or predicted and specific measures have to be 
taken (Hau, 2013). Thus, the control system is composed of 
dynamic subsystems (manages the operation of the wind 

turbine, establishing reference values for the blade pitch 
angles, nacelle’s yaw angle and output power according to 
the current conditions) and supervisory subsystems (monitors 
the operation of the wind turbine and takes appropriate 
measures (e.g. start, shut-down, breaking and accommodate 
faulty sensors) (Manwell, et al., 2009). 

3. THE MODEL OF A WIND TURBINE 

A benchmark model of a wind turbine was developed in 
Matlab and Simulink (Odgaard, et al., 2009) and will be used 
in this paper to test the fault detection and isolation 
implemented methods. 

According to (Odgaard, et al., 2009), the considered 
benchmark model corresponds to a real wind turbine, 
characterized by horizontal axis and single up-wind three-
bladed rotor. It can function with variable speed winds due to 
its pitch systems, even though the yaw system is absent. The 
rated power is 4.8 MW and is obtained by using a generator 
fully coupled to a converter. 

The main components of a wind turbine are modeled in four 
different blocks in the benchmark model. The Blade and 
Pitch Model describes the hydraulic rotational system of the 
blades and the aerodynamic effects of the wind on the blades 
depending on the pitch angles. The Drive Train Model is used 
to describe the mechanical behaviour of the components 
which connect the rotor and the generator. The functioning of 
the generator that produces electrical energy from mechanical 
energy is modeled in the Generator and Converter Model, 
together with the operation of the converter which modifies 
the torque. The control of the modelled wind turbine is 
performed in two stages: power optimization (when the wind 
speed is too low to obtain the desired electrical power, 
optimization tehniques are applied in order to obtain the 
highest possible power level) and power reference follow 
(pitch angles of the blades are modified by a PI controller in 
order to maintain the desired output power when the wind 
speed is strong enough) (Odgaard, et al., 2009). 

These blocks and the connections between them are shown in 
Fig. 2. In order to follow the imposed electrical power 
reference ( ௥ܲ) and to minimize the difference between this 
power and the actual generated power ( ௚ܲ), the controller of 
the wind turbine has to generate reference values for the pitch 
angles of the blades (ߚ௥) and for the generator’s torque (߬௚,௥) 
based on the measured values (ߚ௠, ߬௚,௠). These reference 
values are transmitted to the Blade and Pitch System Block 
 and to the Generator and Converter Block, respectively (௥ߚ)
(߬௚,௥). The pitch systems modifies the blade’s angles 
according to the reference value received. Based on the 
values of the wind speed (ݒ௪) and the aerodynamic forces 
that are influenced by the pitch angles of the blades, a 
different value of the rotor’s torque (߬௥) is generated. This 
torque is applied to the wind turbine’s Drive Train which 
influences the rotational speed of the rotor’s shaft (߱௥) and 
the rotational speed of the generator’s shaft ( ௚߱). Based on 
the last rotational speed ( ௚߱) and on the reference for the 
generator’s torque (߬௚,௥), the generator produces a certain 
torque value (߬௚) and electrical power ( ௚ܲ).This represents the 
produced electrical power by the wind turbine. 
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The benchmark model implemented in Matlab and Simulink 
has two more blocks than the diagram in Fig. 2: the Wind 
Model’s block and the Sensors’ block. The sensors 
considered in the benchmark model have been grouped in a 
separate block in order to simplify the model. Aiming to 
simulate the real behaviour of the sensors, stochastic noise 
overlaps the real measured values. Physical redundancy is 
assured by the usage of two sensors for each measured 
property: pitch angle of each blade (ߚ), rotor’s rotational 
speed (߱௥), generator’s rotational speed ( ௚߱) and rotor’s 
torque (߬௥). Only one sensor was considered for generator’s 
torque (߬௚), electrical power obtained ( ௚ܲ) and wind speed 
 Based on a predefined real measurements sequence of .(௛௨௕ݒ)
wind speed obtained from a wind park, the behaviour of the 
wind is simulated in the Wind Model block. Inside this block, 
the phenomena which occur in real situations are simulated: 
wind shear (variation of the wind speed over altitude), tower 
shadow (changing of the wind direction because of the wind 
turbine’s tower) and turbulences (simulated using a Kaimal 
filter). Thus, the wind speed at the hub level (ݒ௛௨௕) and at 
blades level (ݒ௪௜௡ௗ) are obtained as outputs of this block.  

 
Fig. 2. The block-diagram of the considered benchmark 
model (Odgaard, et al., 2009). 

During the simulation of the benchmark model, nine faults 
are introduced at different time moments. These faults affect 
three types of components: sensors (5), actuators (3) and 
drive train (1). The faults have different degrees of severity 
and in consequence, different counter-actions have to be 
taken after detection and isolation. Some faults are very 
serious and should determine the shutdown of the entire 
system, whereas some are less severe and the controller can 
accommodate the resulted effects (Odgaard, et al., 2009).  

This paper is focused only on three types of faults which 
affect the sensors and an actuator simulated in the benchmark 
model and further on, only these faults will be detailed. 

4. FAULT DETECTION AND ISOLATION 

A fault is a phenomenon which leads to a change in the 
behaviour of a system such that the performances imposed 
for a particular functionality are not fulfilled anymore. So, the 
system will continue to function, but not in the optimal 
designed manner. In contrast, a failure makes the system to 
not be able to fulfil a designed functionality. In this case, the 
shut-down of the system is required (Marcu and Mirea, 2003; 
Blanke, et al., 2006). 

Although faults, perturbations and modelling uncertainties 
cause changes in the normal operation of a system, there are 
some differences between them. The effects of a fault have to 

be detected and counteracted as fast as possible because 
sudden or gradual unknown changes will appear (Marcu and 
Mirea, 2003). These differences cannot be reduced by a 
classical controller. In contrast, the effects of perturbations 
and modelling uncertainties are known and can be withstood 
by using filtering methods or adaptive control (Blanke, et al., 
2006). 

The occurrence of a fault implies not only a change in the 
behaviour of the affected component, but also in the entire 
ensemble which includes that part. In order to avoid the 
damaging of the system, of the connected elements or of the 
environment, the faults have to be detected as fast as possible 
and decisions have to be taken in order to restrict the effects. 
Thus, a fault tolerant control has to be implemented. The 
functionalities of the system will be fulfilled even when a 
fault occurs by the self-adaptation of the controller to the new 
structure or parameters of the system (Blanke, et al., 2006).  

A fault tolerant system has two stages: fault diagnosis (the 
fault and its source has to be detected) and adaptation of 
control law (modification of controller’s parameters in order 
to counteract the effects of the fault). The first stage implies 
four steps: detection (finding the moment when a fault 
appears), isolation (finding the component affected by the 
fault), identification (finding the type of the fault) and 
estimation (finding the severity level of the fault). This paper 
is focused only on the first two steps of the fault diagnosis 
process. 

The wind energy is the renewable energy with the highest 
annual increase. According to (Global Wind Energy Council, 
2015), only in the year 2014, wind turbines with a cumulated 
power of 51 GW were installed. Simultaneously with the 
development of the maximum power delivered, protection 
and maintenance solutions were also improved. For both 
onshore and offshore wind turbines, the use of a fault tolerant 
controller offers multiple advantages: production of electrical 
energy in small quantities even when a fault occurs, 
protection of the system, less frequent and less expensive 
maintenance operations and increase of profit (Esbensen and 
Sloth, 2009). Thus, every wind turbine should have a 
supervising system in order to monitor the components and to 
detect the faults. The most frequent faults in a wind turbine 
affect sensors, actuators, drive train and electrical system 
(Manwell, et al., 2009). 

Regarding the usage of an analytical model, fault detection 
methods can be divided in two categories. The detection can 
be based on a priori knowledge about the model of the 
studied component or can be done empirically, using the 
black-box concept. Even though both methods use models 
and data acquired from the system, the manners which yield 
to the results are completely different (Katipamula and 
Brambley, 2005). 

4.1. Fault Diagnosis based on Analytical Model 

Using a priori knowledge (physical equations) about the 
component which is diagnosed, a model is designed such that 
its behaviour is the same as the real one in normal conditions 
(without faults). This model has the same inputs as the real 
component. Comparing the outputs of the system and of the 
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model, respectively, a residue is obtained. By analysing this 
residue using different techniques, it can be established if a 
fault occurred or not. This method of fault detection has the 
advantage of underlying on physical principles which 
describes the behaviour of the analysed component, but not 
always a complete model can be obtained (Katipamula and 
Brambley, 2005). 

In the case of the studied wind turbine, a residues generator is 
designed using a state-space estimator. Thus, the error of the 
output’s estimation can be used as a residue in order to detect 
the presence of a fault. It is considered the linear, time-
invariant, observable model in state-space representation of 
the analysed component in normal behaviour described by 
the relations (1) and (2) (where ݔ ∈ Թ௡ൈଵ is the state vector, 
ݑ ∈ Թ௠ൈଵ is the input vector, ݕ ∈ Թ௣ൈଵ is the output vector, 
ܣ ∈ Թ௡ൈ௠ is the system matrix, ܤ ∈ Թ௡ൈ௠ is the input 
matrix and ܥ ∈ Թ௣ൈ௡ is the output matrix). The equations of 
the state-space estimator are (3) and (4) (where ܮ ∈ Թ௡ൈ௣ is 
the estimator’s matrix, ݔො ∈ Թ௡ൈଵ is the estimated state vector 
and ݕො ∈ Թ௡ൈଵ is the estimated output vector). The estimator’s 
matrix ܮ is chosen such that its dynamic is faster than the 
system’s (Luenberger, 1966; Marcu and Mirea, 2003; 
Radisavljevic-Gajic, 2014). The difference between the real 
output and the estimated output represents the residue used 
for fault detection. 

ሻݐሶሺݔ ൌ ܣ ∙ ሻݐሺݔ ൅ ܤ ∙  ሻ    (1)ݐሺݑ

ሻݐሺݕ ൌ ܥ ∙  ሻ    (2)ݐሺݔ

ොሶݔ ሺݐሻ ൌ ሺܣ െ ܮ ∙ ሻܥ ∙ ሻݐොሺݔ ൅ ܤ ∙ ሻݐሺݑ ൅ ܮ ∙  ሻ    (3)ݐሺݕ

ሻݐොሺݕ ൌ ܥ ∙  ሻ    (4)ݐොሺݔ

In the case of the modelled wind turbine, a stochastic noise 
affects the outputs because these are available through 
sensors’ measurements. In order to have the residue 
influenced only by the faults, a low-pass Butterworth filter 
has to be used to reduce the effects of the noise. The reason 
of choosing a Butterworth filter is that its pass-band is flat 
(no ripples are present). Thus, the important frequencies of 
the signal will not be distorted, otherwise, the specific 
frequencies for a certain type of fault could have been 
covered or even introduced (Proakis and Manolakis, 1996; 
Pollock, 1999). 

The block scheme of the fault diagnosis module based on 
analytical model used in the case of the wind turbine is 
showed in Fig. 3. 

 

Fig. 3. The block scheme of the fault diagnosis module based 
on analytical model. 

4.2. Fault Diagnosis based on Direct Processing of the 
Signals 

A priori knowledge is not used in this method, contrary to the 
previous one, only input and output signals of the analysed 
component. This method also constructs a model which is 
based only on the behaviour of the component, not on the 
physical relations (Katipamula and Brambley, 2005). 

The methods in this category can be divided in two main 
classes: those based on frequency-domain analysis and those 
based on time-domain analysis. 

4.2.1. Frequency-Domain Analysis 

This method uses Fourier Transform (FT) to obtain 
information about its frequency spectrum through the 
magnitude and the phase of the sinusoids that comprise the 
analysed signal. 

A reduction of the number of operation required to obtain the 
frequency spectrum can be made using the Fast Fourier 
Transform (FFT) which is based on the ‘Radix-2 decimation-
in-time’ algorithm firstly described in (Cooley and Tukey, 
1965). If the initial analysed sequence is divided in two equal 
parts, the Discrete Fourier Transform (DFT) is applied for 
each of them and then the results are combined using relation 
(5), the same result as applying DFT for the entire sequence 
is obtained. Using the symmetry (6) and periodicity (7) 
properties, a reduction to half of the number of computational 
operations is obtained because the terms ܩሺ݇ሻ and ௡ܹ

௞ ∙  ሺ݇ሻܪ

can be used twice, for both ܺሺ݇ሻ and ܺ ቀ݇ ൅
ே

ଶ
ቁ (relations (8) 

and (9)) (Dahnoun, 2000). 

ܺሺ݇ሻ ൌ ሺ݇ሻܩ ൅ ேܹ
௞ ∙ ,ሺ݇ሻܪ ݇	݁ݎ݄݁ݓ ൌ 0,… ,ܰ െ 1    (5) 

ேܹ

௞ା
ಿ
మ ൌ െ ேܹ

௞    (6) 

ܹಿ
మ

௞ା
ಿ
మ ൌ ಿܹ

మ

௞    (7) 

ܺሺ݇ሻ ൌ ሺ݇ሻܩ ൅ ேܹ
௞ ∙ ,ሺ݇ሻܪ ݇	݁ݎ݄݁ݓ ൌ 0,… ,

ே

ଶ
െ 1    (8) 

ܺ ቀ݇ ൅
ே

ଶ
ቁ ൌ ሺ݇ሻܩ െ ேܹ

௞ ∙ ,ሺ݇ሻܪ ݇	݁ݎ݄݁ݓ ൌ 0,… ,
ே

ଶ
െ 1   (9) 

Thus, it is recommended that the sequence which is analysed 
to have a length equal with a power of two in order to reduce 
the number of computational operations using the Divide and 
Conquer method. Otherwise, zeros will have to be added at 
the end until a proper length is reached. 

Because the diagnosis is made online, the signal processing 
using FFT has to be performed over temporal windows. The 
length of the windows has to be chosen such that: sufficient 
information is enclosed for a precise analysis (all the 
frequencies involved can be detected if the window’s length 
is bigger than half of the maximum period of the sinusoidal 
components), the computational time required to process 
these data do not exceeds the acquisition period of the next 
sequence and an eventual fault has to be signalized as soon as 
possible. 
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The usage of temporal windows has the disadvantage of 
implying the ‘leakage’ phenomenon (in spectral 
representation, some frequencies can be covered by smaller 
lobes which appear around the principal frequencies’ lobes). 
This problem can be overtaken using a window with a 
Discrete Time Fourier Transform (DTFT) close as possible to 
a Dirac impulse (Lang, 2014), instead of a rectangular 
window. The most used such windows are Hanning and 
Hamming.  

These windows have the disadvantage of attenuating the 
signal around its ends. Thus, the windows have to be 
overlapped with a certain percent, such that all the values of 
the signal can contribute equally to the final result of the 
analysis. Using this method, the diagnosis system does not 
have to acquire a set of data equal with the length of the 
window in order to analyse if a fault is present or not. A 
shorter sequence of values is required now, which is 
concatenated with a part of the previous sequence. Thus, the 
diagnostics can be given faster, fulfilling one of the 
requirements of a performant diagnosis system – the 
promptitude (Marcu and Mirea, 2003). 

4.2.2. Time-Domain Analysis 

The methods from this category use the signals without 
transforming it into another domain. Four techniques were 
used in the case of the wind turbine’s fault diagnosis: mean 
(used to detect a continuous component of the signal), 
dispersion (used to detect the spread of the signal’s values 
around the mean value), auto-correlation (used to detect any 
repetitive sequence in the signal) and cross-correlation (used 
to detect the similarity between the signals from the sensors 
which ensure physical redundancy). 

5. IMPLEMENTATION 

In order to simulate the behaviour of the wind turbine in 
conditions as close as possible to the real case, a predefined 
measurements sequence of wind speed acquired from a real 
wind park is used. As described in Section 3, this sequence is 
modified by simulating the phenomena of wind shear, tower 
shadow and turbulences. After that, the values are used as 
inputs in the model of the wind turbine. The duration of the 
wind speed measurement sequence is 4400 seconds, having a 
sample time of 0.01 seconds. 

In this paper, only the detection and isolation steps are 
analysed, within the diagnosis stage of a wind turbine. 
Amongst all the faults simulated in this model, in this paper 
are studied only five of them which can be grouped in three 
categories: fixed value faults in sensors, gain factor faults in 
sensors and offset value faults in actuators. Further on, for 
each fault will be detailed the following: the effects, the 
severity level, the methods used for detection, the condition 
which has to be used in order to implement automatic 
detection and the implementation of the detection block built 
in Simulink. The results and the performances obtained are 
detailed and discussed in the next section, together with the 
isolation problem. 

 

5.1. Fixed value faults in sensors 

In the considered model of a wind turbine, three faults affect 
the sensors by modifying their outputs to constant values, 
indifferent of the values measured: 

 Fault_1 – blocks the first sensor of the pitch angle 
of the first blade (ߚଵ,௠ଵ) to the value 5° in the time 
interval ሾ2000, 2100ሿ	ݏ (Fig. 4) 

 Fault_3 – blocks the first sensor of the pitch angle 
of the third blade (ߚଷ,௠ଵ) to the value 10° in the time 
interval ሾ2600, 2700ሿ	ݏ 

 Fault_4 – blocks the first sensor of the angular 

velocity of the rotor (߱௥,௠ଵ) to the value 1.4	
௥௔ௗ

௦
	 in 

the time interval ሾ1500, 1600ሿ	ݏ. 

 

Fig. 4. Pitch angle of the first blade measurements made by 
the first sensor (ߚଵ,௠ଵ) affected by the fixed value fault 
Fault_1 in the time interval ሾ2000, 2100ሿ	ݏ. 

These faults imply an incorrect measurement which affects 
the control loops due to the erroneous feedback received by 
the controllers from the system. Thus, the level of the 
generated power is affected, but more dangerous effects can 
appear, like overloading the actuating mechanism of a blade’s 
pitch angle.  

The severity of these faults is considered to be reduced, due 
to the fact that physical redundancy is assured by using two 
sensors to measure the same physical phenomenon. Thus, a 
counteract action can be taken in this case, the entire shut-
down of the system being unnecessary. 

The two methods used to detect these faults are based on 
mean computation and frequency spectrum analysis.  

By computing the mean of the output values of a sensor over 
temporal windows, consecutive equal values will be obtained 
in the case of the occurrence of this type of fault. Even the 
measured feature (e.g. pitch angle) does not change over a 
period of time, due to the stochastic noise which affects the 
sensor, different values will be obtained at the output. The 
sensors provide values having four digits after the decimal 
point, ensuring a very large set of possible values. Thus, the 
probability that two or more consecutive means computed 
over temporal windows during normal operation to have the 
same value is very low. Good results with respect to fault 
detection based on this method gave been obtained by 
verifying the mean values obtained over the last three
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temporal windows, each one containing 5 samples without 
any overlapping. The results of computing the mean in the 
case of ߚଵ,௠ଵ signal affected by the Fault_1 are presented in 
Fig. 5. 

In the frequency spectrum of the sensor’s output, the 
dominant frequency is 0	ݖܪ only if a fixed value fault is 
present. When this type of fault occurs, the output of the 
analysed sensor is constant, without having any oscillation. 
Thus, the signal can be represented as a single sinusoid 
having the 0	ݖܪ frequency and the amplitude equal with the 
fixed value from the output. As described in Section 4, the 
frequency spectrum will be determined using temporal 
windows. If the sum of the frequencies’ amplitudes except 
the first frequency (corresponding to the 0	ݖܪ frequency) and 
the next few (which determines the lobe centered on the 0	ݖܪ 
frequency) is smaller than a small threshold value, then the 
fixed value fault is considered to affect the analyzed sensor. 
Using a temporal window of 512 samples, an overlapping 
factor of 75% (in order to obtain fast results of the detection 
and to leave enough time to process all the values acquired), 
Hanning type windows and a threshold value of 0.01. The 
results of computing the frequency spectrum in the case of 
 .ଵ,௠ଵ signal affected by the Fault_1 are presented in Fig. 6ߚ

 

Fig. 5. Mean values of the temporal windows containing 5 
samples of ߚଵ,௠ଵ signal. It can be observed that when the 
fixed value fault Fault_1 is present, the mean values are 
equal with the constant output value of the sensor. 

 

Fig. 6. Frequency spectrums of the temporal windows 
ሾ1505.29, 1510.4ሿ	ݏ and ሾ2021.13, 2026.24ሿ	ݏ respectively, 
computed over 512 samples using a Hanning type window. It 
can be observed that the 0	ݖܪ frequency is the main one 
when the fixed value fault Fault_1 is present. 

In order to reduce the probability of a wrong detection of this 
type of fault, the results delivered by these two methods can 
be used together. The fault is considered to be present if both 
methods’ conditions are fulfilled and not to be present if both 
methods’ conditions are not fulfilled. If just only one method 

indicate that the fault is present, then an uncertainty state is 
considered (when the counteract actions can be prepared but 
not applied yet). 

The structure of the Simulink block which applies the 
presented methods of detection a fixed value fault (Fault_1) 
in a sensor is presented in Fig. 7. Only the block which 
detects the first fault (Fault_1) will be detailed further on 
because the other two blocks are similar. This block has as 
input the analysed signal from the sensor, in this case the 
measurement of the pitch angle of the first blade (ߚଵ,௠ଵ) and 
as output a signal which can have only three values:	0 if the 
fault is absent, 2 if the fault is present and 1 if it the 
uncertainty state is present. 

 

Fig. 7. The structure of the Simulink block which detects the 
presence of Fault_1. 

Each detection method has its own block for windowing the 
input signal. The method based on the mean value needs 
sequences of 5 samples without overlapping which can be 
obtained using a Zero-Order Hold (to hold each sample value 
for one sample interval) and a Buffer (which groups every 5 
sample values in a vector). The method based on frequency 
spectrum analysis needs sequences of 512 samples with 75% 
overlapping which can be obtained using as in the previous 
case, a Zero-Order Hold and a Buffer (having the size of 128 
sample values). Moreover, three Delay blocks (determining 
128, 256 and 384 sample periods delays respectively) are 
used, which keep the last three groups of 128 samples and 
together with the most recent group of 128 samples acquired 
are merged by the Matrix Concatenate block in order to 
obtain a sequence of 512 sample values which overlaps on 
75% with the previous sequence. After this, a Hanning type 
window is applied on each sequence obtained. The signal’s 
preparation for frequency spectral analysis is made in 
Simulink using the structure from Fig. 8. 

 

Fig. 8. The Simulink blocks for windowing, overlapping and 
application of Hanning type window operations used to 
detect the presence of Fault_1. 

After windowing, the mean value and the frequency spectrum 
are determined using Matlab function blocks previously 
presented. The mean value, the magnitude and the 
frequencies of the spectrum (the last two are combined in a 
two column matrix) obtained are then send to the Decision 
block. This block applies the fault occurrence conditions 
described above using Matlab functions block. The results of 
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each method (if the fault is present or not) are then send to a 
block which outputs the final decision (0 if the fault is absent, 
2 if the fault is present and 1 if it the uncertainty state is 
present). 

5.2. Gain factor faults in sensors 

In the considered model of a wind turbine, two faults affect 
the sensors by modifying their outputs with a constant gain 
value. In this paper it will be considered only one of these 
faults: 

 Fault_5 – affects both the second sensor of the 
rotor’s speed (߱௥,௠ଶ) with the gain value 1.1 and the 
second sensor of the generator’s speed (߱௚,௠ଶ) with 
the gain value 0.9 in the time interval 
ሾ1000, 1100ሿ	ݏ (Fig. 9) 

 

Fig. 9. Rotor’s speed (߱௥) measured by the two redundant 
sensors: m1 (blue) affected by the Fault_5 in the time interval 
ሾ1000, 1100ሿ	ݏ and m2 (red). 

Similar to the case of the fixed value faults in sensors, this 
fault has a low severity, too. Even that the control loops are 
affected because the measurements become incorrect, due to 
the fact that physical redundancy is assured by using two 
sensors to measure the same physical phenomenon, its 
negative effects can be easily counteracted if it is detected on 
time. 

The method used to detect this fault is based on the analysis 
of the auto-correlation of one of the affected signals. The 
definition formula of the auto-correlation of a signal contains 
the values of that signal (equation (10)). If the values of the 
signal increase (due to the presence of a fault which 
introduces a gain factor greater than 1), then the amplitude of 
the auto-correlation result will also increase and reversely, if 
the signal’s values decrease, then the auto-correlation’s 
amplitude will also decrease. Based on this observation, a 
fault which introduces a gain factor in a sensor’s output can 
be detected by comparison with the auto-correlation’s 
amplitude applied to the redundant sensors which measure 
the same physical phenomenon. If the maximum value of the 
difference between the auto-correlation’s amplitude of the 
two redundant signals from a temporal window is greater 
than a threshold value (which has to be chosen such that the 
sensors’ noise to not cause false detections), then the fault is 
present. Because the application of the auto-correlation 
function requires a sequence of values obtained from the 
sensors (having the length chosen such that useful 
information for detection process can be obtained in a time as 
short as possible), rectangular windows will be used for this 
method, too. The results by applying this method to the 

signals ߱௥,௠ଶ and ߱௚,௠ଵ and to their corresponding redundant 
signals are presented in Fig. 10 and Fig. 11. It can be 
observed that the values obtained from the signal ߱௥ (rotor’s 
speed) when the fault is present are not higher than those 
obtained in normal operating conditions. In contrast, the 
values obtained from the signal ௚߱ (generator’s speed) when 
the fault is present are clearly higher than the others. Thus, 
the detection method of this fault (Fault_5) will consider 
only the signal ௚߱. A suitable method for the signal ߱௥ can 
be used and the results obtained to be combined, similar to 
the case of the fixed value faults described above, in order to 
obtain a higher certainty of the detection. 

Φ௫௫ሺ߬ሻ ൌ lim்→ஶ
ଵ

ଶ்
׬ ሻݐሺݔ ∙ ݐሺݔ ൅ ߬ሻ݀ݐ
்
ି்   (10) 

 

Fig. 10. The results obtained after computation of the 
maximum values of absolute difference between 
autocorrelations of redundant signals ߱௥,௠ଶ (affected by 
Fault_5 in the time interval ሾ1000, 1100ሿ	ݏ) and ߱௥,௠ଵ. The 
values obtained when the fault is present are not higher than 
those obtained in the rest of the time. 

 

Fig. 11. The results obtained after computation of the 
maximum values of absolute difference between 
autocorrelations of redundant signals ߱௚,௠ଵ (affected by 
Fault_5 in the time interval ሾ1000, 1100ሿ	ݏ) and ߱௚,௠ଶ. The 
values obtained when the fault is present are clearly greater 
than those obtained in the rest of the time. 

The structure of the Simulink block which applies the 
presented method for detection of a gain factor fault 
(Fault_5) in a sensor is presented in Fig. 12. Both signals 
߱௚,௠ଵ and ߱௚,௠ଶ are windowed in parallel using a Buffer of 
size 100. This size was chosen due to the best results 
obtained (only true detections of the fault obtained after a 
period of time (required for acquisition and processing) as 
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short as possible) after several test. Further on, the auto-
correlation is computed for each sequence and the results 
obtained are delivered to the next block which computes the 
absolute difference between them. The maximum value of 
this difference is then determined. Finally, the decision 
regarding the presence of gain value fault (Fault_5) (0 if the 
fault is absent, 2 if the fault is present) is taken in the 
Decision_Fault_5 block. If the maximum value obtained is 
greater than a threshold value (which was chosen to be 3000 
based on the results obtained after simulating the fault in 
different time moments) then the fault is present and the 
output signal of this detection block is modified to value 2. 
Otherwise, the output signal is maintained at value 0.  

 

Fig. 12. The structure of the Simulink block which detects the 
presence of Fault_5 based on the signals ߱௚,௠ଵ and ߱௚,௠ଶ. 

As stated previously, a higher certainty in detection can be 
obtained by combining this method with a suitable one for 
signal ߱௥ and also indicating the presence of this fault only if 
in a consecutive number of time windows the fault is 
considered to be present (as it was done in the case of fixed 
value faults). This last technique has the disadvantage of 
introducing a big delay between the moments of occurrence 
and signaling of the fault (due to the fact that the time 
window used is long – 100 sample periods). In the performed 
tests, it was observed that this method was not necessary (no 
wrong alarms were made using the decisions of single time 
windows). 

5.3. Offset value faults in actuators 

In the considered model of a wind turbine, one fault affects 
an actuator by modifying its output with a constant offset 
value: 

 Fault_8 – affects the converter by adding a constant 
offset value (100	ܰ݉) to the generator’s torque 
value (߬௚) in the time interval ሾ3800, 3900ሿ	ݏ (Fig. 
13). 

 

Fig. 13. Measured values of generator’s torque (߬௚) when 
Fault_8 is not present (blue) and when it is present (red). 

When the wind’s speed is high enough in order to obtain the 
desired output electrical power, the controller starts to operate 
in the constant power production mode. Thus, the generator’s 
torque is desired to remain constant by varying the pitch 
angles of the blades according to the wind’s direction. When 

this type of fault occurs, the generator’s torque is modified 
due to an offset in the converter’s internal control loop. The 
severity of this fault is considered to be high because it 
determines a slow torque control which may lead in the worst 
case to damages to the wind turbine’s mechanical structure. 

The detection of this fault is based on the analytical model of 
the affected component. The dynamics of the converter used 
in the considered wind turbine model can be modelled as a 
first order system (equation (11)), where the constant design 
parameter ߙ௚௖ is equal with 50 in this case (Odgaard, et al., 
2009).  

ఛ೒ሺ௦ሻ

ఛ೒,ೝሺ௦ሻ
ൌ

ఈ೒೎
௦ାఈ೒೎

  (11) 

As stated in Section 4.1., a state-space estimator is required to 
be designed. Its dynamic has to be faster than the system’s, 
so, based on the tests done, its Eigen value is chosen to be 
placed two times further away than the system’s Eigen value 
(which is െ50). Thus, by knowing that the estimator is a first 
order one and its Eigen value is equal with െ100, the design 
is completed.  

Also, due to the noise which affects the sensor from which 
the output of the analyzed component is taken, a low-pass 
Butterworth filter is required (Section 4.1). Based on the 
frequency spectrum of the residue signal obtained in this case 
(as the difference between the output of the converter 
modelled as a first order system and the output of the 
previous designed state-space estimator), the order of the 
filter is chosen to be 6 and the cut-off frequency 0.4	ݖܪ. In 
Fig. 14 it is represented the obtained filtered residue. In the 
time interval when the fault occurs (ሾ3800, 3900ሿ	ݏ), higher 
values are obtained. Finally, a threshold value has to be 
chosen such that when the filtered residue is higher that this 
value, then the fault is signalized as being present. 

 

Fig. 14. The filtered residue between the measured 
generator’s torque (߬௚,௠) and the estimated generator’s torque 
using a state-space estimator. 

The structure of the Simulink block which applies the 
described detection method is presented in Fig. 15. The state-
space estimator is simulated using a State-Space block. Its 
inputs are ߬௚,௥ and ߬௚ signals (which are the reference signal 
and the obtained generator’s torque respectively) and its 
output is the estimated generator’s torque. Then, the residue 
is computed and filtered using the designed Butterworth low-
pass filter. The decision regarding the presence of the offset 
fault in converter Fault_8 is taken in the last block, where the 
filtered residue values are compared with the threshold value 
30	ܰ݉ (determined after several tests). If the obtained values 
are greater than the threshold value, then the fault is present 
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and the output signal of this detection block is modified to 
value 2. Otherwise, the output signal is maintained at value 0 
(meaning that the fault is not present). As in the case of the 
previous fault, a robust detection can be achieved using a 
secondary detection method and combining the obtained 
results. 

 

Fig. 15. The structure of the Simulink block which detects the 
presence of Fault_8 which affects the converter by 
introducing an offset value in the torque’s value. 

6.  RESULTS AND DISCUSSIONS 

The Simulink blocks for detecting the considered faults were 
constructed as presented before and placed in the wind 
turbine’s benchmark model (Odgaard, et al., 2009) in order to 
function online.  

During several tests, it was observed that all the faults were 
detected and no false detections were made. The average time 
differences between the occurrence and the detection 
moments and between the end of occurrence and the end of 
detection moments are presented in Table 1 and Table 2, 
respectively. Fig. 16 shows graphically the meaning of these 
time differences. In this figure, the signal obtained as output 
from the detection block has three values:	0 if the fault is 
absent, 2 if the fault is present and 1 if it the uncertainty state 
is present. Table 3 shows the detection coverage rate 
(percentage of the fault alarm duration with respect to the 
entire duration of the fault occurrence). 

As stated previously, due to the fact that two detection 
methods were implemented and tested for the fixed value 
faults in sensors (Fault_1, Fault_3 and Fault_4), an 
additional intermediary level of the output signal was added, 
which represents the uncertainty state. This state is activated 
when the fault detection conditions are met for one method 
but not for both. From the time differences presented in Table 
1 and Table 2, it can be seen that when a fault occurs, the 
uncertainty state is activated after a short period (0.21 
seconds on average), whereas the transition to the certain 
state takes on average 3 more seconds. This difference is 
caused by the length of the windows used in the processing 
methods (5 samples without overlapping for the mean 
detection method compared to 512 samples with an 
overlapping factor of 75% for the frequency-domain 
method). Shorter windows would lead to smaller time 
differences but would also cause false detections because less 
information would be used for analysis. Even though this 
fusion of two detection methods adds extra complexity to the 
solution and also adds an uncertainty state, the signalizing of 
a fault occurrence is more reliable. An odd number of 
detection methods could simplify the detection output by 
taking a majority vote among the decisions of the used 
methods. 

For the detection of gain factor fault in sensors (Fault_5) and 
offset value faults in actuators (Fault_8) only one method 

was used and thus, the uncertain state is not used. This is the 
reason why Table 1 and Table 2 contain for these faults only 
the values corresponding to the time differences between the 
fault occurrence and the certain detection moments. It can be 
seen that Fault_5 has the lowest values for time differences 
between the fault occurrence and the certain detection and 
between the end of fault occurrence and the end of certain 
detection, respectively, among all the considered faults. This 
is due to the small temporal window length (100 samples) 
used for the online detection. Even though Fault_8 does not 
use any windowing, it has the highest time differences among 
all the analysed faults. The reason for this is given by the 
execution time needed for generating the prediction based on 
the analytical model, computing the residue and filtering it. 

Overall, one can observe that the applied methods are able to 
promptly react to the considered fault occurrences. The used 
methods have the ability to detect the considered types of 
faults regardless of their parameters (i.e. gain factor and 
offset value) without any false detections. Thus, it can be said 
that the provided solution fulfils the requirements of 
robustness and reliability needed for any fault detection 
system. 

 

Fig. 16. The duration between the occurrence of a fault and 
its uncertain (ݐ஽௘௧௎) and certain detection (ݐ஽௘௧஼), 
respectively, and between the end of occurrence of a fault and 
the end of certain (ݐா௡ௗ஽௘௧஼) and uncertain detection 
 respectively ,(ா௡ௗ஽௘௧௎ݐ)

Table 1. Time differences between the occurrence and the 
detection moments for each fault. 

Fault 

Duration between 
the occurrence and 

the uncertain 
detection (ࢁ࢚ࢋࡰ࢚) 

[seconds] 

Duration between 
the occurrence and 

the certain detection 
 [seconds] (࡯࢚ࢋࡰ࢚)

Fault_1 0.21 3.21 

Fault_3 0.21 3.53 

Fault_4 0.21 2.73 

Fault_5 – 1.1 

Fault_8 – 3.56 
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Table 2. Time differences between the end of occurrence 
and the end of detection moments for each fault. 

Fault 

Duration between 
the end of 

occurrence and the 
end of the uncertain 
detection (ࢁ࢚ࢋࡰࢊ࢔ࡱ࢚) 

[seconds] 

Duration between 
the end of 

occurrence and the 
end of certain 

detection (࡯࢚ࢋࡰࢊ࢔ࡱ࢚) 
[seconds] 

Fault_1 0.48 0.05 

Fault_3 0.8 0.05 

Fault_4 1.28 0.05 

Fault_5 – 1 

Fault_8 – 3.07 

Table 3. Overlapping rate between the occurrence and 
the certain detection for each fault. 

Fault 

Overlapping rate 
between fault 

occurrence and certain 
fault detection [%] 

Fault_1 96.79 

Fault_3 96.47 

Fault_4 97.27 

Fault_5 98.9 

Fault_8 96.44 

As stated before, the first two steps of the fault diagnosis 
process are the detection and the isolation of the faults. The 
isolation implies finding the components affected by a certain 
fault. In the considered case of a wind turbine, this step is 
accomplished implicitly due to the fact that each fault affects 
a different signal and has a different signature. By knowing 
which signal has an abnormal behaviour, it can be said that 
the faults are isolated. 

7. CONCLUSIONS 

The worries regarding the increase of the global warming and 
the pollution level lead to an intense development of the 
electricity generation methods based on renewable resources 
(wind, sun, water, Earth’s heat, hydrogen) in the last years 
(Tong, 2010). Even that the wind energy has some 
disadvantages (a high initial investment is necessary, the 
wind has a variable behaviour, the best positions for wind 
turbines are usually far from the place where electricity is 
needed), the advantages (no pollution is involved, worldwide 
availability, has the lowest price among all the other methods 
based on renewable resources) makes it the most promising 
energy source for the future (Wagner and Mathur, 2009). 

The purpose of this paper was to present several fault 
detection and isolation methods for the case of a wind 
turbine. Due to the rapid growing of the wind turbines 
number, some of them being placed in positions very difficult 
to reach (offshore), the protection methods becomes very 
important. The methods studied in this paper can be divided 

into two categories: model-based methods (based on state-
space estimators) and methods based on the wind turbine’s 
signals analysis (in both frequency and time domains). For 
testing, a benchmark model of a real wind turbine 
implemented in Matlab and Simulink (Odgaard, et al., 2009) 
was used. The developed methods for detecting and isolating 
the faults which affect some of the sensors and the actuators 
of the wind turbine, were implemented as Simulink blocks 
and tested online. The obtained results are very good and 
prove that these methods can be used in a real case, 
implemented on an embedded system. 
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