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Abstract: We present an algorithm for highly reliable tracking of planar objects using visual
cues like texture and contour in presence of feature correspondence errors. These two cues are
integrated using a probabilistic formulation. The integration is based on quality goodness factors.
The goodness criterion is a generalization of the well known “good features to track” concept to
the both point and edge cases. The motion model of the object is computed as a homography
between reference and current frames. A probabilistic formulation of the problem is proposed and
implemented using particle filters. Tracking for geometric computation is useful in applications
like object grasping, 3D reconstruction, augmented reality, etc. The algorithm combines contour
and texture information in a novel manner to achieve robustness that outperforms the state of
the art methods, which is justified by the results of experiments.
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1. INTRODUCTION

Object tracking problem attracts a great interest by the
robotic vision. It finds applications in tasks like manipu-
lation, grasping, servoing, and assembly. The key factor
to success in these tasks is the robust estimation of the
target object motion against clutters, and changes in illu-
mination. The different approaches to object tracking in
the literature can be classified into two major categories.

The first category pertains to the conventional tracking
algorithms as in Chen et al. (2017), Liwicki et al. (2016),
Saqui et al. (2013), and Le and Kosecka (2017). In these
works, the objective is to place and maintain a “window”
on the object of interest. The position of the object in
the current frame is computed based on features extracted
in the frame and information about the objects’ past
positions. Features used as cues include optical flow, Harris
points Shi and Tomasi (1994), edges as in Isard and Blake
(1998), color distributions and lightness Chen et al. (2017)
and Liwicki et al. (2016), etc. Past information in the
form of motion models may be used to propagate the
target window across frames, or to register image features.
Morphological operations are used to track the object
in Saqui et al. (2013). Maintaining the object in the camera
field of view is the main goal in such cases. Applications
of such systems are found in surveillance, human tracking
for pedestrian detection, automatic vehicle driving, etc.

The second category deals with the computation of ge-
ometric information Benhimane and Malis (2004), Pres-
sigout and Marchand (2007), Conte et al. (2013), Borum
et al. (2014) and Petit et al. (2014). The objective of
these works is to accurately compute the geometric trans-
formation that finds the relation between the reference
1 Visesh Chari was Postdoc at Willow group during this work.

and current frames of the object. In case of planar ob-
jects, this transformation is represented as a homography
matrix like Benhimane and Malis (2004), Pressigout and
Marchand (2007), Kobayashi et al. (2016) and Petit et al.
(2014). Such computations are useful in object grasping,
3D reconstruction, augmented reality, etc. Typically, cor-
respondence of visual cues like texture and contour might
be already established in such cases. The challenge is to
accurately compute geometric transformation even in the
presence of erroneous visual cues. The need for the tracker
is not to lose the target in spite of changes in illumination,
clutter, occlusion, large camera motion, and perspectively,
where feature correspondence might not be reliable.

The focus of this paper is to present a tracker in the
second category which estimates a motion model to pre-
cisely estimate the 2D object position in the image. Two
very common image features, contour and texture, and a
powerful probabilistic framework based on Bayesian filter
are used here. Our emphasis is on the robustness and relia-
bility of the tracking in presence of feature correspondence
errors. The terms “contour” and “texture” are used here
in the following context. Contour features are assumed
to mean points on the boundary of an object that can
be propagated to subsequent frames using edge detection
operations. Texture features are assumed to be interest
points like Harris points used in KLT tracker presented
in Shi and Tomasi (1994) that can be extracted from local
gray level distributions.

Contour features are reliable when scenes have sharp
edges, high spatial gradients or contrast at object bound-
aries. Active contours or straight lines are generally used
for 2D tracking as in (Haines and Calway (2015)) and Isard
and Blake (1998), model-based 3D tracking Vacchetti et al.
(2004), or dense point tracking Le and Kosecka (2017).
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Fig. 1. Two planar images are related by homography H. Small errors in interest point estimation might result in
large error in Homography estimation. Homography can be computed from contour or texture points. Hg (bottom)
shows the true Homography and Ht (top) shows the homography computed using KLT (Shi and Tomasi (1994))
correspondences. In addition, we also show on the right, computed KLT correspondences(squares) and correct re-
projected ones(circles). Although KLT gives reasonable correspondence, estimation of homography suffers largely
even due to small errors.

Factors affecting reliability include clutter, shadow and
occlusion. In such cases, texture features are reliable. But,
such texture features are sensitive to large camera/object
motion where contour features can perform well. Observ-
ing complementary advantages of both cues, it is matured
to consider a combination of these cues Pressigout and
Marchand (2007), and Petit et al. (2014). Past integration
schemes include sequential processing and cost function
minimization like Pressigout and Marchand (2007) and
Petit et al. (2014) based methods.

The closest works to our work presented in this paper
are those presented in Pressigout and Marchand (2007)
and Petit et al. (2014). The framework in Pressigout and
Marchand (2007) is deterministic and fuses the edges and
texture points features in a single non-linear objective
function which is minimized. In other words, it is non-
linear optimization. The variables under minimization con-
sist the 2D transformation (homography) between the cur-
rent object position and the reference one. The objective
function in this case is the error between the current
position of the object and the transformed reference one,
this error is minimized by regulating it to zero. The work
presented in Petit et al. (2014) is an improvement to
the previous works presented in Pressigout and Marchand
(2007). The color cue is added to edge and point of interest
features to minimize an objective function containing three
of them together. Similarity between our work and Pres-
sigout and Marchand (2007) is that we do use the same
state variables, i.e. the homography components. However,
our framework is probabilistic framework that utilizes
Bayesian filtering techniques. This leads to tracking with
higher accuracy as shown in Section 4.

The aim of this work is to address the problem of 2D
homography estimation problem motivated by the fact
that errors in feature correspondence can cause gross errors
in homography estimation. Figure 1 shows typical errors in
homography that occur due to inaccurate texture tracking.
This work presents an algorithm that robustly computes
homographies based on a probabilistic framework imple-
mented using particle filters, by combining contour and
texture information in a novel manner. In this frame-
work, multiple samples of homography are drawn and their
likelihood is estimated using tracked texture and contour

features. A maximum aposteriori (MAP) approach allows
us to deal with uncertainties in feature correspondence.
Further, robust models are used to reject outliers in the
features. Texture features are interest points computed
and tracked using the KLT tracker Shi and Tomasi (1994).
Contour features are tracked and proposed for the first
time in MacCormick (2000). Samples can be drawn from
the space of all homographies or the space of all poses,
i.e. rotation,translation. It is shown that the latter is more
effective. Forth, our problem is shown as the computation
of incremental homography resulting from inter-frame mo-
tion. The reference frame is taken as the first frame of a
video sequence.

The contribution of this paper is summarized as a hybrid
tracking framework that probabilistically integrates con-
tour and texture point features. The integration is based
on goodness factors computed based on the quality of the
selected measurement points. The probabilistic tracking is
realized using the particle filter. The good edge and point
features are extracted by generalizing Harris good points
to both good points and good edges.

The remaining of this paper is organized as follows. The
probabilistic hybrid tracking framework is presented and
discussed in Sec 2. The process of feature detection,
good point and good edges extraction, weighting factor
calculation, and features likelihood functions are presented
in Sec 3. Section 4 presents our experiments and the
analysis of the results.

2. PLANAR OBJECT TRACKING BASED ON
PROBABILISTIC 2D MOTION ESTIMATION

Given an initial image I0 and an image It of a planar
object at time instant t, there is a homography Ht that re-
lates the image points belonging to the object. If the vector
x0 = [u0, v0, 1]

T represents the homogeneous coordinates
of a point in the first image and the vector xt = [ut, vt, 1]

T

represent a point in the second image, the relation between
these two points is written as xt = Htx0 or

xt ∼





h1
t h2

t h3
t

h4
t h5

t h6
t

h7
t h8

t h9
t



x0. (1)
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Fig. 2. Verifying claim of non-linear pose-homography
relationship. Left: Homography samples drawn from
the homography space from a Gaussian distribution of
small covariance. Right: Homography samples result-
ing from pose space points drawn from a Gaussian.

Estimating the homography can be posed as estimating
the parameters of Ht, represented in one vector as

ht =
[

h1
t h2

t h3
t h4

t h5
t h6

t h7
t h8

t h9
t

]T
. (2)

By assuming that the camera/object motion is smooth,
then ht can be written as an increment over the homog-

raphy computed in the previous frame. Thus if ĥt is the
current homography estimate, change in this vector owing
to inter frame displacement can be written as

ĥt = ĥt−1 +∆ĥt. (3)

Now, let us consider F0 = {f1
0 , . . . , f

M
0 } to be a set

F0 of M visual features in the reference image I0. This

set of features is mapped by the transformation ĥt to the
estimated set of features Fht

= {f1
ht
, . . . , fM

ht
} in the

current image. The true estimate of the vector ĥt can be
computed by minimizing an error function of the form

G(ĥt) = F(Fht
− Ft), (4)

where Ft is the measured visual feature vector and F is
the distance measure. The optimal value ĥt is given as

ĥt = argmin
ht

F(Fht
− Ft), (5)

When the errors in the feature correspondences are non-
Gaussian, there exists no analytical method that can
minimize this error function. Particle filter algorithm or
what is called Condensation algorithm Isard and Blake
(1998) is preferred here because it provides an efficient
probabilistic framework to take care such uncertainties.

2.1 Pose space sampling

Using particle filters for estimating posterior probabilities
represents a generative model. Various homography (hy-
potheses) are generated as 9 × 1 vectors and are tested
for re-projection errors. One important aspect to such a
method is the sampling of the posterior distribution. The
space of homographies is a nonlinear function of the pose
space. Figure 2 shows homographies plotted by sampling
from homography space and pose space. Due to the non-
linearity, a small change in homography parameters rep-
resents a large change in pose, which is undesirable since
motion between frames is small.

Hence the solution is to sample in pose space. Decompos-
ing any set of 2 homographies induced by the same plane

in 2 views, to obtain unique values of pose and the plane
normal n⊤ is well known Hartley and Zisserman (2003).

H = K(R+ t
n⊤

d
)K−1 (6)

This allows us to sample in the pose space, when we have
the additional knowledge of camera internal parameters.
Further, since many systems for geometric computations
assume the knowledge of internal parameters, sampling
from pose space seems reasonable.

2.2 Particle Filter for feature integration

Bayesian filter formulation for computing homography ht

is presented now.

Bayesian Tracking: Let π(ht) be the belief of the random
vector ht at time t represented by posterior probability
p(ht | F1,...,t) based on features F1,...,t. Expanding using
Bayes rule,

p(ht | F1,...,t) =
p(Ft | ht)p(ht | F1,...,t−1)

p(FT | F1,...,t−1)
. (7)

Considering that p(FT | F1,...,t−1) is a constant we
marginalize the probability p(ht | F1,...,t−1) and apply
Bayes’ rule again to obtain the Bayesian estimation for-
mula as follows

p(ht | F1,...,t) =

α p(Ft | ht)

∫

p(ht | ht−1)p(ht−1 | F1,...,t−1)dht−1.
(8)

Equation (5) can be modeled as the maximum aposteriori
(MAP) of (8). Thus, equation (4) becomes the likelihood
p(Ft | ht) and equation (3) represents the motion model
p(ht | ht−1). Now, p(ht−1 | F1,...,t−1) represents the
previous iteration.

Once features are detected in the current image, likeli-
hoods for different homography hypotheses need to be
calculated in order to select a hypotheses that represents
the current homography. The likelihoods of visual features,
p(FC | h) and p(FT | h), are assumed to be independent.
Our approach combines the log of these likelihoods to
give a robust estimate of the validity of a homography
in presence of feature correspondence errors.

Particle Filters: The basic idea of particle filters is to ap-
proximate posterior density p(ht | F1,...,t) by a set of sam-
ples (particles) hi

t with associated weights or importance

factors wi
t. The Np particle-weight pairs {hi

t−1, w
i
t−1}

Np

i=1,
chosen to approximate density p(ht−1 | F1,...,t−1), are

propagated to pairs {hi
t, w

i
t}

Np

i=1 using the motion model
p(ht | ht−1). A detailed explanation of particle filters and
their use to represent probability functions can be found

in Doucet et al. (2001). The weights {wi
t}

Np

i=1 associated
to the particles hi

t are computed proportional to the like-
lihood function in case of using the bootstrap filter as

wi
t = α p(Ft | hi

t). (9)

In the next section, we present the methods to compute
likelihood for the two visual cues texture p(FT | h) and
contour p(FC | h). The subscript T of FT will be used to
denote texture rather than time henceforth.
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Algorithm 1 Reliable visual tracking using texture and
contour features
Input: Sequence of images I{1, . . . ,m}, initial features
F1 = {f1

i : i ∈ {1, . . . , n}}.
Output: Homographies H = {h1, . . . , hm} that satisfy
the observations in presence of noise.
ParamVector = [h1

t , . . . , h
9
t ](Eq 2) initialized to identity.

NumParticles = N {Set the number of particles needed
to sample the space effectively}
for i ∈ {2, . . . ,m} do
Fi = ExtractFeatures(ParamVector, Fi−1)
Particles = DrawSamples(ParamVector,NumParticles)
for j ∈ {1, . . . ,NumParticles} do

Qj = log(TLikelihood(Fi, Particlesj)) +
log(CLikelihood(Fi, Particlesj)) {Taking
particle minimizing log likelihood of the errors
corresponding to texture and contour features.}

end for
ParamVector = Particle(minj Qj)

end for

Integrating features: Combining p(FC | hi) and p(FT |
hi) in one framework we get

p(F | hi) = p(FC | hi)p(FT | hi). (10)

However, we consider the logarithm of the above likelihood
function, Equations (23),(25), such that the multiplication
becomes summation

Q = log[p(F | hi)] = log[p(FC | hi)] + log[p(FT | hi)]

= QC +QT .

(11)

It can be noticed that the contribution of each cue will be
nullified in case of the failure or the absence of this cue,
due to the way we define our likelihoods. Also, if one of
the cues is erroneous, the other cue can compensate for
this error. This gives robustness to our approach. Using
likelihoods defined above, we can now give an outline of
our algorithm.

3. FEATURE DETECTION, GOODNESS AND
LIKELIHOODS

3.1 Feature Detection

Contour features of the object are represented at the time
instant (t− 1) by Ct−1 in the previous frame. The vector
ht−1 represents the homography matrix that maps the
current contour in the previous frame Ct−1 to the contour
in the initial frame C0.

The contour estimation process using normal measurement
lines is depicted in Figure 3. The contour is mainly
representing the object edge in the previous frame. A set of
normal measurement lines are considered with respect to
the edge in the previous frame. Three normal line examples
are shown in Figure 3. Two edge proposals are shown
and only the nearest edge point measurement to the edge
proposal is considered. If there is no features detected on
the normal line like the line L3, this line will be discarded
and not considered in the likelihood function. It is worth
to note here that using short normal measurement will
reduce the effect cluttered scenes.

Textures features are considered here as Harris points.
Since it is based on a Laplacian formula of a similarity
criterion, it is also known as a differential tracker. Harris
points are tracked by the very well common tracker by
Shi-Tomasi-Kanade tracker Shi and Tomasi (1994). The
concept of Harris point is used to initiate the tracker with
highly tractable points. This quality of the point features
are measured using the singular values of the matrix Cp.
The feature points are selected with the highest singular
values. However, such points are the corners and similar
entities. In contract, points located in a uniform area will
not be detected.

3.2 The Weighted Good Features

To estimate the goodness of the features we build on
the method developed by Shi and Tomasi to measure the
dissimilarity of point features Shi and Tomasi (1994). The
goodness in other words means, it is a good feature to track
. They established a (2 × 2) measurement matrix around
the point feature. The two eigenvalues of this matrix are
large when the feature point is good to detect and track. If
there is only one large eigenvalue and another respectively
small one then it is a point that belongs to an edge. We
propose to generalize the goodness concept about points
to the case of edge features located on a measurements
line. In the sequel, we use the goodness of an image point
to define probabilistic weights to both contour and texture
points.

Good Features to Track: Similar to Shi and Tomasi
(1994), the affine image motion between successive frames
is computed as one that minimizes the intensity dissimi-
larity

ǫ =

∫ ∫

W

[J(Ax+ d)− I(x)]2w(x)dx (12)

where W represents the feature window around a Harris
corner and w(x) is a weighting function. Using Taylor
expansion and after a few simplifications, we arrive at the
following equation for determining a “good” feature.

Zd = e

where Z represents the covariance of the image derivative

Z =

[

g2x gxgy
gxgy g2y

]

For a feature to be tracked, it is required that the matrix
Z has large eigenvalues.

Good Texture point Features: Good point features are
considered if the two eigenvalues are large enough. In
other words, it must ensure that the minimum of them
is larger than a predefined value λmax. This means that
the intensity around the point changes in both x and y-
directions. This is expressed by the equation

min(λ1, λ2) > λmax (13)

where (λ1, λ2) are the eigenvalues and λmax is a predefined
constant value.

Good Edge Features: The goodness of edge features can
be defined similarly, where one eigenvalue is significantly
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Fig. 3. The normal measurement lines are used to extract contour features in the current frame is depicted in the left
image. Example on the extracted contour is shown in the right image.

(a) (b)

Fig. 4. Features detected (red dots) using “goodness” criteria for texture and edge in (a) and (b) respectively. The
results in (a) are from Shi and Tomasi (1994) paper. The adaptation to edge features is shown in (b).

smaller than the other value. Thus, we suggest here a good
contour feature. This is expressed by the equation

max(λ1, λ2) > λmax. (14)

and
min(λ1, λ2) < λmin. (15)

Figure 4 represents the features extracted by examining
these two conditions for an example image.

Assigning weights to features: Let us define the goodness
of texture features and edge features as the number of
points that are tracked along the sequence of considered
frames. One may note here two types of visual features are
considered here, they are contour feature FC and texture
feature FT . Texture feature is essentially considered as an
image Harris point; while contour feature is considered
as an image point that represent a gradient peak along
a measurement line. We show the development of the
goodness function for texture point features in the sequel,
while the one for contour features is dropped since it is
analogue to the texture’s one.

Let us assume that we select N0 texture point feature
in the refernce frame. Only Nt features in the current
frame have been selected as good features and have its
corresponding points in the initial frame. Let the set
Nt = {ni | i = 1, · · · , Nt} be the set of good features

tracked in the current frame. The probability that a point
feature ni is in this set can be given as a function of the
dissimilarity measurement given in (12) as

WT = p(Nt ∈ N0) = p(Nt ∈ Nt−1) p(Nt−1 ∈ N0) (16)

p(Nt ∈ Nt−1) =
1

Nt−1

Nt−1
∑

i=1

1

2πσ2
exp

[

− ǫTi ǫi

2πσ2

]

(17)

To simplify the computation, let p(Nt−1 ∈ N0) ≈ Nt−1

N0

and finally we write

WT =
1

N0

Nt−1
∑

i=1

1

2πσ2
exp

[

− ǫTi ǫi

2πσ2

]

. (18)

For edges, we assume that there are N0 measurement
lines on the object contour in the initial frame and Nt

matched good feature measurement lines in the current
frame. Analogous to texture point features, the weighting
function for edge features can be written as

WC =
1

N0

Nt−1
∑

i=1

1

2πσ2
exp

[

− ǫTi ǫi

2πσ2

]

(19)

To reduce the complexity of the computation, we replace
the Gaussian function in (18) and (19) by a rectangle
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function with maximum value of one. Equations (18)
and (19) can now be rewritten as

WT =
NTt

NT0

, WC =
NCt

NC0

. (20)

Here, NTt
and NT0

are the number of good matched
point feature in the current frame and reference frame
respectively. Similarly, NCt

and NC0
are the number of

contour measurement lines matched with a good features
in the current frame and reference frame respectively. This
allows us to get a quantitative evaluation of the feature’s
reliability. Indeed the higher the weight, the more reliable
a feature is. By comparing the weights, we may decide
upon the most reliable feature. One more thing top notice
is that these two weights are normalized to one.

3.3 Defining feature likelihoods

Contour likelihoods: We start from the generic model of
the contour likelihood which was presented in MacCormick
(2000) to develop our contour likelihood model. Let the
vector hi

t be a hypothesis of the state of the contour Ct that
intersects the normal measurement line lm at a distance
dm from the same contour point (Figure 3). The p.d.f. of
the generic likelihood model is given as

p(FC | hi) =

M
∏

m=1

b(nm − 1)

nm
∑

k=1

exp(− (vk−dm)2

2σ2 )

nmLnm−1
. (21)

Here, b(n) is probability of obtaining n background fea-
tures along the measurement line with length L. After
some development and enforcing certain assumptions Mac-
Cormick (2000), we write

p(FC | hi) =

M̄
∏

m=1

(

1√
2π σ

nm
∑

k=1

exp(− (Dm)2

2σ2
)

)

=

M̄
∏

m=1

Qm,

(22)
where Dm = min{vk − dm}k=1

nm
represents the sum along

each line approximated by its large value to speed the
process. The probability b(nm) is assumed as Poisson
with density λ = 1, and the probability of not detecting
an edge feature along the mth line is zero. The number
of measurement lines that intersect the contour Ct is
M̄ . Taking the logarithm to simplify multiplications and
introducing the goodness weight WC , we can write

QC = WC log(p(FC | hi)) = WC

M̄
∑

m=1

log(Qm). (23)

Texture likelihoods: We start from the point-wise re-
projection error model to define the texture likelihood
function, which is the most suitable for Harris points
detector Harris and Stephens (1988). Let us have a set
of texture features (Harris points) FT that are extracted
from the image at the time moment t. These features are
matched and mapped to the corresponding features F0 in
the initial frame. Using the hypothesised motion model hi,
the p.d.f. of the likelihood is given as

p(FT | hi) =

Np
∏

k=1

(

1√
2π σ

exp(− (Dk)
2

2σ2
)

)

=

Np
∏

k=1

Qk,

(24)
Here, Np is the number of texture points under considera-
tion, the error Dk is the Euclidean distance Dk = Fkht

−

FkT between the kth measured point FT and the projec-
tion of the kth point F0 from the initial frame to the cur-
rent frame(Fht

). Again Taking the logarithm to simplify
multiplications and introducing the goodness weight WT ,
we can write, QT can be written as

QT = WT log(p(FT | hi)) = WT

Np
∑

k=1

log(Qk). (25)

4. EXPERIMENTAL ANALYSIS AND RESULTS

In this section, we present results of tracking a planar
object in different conditions and situations. We present
a quantitative evaluation of our results along with quali-
tative comparison with a recently reported tracker. The
proposed method shows a good amount of robustness
toward changes in illumination, large motion, particularly
rotation and zooming, textured background. In fact, these
conditions are the cases where texture and edge cues in-
dividually either fail completely or are inaccurate. This is
in addition to motion blur occuring due to large camera
motion. Outdoor environment exhibites highly textured
background, strong changes in illumination, and a lot
of clutter. To show robustness to these factors, we also
conducted experiments on a video taken from the outdoor
environment.

The videos we use in the experiments were captured either
using a Kodak DX7950 digital camera for indoor scenes
or a Logitech web cam for outdoor scenes. Videos were
captured at 15 fps. Texture points are tracked using the
KLT tracker Shi and Tomasi (1994). Typically, 400 points
are selected and tracked throughout the video sequences,
without replacement of lost features. In implementations,
particles were drawn from both uniform and Gaussian
distributions centered around the previous frame’s re-
sults. We found uniform distributions to work better. The
tracker works approximately on 12 frame per second speed
using a laptop system with 1.5 GH AMD processor and 256
MB RAM memory.

In order to highlight the effects of intensity changes, we
allow the camera to automatically adjust to the ambient
light, and switch off/on lights during the video. In the
process of tracking, we do not replace the lost features
since the homography is computed with respect to the
reference (first) frame of the video sequence. The particle
that maximizes the a posteriori (MAP) function is selected
as the current motion model. The tracking process is
initialised by a manually selecting a rectangular marker
that defines the position of the planar object in the first
frame. This marker will be propagated to every frame
using the estimated motion model.

Two video sequences are considered to show the robust-
ness and efficiency of the proposed tracker in different
bad conditions of both object’s edge and texture. In the
following subsections, we analyse the situations of the
contour and texture presented in our selected videos and
the advantages of combining them in one tracker. After
that, the results of each of edge and texture individual
trackers in addition to our integration proposed tracker are
presented. The comparison with the state of the art work
is also presented using the outdoor videos. Before that, we
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Fig. 5. Left: Homography based sampling. Right: Pose based sampling. Clearly, pose based sampling produces results
with less jitter, more smoothness and lesser error that corresponding sampling in the homography space. Frames
are sampled at regular intervals of 5 frames from 100 frame videos. (Light,Green) Contour tracker. (Dark,Red)
Texture tracker. (Blue,Darkest) Integrated tracker.

show comparison between the two sampling cases, from
the homography space and from the pose space.

4.1 Sampling from Pose space or from Homography space

In this experiment we compare the re-projection error re-
sulted from the case of using samples from the homography
space H and the one resulted from using samples from
the pose space. Of course, this situation assumes that the
camera is internally calibrated. In other word the matrixK
of the intrinsic camera parameters are available in advance.

We sample from the space {ρ, θ, γ, tx, ty, tz} representing
rotation in roll, pitch and yaw and translation in the x,
y and z directions. As expected, results show significant
improvement in such a case, as depicted in Figure 5.

4.2 Experiments on the Texture, Edge, and hybrid
trackers in the Video Sequences

Experiment 1: The video contains a textured object
(book) behind a plain background. The camera, initially
positioned about 2 meters on top of the book, moves
sideways and zooms simultaneously. Sideways movement
is accompanied by large rotation, of about 2 degrees per
frame. In between the video, the lights of the room are
switched off to simulate illumination change. This results
in the KLT tracker loosing around 200 points within a
span of 5 frames. Finally, the camera ends up close to the
book performing as large as 90 degrees of rotation during
the motion. As shown in the Figure 6(a), the texture
tracker loses the target as soon as the zoom and rotational
motion of the camera commence. On the other hand, due
to small measurement lines, the edge tracker is able to
sustain its position on the object. Finally, the texture
tracker, combining information from both sources gives
as low an error as 8-10 pixels per interest point, which
is acceptable considering the high motion, zooming and
illumination change. Inter-frame motion of the camera is
as large as 40-50 pixels owing to the small fps rate of
the camera. KLT correspondences typically are off by 4-5
pixels in random directions. Samples from the video during
the tracking processes using the three different trackers,
texture, contour, and hybrid trackers are presented in
Figure 7.

Experiment 2: To analyze the effect of cluttered back-
grounds, another experiment was conducted. Here, the
same book is placed behind a newspaper background,
which will result in spurious edges. This time, the camera
starts from one side of the book and converges onto its cen-
ter, leading to mild occlusion and high zooming. The oper-
ator of the camera comes between the camera and the light
source to induce shadow effects. As high as 50 pixel inter-
frame motion is observed. KLT features are computed not
only on the book, but are also even spread around the
newspaper to simulate erroneous interest points. Results
are shown in Figure 6(b). As expected, the edge tracker
succumbs to the spurious edges present all around the
object contour. Although the texture tracker is much more
stable, it is initially affected by the large rotation which
again amounts to a full 90 degree turn. On the other hand,
by combining edge and texture information, the integrated
tracker is able to reliably track even in presence of large
clutter, shadow and large motion. The number of KLT
correspondences reduces from 400 to 16 over the course of
the video. Samples from the video during the tracking pro-
cesses using the three different trackers, texture, contour,
and hybrid trackers are presented in Figure 8.

Experiment 3: The third video is of a poster on the wall.
The specialty of this video is the high occlusion. Almost
40-50% of the poster is occluded in the first 10-15 frames
and continues to be so throughout the video. As a result,
the individual trackers do not have enough information
(interest points and edges) to stabilize. This results in a
high error rate for both. The integrated trackers takes the
advantage of the complementary information provided by
texture and contour points. This results in highly stable
tracking, see figure 6(c).

Analysis of texture and edge cues: Texture points de-
tector fails when there is an intensity change or when
the camera performs large motion or zooming. In case of
intensity change, texture points are lost. We typically start
with 200-400 feature points and end up with the likes of
10-15 feature points in the end. When the camera performs
large motion (translation or rotation), then either the
texture points are lost or they are tracked but not with
sub-pixel accuracy. Zooming presents the same problem.
When texture points are not accurate, motion model that
minimizes the reprojection error are very different from the
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(a) (b) (c)

Fig. 6. Plots of the performance of our tracker in presence of large motion, high clutter, and occlusion. Although
contour and texture trackers fail miserably, combining both information provides high stability to the integrated
tracker. Frames are sampled at regular intervals of 5 frames from 100 frame videos. (Light,Green) Contour tracker.
(Dark,Red) Texture tracker. (Blue,Darkest) Integrated tracker.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Experiment 1. Texture does not work well with intensity change (b) or with large motion (c). Edge tracking
fails due the motion blur induced by intensity change (e), and large motion (f). As mentioned earlier, integration
is able to track stably intensity changes (h), or large motion (i)

actual one. This, accompanied by the recursive estimation
problem, leads to a very inaccurate tracking as shown in
the figures.

There are many factors that affect the accuracy of the
edges detection process. First one is when the considered
object is sufficiently textured, and so the edge detector
finds many points in the object interior. Second factor is
the motion blur artefact induced by large camera motion.
These decrease the information extracted from the edge.
In addition, the length of the measurement line has to be
quite large to compensate for the large camera motion,
this introduces a lot of points which do not belong to the
edge of the object, but either to its interior or background.
Finally, shadows that appear in the video and the lighting
variation also reduce the amount of edge information. All
of these lead to inaccurate tracking.

The framework of integration, unlike the individual meth-
ods presented above, takes advantage of both edge and
texture information. By minimizing the sum of the log-

likelihoods of the inidividual errors, we ensure that ro-
bustness is achieved. For example, texture cues on one
side of the book and edge cues on the other side in the
videos that show in the next subsection may be accurate.
By combining them, we ensure that there are cues on all
parts of the book that helps the sampling algorithm pick
the correct particle. Thus, in the results, we can see that
the tracker clearly is stable and placed over the object,
and is not drifting away as should be expected.

4.3 Comparison

Qualitative results are presented on an outdoor scene
captured with a web cam. As can be seen in the frames,
this scene has considerable clutter (Figure 9). The use of a
web cam for taking this video adds to the problem by
introducing abrupt motion of the camera in the video.
As mentioned earlier that the closest work to ours is
the one presented in Pressigout and Marchand (2007)
and in Petit et al. (2014). Since the work in Petit et al.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Samples from Experiment 2. Texture tracker is in (a, b, c), Contour tracker is in (d, e, f). Edge detection faces
tough problems due to a lot of surrounding texture. Hybrid tracker is in (g, h, i). As is shown in (b) and (c), the
tracker seems to handle even occlusion very well

(2014) is an improvement to previous works Pressigout and
Marchand (2007), where the color cue is added to edge
and point of interest features. We do not use color cues
in our formulation consequently we compare with work
in Pressigout and Marchand (2007), in order to be more
fair.

We present the initial and final frames of a 120 frame
video, with results from our approach and the one pre-
sented in Pressigout and Marchand (2007). In order to
introduce more challenge, we compute as much as 50%
KLT interest points on the background of the video as well.
Since Pressigout and Marchand (2007) minimizes a cost
function based on re-projection error, the tracker settles
on the background (Figure 9). Our tracker, on the other
hand, remains on the object due to the high robustness we
provide to texture and contour feature usage.

5. CONCLUSIONS

In this paper, we have presented a new tracking formu-
lation suited for robotic vision applications. The tracker
offers robustness to various kinds of situations like clut-
tered environments, shadow and illumination changes and
occlusion. We show that by employing particle filters, the
tracker can also be made robust to non-Gaussian errors
induced in the feature extraction process. We also show
that sampling in the pose space is an efficient method to
produce accurate results.
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