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Abstract: A global extremum seeking algorithm is developed for a mobile robot model where the aim is 
to find the location of the most powerful signal source among the others. In other words, the control 
problem is to seek the global extremum point of a performance function when there are local extremas. 
The locations of the signal sources and signal distribution characteristics are unknown, i.e. the gradient of 
the performance function is unknown. The control algorithm also doesn’t use any position measurement 
of the mobile robot itself. Henceforth, the controller is suitable for the missions where the robot moves in 
an unknown terrain with no GPS signal and no inertial measurements. Only the signal magnitude should 
be measured via a sensor mounted on the robot during the motion. A gradient estimator is designed to 
determine the motion direction towards the extremum point. When a local extremum is found, the robot 
will continue its search for another extremum points. Once each extremums have been visited, the robot 
will compare the signal levels on each source and identify the global extremum i.e. the most powerful 
signal source. In the absence of any position measurements, the robot can move towards the global 
extremum by repeating its motion history backwards. In the literature, this is the first global extremum 
seeking algorithm that has been developed for an omni-directional mobile robot model. Via the 
simulation studies it has been shown that the control algorithm can seek and find both stationary and non 
stationary signal sources and it can find the global extremum point when there are local extremas.  
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

1. INTRODUCTION 

The mainstream methodology in control applications is to 
regulate considered plant to known set points. However, in 
some control problems, the relation between the set point and 
desired system performance is unknown. One situation is 
that, the performance function of the system reflecting the 
desired system behavior has an extremum value and the 
control objective is to seek a priori unknown optimum 
operation point. This problem can be solved via the 
extremum seeking algorithm, which is suitable for the 
problems that possess completely or partially unknown 
performance functions and these functions may also change 
in time.  

In the literature, extremum seeking schemes are divided into 
four main groups which are perturbation based, sliding mode 
based, numerical optimization based and gradient based 
methods. In the perturbation based extremum seeking 
algorithms (Bratcu et al., 2008; Ghaffari et al., 2014; Krstic 
and Wang, 2000; Zhang et al., 2007a; Zhang et al., 2007b), 
disturb and observe methodology is conducted by adding a 
perturbation to the search signal. According to the result of 
the perturbation on the system output, increment or 
decrement action for the search signal is determined. In 
Dincmen et al., 2014; Dincmen and Guvenc, 2012; Drakunov 
et al., 1995; Fu and Ozguner, 2011; Haskara et al., 2000, 
sliding mode techniques are utilized for seeking the extrema 
of the unknown functions. A sliding surface is designed such 
that on sliding mode, the system output should approach 

towards the optimum operation point. The numerical 
optimization based extremum seeking schemes (Vweza et al., 
2015; Zhang and Ordonez, 2007) use various iteration 
algorithms to find the optimum operation point. The iteration 
method finds the target state and a state regulator manage the 
system follow this new state. In Guay and Dochain, 2015; 
Guay, 2014, extremum seeking is accomplished via adaptive 
gradient estimation techniques.  

In this paper, a new global extremum seeking algorithm is 
developed for an omni-directional mobile robot model where 
the aim is to find the most powerful signal source among the 
other sources in the operation region of the robot. Mobile 
robots have taken enormous attention in recent years for 
various application areas such as cleaning, surveillance, 
transportation, agriculture, manufacturing, military 
applications, medical/surgical applications etc. In 
Rossomando et al., 2014, sliding mode control method is 
proposed for a nonholonomic mobile robot using adaptive 
neural network. Penizzotto et al., 2014 aims to provide a 
metric for human inattention in teleoperation of mobile 
robots. In Santhanakrishnan et al., 2016, an experimental 
implementation of the morphological transform is presented 
to extract the features of the environment of the mobile 
robots. In Ilas et al., 2011, a group of algorithms for 
determining the possible trajectories of mobile robots while 
navigating through obstacles have been presented. Majdik et 
al., 2011 presents a visual mapping system for a security 
robot application.   
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Among the mobile robot types, omni-directional mobile 
robots (Barreto et al., 2014; Kim and Kim, 2014; Li et al., 
2015; Taheri et al., 2012) have wheels with free rollers which 
results a holonomic constraint.  

The research objective of this paper is to develop a control 
algorithm for omni-directional mobile robots, whose 
missions are searching the locations of signal sources without 
using any GPS or inertial measurements. Hence, the 
developed controller is suitable for robots operating in 
unknown terrains where no GPS and no inertial 
measurements are available. Possible practical 
implementation examples of the proposed controller could be 
as follows: By using a gas or chemical agent detection sensor, 
searching the sources of gas or chemical leaks in 
underground facilities, tunnels. By using radiation detectors, 
searching the sources of radiation leakages in nuclear 
reactors. Space mining applications such as mine searching in 
planets and asteroids. Military applications such as by using 
thermal sensors, locating hostile forces or terrorists in 
underground bunkers and caves. 

The developed control algorithm doesn’t know the locations 
of the signal sources and the distribution characteristics of the 
signals. In other words, gradients of the performance function 
are unknown. Also, position measurement of the mobile 
robot itself is not necessary. Only the magnitude of the signal 
should be measured via a sensor mounted on the robot during 
the motion. It is assumed that the signal magnitudes are 
decreasing away from the sources.  

The methodology of the control algorithm is estimating the 
gradients of the signal distribution function, i.e. the 
performance function via the sliding mode technique. The 
motion direction of the mobile robot is determined via a 
gradient climbing rule based on these gradient estimations. 
Once an extremum point has been found, the robot will 
continue its search towards the other extremas. After finding 
all extremum points, the robot will determine the global 
extremum i.e. the most powerful signal source by comparing 
the signal levels among the extremum points. Without having 
any position measurement device, the robot can move 
towards the global extremum point by repeating its motion 
history backwards.  

The key features of the proposed control algorithm are 
summarized as follows: Firstly, without knowing the signal 
distribution function and the location of the extremum points, 
and without using a GPS signal or inertial measurements, the 
robot can find the global extremum point i.e. the most 
powerful signal source among the other signal sources i.e. 
local extremas.  

Secondly, in the gradient climbing mode, the motion of the 
robot is determined based on the gradient estimations. For 
these gradient estimations, the discontinuous functions u1 and 
u2 that will be introduced in Section 3 are used. Although 
discontinuous functions are used for gradient estimation, they 
are not used directly as control inputs. Rather than that, their 
values are low-passed, which means that the high frequency 
oscillations in u1 and u2 do not appear in the control inputs. 

Thirdly, according to the gradient climbing rule that will be 
introduced in Section 3, the control inputs will oscillate only 
around the extremum points since the sign of the gradients 
changes only around the peak points. This will cause no 
problem because once the robot reaches an extremum point, 
it will leave this point and begin a new search towards 
finding other extremas.  

This is the first approach in the literature that a global 
extremum seeking algorithm is developed for an omni-
directional mobile robot model.  

Via the simulation studies it has been shown that the control 
algorithm can seek and find both stationary and non 
stationary signal sources and it can find the global extremum 
point when there are local extremas. The rest of the paper is 
organized as follows: In Section 2, omni-directional mobile 
robot model is introduced. The control algorithm is presented 
in Section 3. Simulation studies are given in Section 4. The 
paper ends with conclusions in Section 5. 

2. MOBILE ROBOT MODEL 

A three-wheeled omni-directional mobile robot model is 
considered in this paper. Each wheel has free rollers which 
results a holonomic robot. In Fig. 1, schematic representation 
of the robot is shown. Here, Vw1, Vw2 and Vw3 are the 
translational velocities of the wheels. Longitudinal velocity 
of the robot in x axis is denoted as u, lateral velocity in y axis 
is v and r is the rotational velocity of the robot around its 
center i.e. the z axis. Robot radius is denoted as R. 

 

Fig. 1. Three wheeled omni-directional mobile robot model. 

Translational velocities of the wheels can be calculated from 
the rotational velocities as iwwi RV   (i=1,2,3), where Rw is 

the wheel radius and i are the angular velocities of the 
wheels. The kinematic equations of the robot can be written 
as 

RruRV ww  11  ,          (1) 
RrvuRV ww  )cos()sin(22  ,        (2) 
RrvuRV ww  )cos()sin(33  .        (3) 

3. CONTROL ALGORITHM 

The change of the signal distribution with respect to the 
inertial coordinates (x,y) is denoted here as a performance 
function J(x,y), which has multiple extremum points. In other 
words, the aim is to find the most powerful signal source 
among the other sources. The signal distribution function, i.e. 
J(x,y) is unknown but only the magnitude of the signal can be 
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measured via a sensor mounted on the robot during the 
motion. The controller doesn’t know the location of the 
extremum points, i.e. the signal sources. Additionally, the 
position measurement of the robot is not available. At the 
first stage of the controller design, the sliding surface is 
selected as 

21),( zzyxJs  ,                 (4) 

where the time derivatives of the variables z1 and z2 are 
defined as  

11 uxz   ,     (5) 

22 uyz   .          (6) 

In (5) and (6), u1 and u2 are discontinuous functions of the 
sliding variable s given as  
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where M1, M2 , γ1, γ2 are positive constants, “sgn” is the 
signum function and “sin” is the sinusoidal function. By 
taking the time derivative of (4), one can obtain the equality  
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3.1 Necessary Condition to Make 0s  during Motion on x 
Axis 

For a time interval t, when only motion on x axis is allowed, 
then, since 0y  during this interval, the equation given in 

(9) becomes 

1uxx
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J
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 .       (10) 

Theorem: If M1 in (7) is chosen to satisfy the condition  
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J
M




 ,  (11) 

then, after a finite time interval, the time derivative of s in 
(10) will be equal to 0s .  

Proof: From (10) and (7), one can obtain 
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By denoting the velocity of the mobile robot on x axis as a 
positive constant, e.g. Vx  , then, one can write (12) as 
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Assuming that the initial value of the sliding surface variable 
s is between the constant values of .2)0( 11   s Then, the 

following mathematical equality can be written for s values 
on that interval, 
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Equation (14) can be justified from Fig. 2. It is realized that 
when the value of the sliding surface variable s is between 

11 2)0(   s , then the value of the function 

  1/sinsgn s  is equal to -1 and the value of the function 

 12sgn s  is also equal to -1. 



Fig. 2. Function of   1/sinsgn s . 

Then, (13) can be written as 

 11 2sgn 
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 sVMV
x

J
s .      (15) 

Now, by defining a variable   as  

12  s ,  (16) 

and since s  , one can write from (15) following equation 
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By multiplying (17) with , one can obtain 
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From (18), following inequality can be written 
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So, in (19), when M1 is chosen to satisfy the condition (11), 
the absolute value of   will decrease and approach to zero in 
finite time because (19) is the finite time stability condition. 
After the finite time, since 0  will be true, one can write 
from (16)  

0 ; 2 1  ss  ,   (20) 

which means that 0s  is achieved. It should be noted that 
the condition in (11) means that the value of the M1 
parameter should be larger than the maximum value of the 
performance function gradient with respect to x. Although the 
gradient is unknown since J(x,y) function is unknown, still 
one can anticipate the maximum possible gradient value and 
choose an M1 value which will always satisfy the condition 
(11).  
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The above analysis was conducted for the case where the 
mobile robot moves in positive x direction with a speed of 

.Vx   On the contrary, when the robot moves in negative x 
direction, i.e. when Vx  , then (12) can be written as 
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Again, if the initial value of s is between 11 2)0(   s , 

then, similar to (14), the following mathematical equality can 
be also written on that interval 
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Equation (22) can be justified again via the help of Fig. 2. So, 
(21) becomes  
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This time, if the variable   is defined as 

1  s ,   (24) 

since s  , one can write from (23) 
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By multiplying (25) with , one can obtain 
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From (26) the following inequality can be written 
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In the above inequality, by choosing M1 to satisfy the 
condition (11), the absolute value of   will decrease and 
after a finite time, 0  will be true. Then from (24) one 
can write 

0 ; 1  ss  ,       (28) 

which shows that again 0s  is achieved. So, whether 
Vx   or Vx  , by choosing u1 as in (7) and assuring the 

condition (11), 0s  can be achieved after a finite time 
interval. End of proof 

The above analysis was conducted when the initial value of s 
is between the constant values .2)0( 11   s  It can be easily 

shown that the above proof can be repeated for any initial 
value of )0(s . So, whatever the initial value of s is, after a 

finite time interval 0s  will be achieved. 

3.2 Gradient Estimation during Motion on x Axis 

When 0s  is accomplished in (10), and when the motion on 
x axis is maintained at all times during t, i.e. 0x , then, 
from (10), the equivalent value of the discontinuous function 
u1 will be equal to 
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In other words, gradient estimation of the performance 
function with respect to x can be accomplished by calculating 
the equivalent value of the discontinuous function u1 given in 
(7). To obtain the equivalent value of the discontinuous 
function u1, a low pass filter can be used as  
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where 1 is the filter time constant and p is the Laplace 
operator. So, in (30),  1/1 1 p  is the transfer function of a 

first order system, which is the low-pass filter here. The 
rationale for using a low-pass filter to obtain the equivalent 
value of the discontinuous function u1 can be explained as 
follows: Since u1 is a discontinuous function given in (7), 
when 0s , then the values of u1 will oscillate with high 
frequency. Mean value (equivalent value) of these 
oscillations can be derived by filtering out the high frequency 
component with using a low-pass filter. So, the gradient of 
the performance function with respect to x will be estimated 
as u1eq from (30). It should be reminded that the performance 
function J(x,y), i.e. the signal distribution function is 
unknown. Henceforth, the exact gradient value J/x is 
unknown. The controller will use only the estimated gradient 
value  estxJ  /  which is calculated from (30). 

3.3 Gradient Climbing Rule during Motion on x Axis 

Desired velocity set value during motion on x axis can be 
calculated by using the estimated gradient from (30) 
according to the following gradient climbing rule, 
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where V1 is a positive constant and representing the step size 
of the gradient climbing. The function sgn* is defined as 
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According to (31) and (32), the velocity set points on x axis 
will take values 1Vxset  . 

3.4 Necessary Condition to Make 0s  during Motion on y 
Axis 

After t interval, motion on x axis will be stopped and the 
robot will start to move on y axis for another t time interval. 
So, since 0x  will be true during motion on y axis, the 
equation given in (9) becomes 
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During motion on y axis, it will be true that 0y . If M2 in 

(8) is selected to satisfy the inequality 
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then, after a finite time, the time derivative of s will be equal 
to 0s . The proof of this section will be similar to the proof 
given in Section 3.1, hence it is not repeated here. It should 
be reminded that although the gradient with respect to y is 
unknown, one can anticipate the maximum value of the 
gradient and choose the M2 constant which will always 
satisfy the condition (34). 

3.5 Gradient Estimation during Motion on y Axis 

If 0s  is accomplished in (33), then the equivalent value of 
the discontinuous function u2 will be equal to 
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which is the estimate of the performance function gradient 
with respect to y. To obtain the equivalent value of the 
discontinuous function u2, a low pass filter similar to (30) can 
be used as  
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where 2 is the time constant of the second filter.  

3.6 Gradient Climbing Rule during Motion on y Axis 

Desired velocity value on y axis can be calculated by using 
the estimated gradient value u2eq from (36) according to the 
following gradient climbing rule, 
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where V2 is a positive constant and the function sgn* is 
defined previously in (32). So, the velocity set point on y axis 
will take values 2Vyset  . 

3.7 Overall Gradient Climbing Controller 

The controller scheme of the gradient climbing rule is shown 
in Fig. 3. As mentioned before, the performance function 
J(x,y), i.e. the signal distribution characteristics is unknown 
and the position measurement of the robot itself is not used in 
the control structure. The only input to the controller is the 
signal amplitude J obtained from a sensor during the motion 
of the robot. Since u1 and u2 are discontinuous functions of s, 
their values will oscillate with high frequencies when .0s  
However, the values of u1 and u2 are not directly used as 
control inputs. Their values are passed through the low pass 
filters as shown in (30), (36). The filtered values of u1 and u2 
are the estimated gradient values. Control inputs are 
calculated by using these estimated gradient values. Hence, 
the high frequency oscillations in u1 and u2 will not enter 
directly as the control input.  

After calculating longitudinal and lateral set point velocities 
from (31) and (37), the desired wheel angular velocities can 
be calculated by using kinematic equations of the mobile 
robot given in (1), (2) and (3) as follows, 
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In this paper, it is assumed that the mobile robot doesn’t 
rotate around its axis, i.e. rset = 0. Once the setpoint wheel 
angular velocities 1set, 2set and 3set are calculated from 
(38), the velocity controller will control the wheel motors to 
track these wheel set velocities. This paper doesn’t include a 
velocity controller and perfect tracking of the set velocities is 
assumed. For the velocity controller, a well known PID 
controller can be used. 

3.8 Searching the Global Extremum Point 

When an extremum point is found, the robot will leave this 
point and continue its search for other extremas. Eventually, 
after visiting all extremums, the robot can determine the 
global extremum by comparing the signal magnitude levels 
on the visited extremum points. In the absence of any 
position measurement, the robot can move towards the global 
extremum point by repeating its motion history backwards.  

Two different operation modes are defined here for the 
mobile robot. In the “Gradient Climbing Mode”, the motion 
of the robot is determined via the gradient climbing controller 
shown in Fig. 3. In this mode, the robot moves towards an 
extremum point via the rules of (31) and (37). Once an 
extremum is found, “Gradient Climbing Mode” is deactivated 
and “Single Move Mode” will be activated. In this second 
mode, the robot will move away from the extremum point 
and step into a neighborhood. Then, “Gradient Climbing 
Mode” will be activated again to initiate a new search 
towards the next extremum point. The shape of the 
performance function and the location of the extremum 
points are unknown. However, the number of extremum 
points, i.e. the number of signal sources should be known in 
advance in order the robot not to continue its search forever. 
The graphical representation of the global search algorithm in 
one dimension is shown in Fig. 4. The block diagram of the 
robot operation modes are given in Fig. 5. Switch block 
shown in Fig. 5 is used to change the operation modes. When 
the robot reaches an extremum point, i.e. Region 2 in Fig. 4, 
the change of the signal magnitude becomes very small. 
Then, the switch will activate the “Single Move Mode”, 
where the robot will move linearly for a predefined amount 
of time in order to leave the previous extremum point and 
start a new search. Flow diagram of the robot operation is 
shown in Fig. 6. 
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Fig. 3. Gradient climbing controller.  

 
 
Fig. 4. Schematic representation of the global extremum 

seeking in one dimension. 
 

 
 
Fig. 5. Robot operation modes. 

 
Fig. 6. Flow diagram of the robot operation. 

4. SIMULATION STUDIES 

The performance of the control algorithm is evaluated via 
simulation studies. The Matlab/Simulink model used in the 
simulations is shown in Fig. 7. The detail of the 
“GradientClimbingMode” block is shown in Fig. 8. Here, 
pulse generator blocks generate 0 and 1 values with specified 
intervals so that they provide stair shaped move of the robot 
during gradient climbing mode. In other words, during 
gradient climbing, the robot will move for a predefined 
amount of time on x axis, then for a predefined amount of 
time on y axis and then again on x axis etc. The details of the 
“GradientClimbing_x” and “GradientClimbing_y” blocks are 
shown in Fig. 9 and Fig. 10, respectively. They generate set 
velocities on x and y axes according to (31) and (37) during 
gradient climbing.  
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Fig. 7. Simulink model used in the simulations. 

 

Fig. 8. Block diagram of the “GradientClimbingMode” 
subsystem. 

 

Fig. 9. Block diagram of the “GradientClimbing_x” 
subsystem. 

 

Fig. 10. Block diagram of the “GradientClimbing_y” 
subsystem. 

Simulation studies are divided into four cases. In the first 
scenario, the performance function has one extremum point, 
i.e. there is one signal source in the operation region of the 
robot. Via this simulation, the gradient climbing performance  

 

is evaluated by plotting robot trajectory and control inputs 
(wheel set point velocities). In the second simulation 
scenario, the moving signal source case is studied and it is 
shown that the robot can find and track the moving signal 
source. In the third simulation scenario, the performance 
function has two extremum points. It is shown that the robot 
is able to find the global extremum point when there are local 
extremas. In the fourth simulation scenario, the effect of the 
step size magnitude value on the gradient climbing 
performance is investigated. Lastly, the simulation results are 
compared with an existing implementation in the literature. 

4.1 Single Extremum Case 

For the first simulation study, the signal distribution is 
simulated via the function 

22 25.05.01),( yxyxJ  . (39) 

Signal distribution function (39) is plotted in Fig. 11. The 
function obtains its maximum value Jmax=1 at xopt=0, yopt=0. 
As introduced before, the controller doesn’t know the 
function (39) and the xopt, yopt values. Also the position of the 
robot is not measured. Only, the magnitude of the signal 
should be obtained via a sensor mounted on the robot during 
the motion. 

 

Fig. 11. Signal distribution function given in (39). 

The initial position of the robot is chosen as x(0)=3, y(0)=3. 
In Fig. 12, change of the robot trajectory via gradient 
climbing controller is plotted. It is realized that starting from 
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the point (3, 3), the robot moves towards the extremum point 
(0, 0). During the motion of the robot, the change of the 
signal magnitude J is plotted in Fig. 13. As shown, after 
approx. 11 sec., the robot finds the optimum point where the 
signal magnitude obtains its maximum value. The reference 
wheel angular velocities which are calculated from (38) are 
shown in Fig. 14. In the gradient climbing mode, the motion 
of the robot is determined via the estimation of the gradients 
as given in (31) and (37). Since the sign of the gradient of a 
function will change only around the peak points, the control 
inputs will oscillate only around the extremum points. As 
shown in Fig. 14, the calculated wheel reference velocities 
start to oscillate when the robot reaches the peak point, which 
occurs after 11 sec. The oscillations point out that the robot 
has found the signal source. 

 

Fig. 12. The trajectory of the mobile robot for single 
extremum case. 

 

Fig. 13. Change of the signal magnitude with respect to time 
during the motion of the robot. 

 

 

Fig. 14. Change of the control inputs with respect to time. 

In the simulations, the value of t is chosen as 2.5 sec. It 
means that the robot starts its motion on x axis and it moves 
on this axis for 2.5 sec. Afterwards, it starts to move on y axis 
for another 2.5 sec. Then again on x axis for 2.5 sec and this 
stair shaped move as shown in Fig. 12 continues until the 
robot finds the extremum point, i.e. the signal source. 

4.2 Moving Signal Source Case 

In the above study, the signal source was stationary. Next, the 
simulation is conducted for a moving signal source case. For 
this second simulation study, the signal distribution function 
is simulated via the following time dependent function 
(Zhang et al., 2007a) 

     22 06.0sin25.003.0sin5.01),( tytxyxJ    (40) 

In Fig. 15, the signal source and robot trajectories are plotted. 
It is shown that the mobile robot finds and tracks the moving 
target. The change of the signal magnitude during the 
tracking phase is plotted in Fig.16, where it is realized that 
the robot manages perfect tracking of the moving target. 

 

Fig. 15. Change of the signal source and mobile robot 
trajectories for moving target case. 
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Fig. 16. Change of the signal magnitude with respect to time 
during moving target tracking. 

4.3 Multiple Extremum Case 

In the third simulation scenario, finding the global extremum 
point when there are local extremas cases is studied. The 
signal distribution characteristic is simulated here via the 
following performance function (Matveev et al., 2011), 

       
200

1220

600

810 2222

1810),(








yxyx

eeyxJ   (41) 

The plot of the performance function is shown in Fig. 17. The 
signal distribution function has two extremum values. In Fig. 
18, the robot trajectory during the simulation is shown. The 
initial point of the robot was chosen again as x(0)=3, y(0)=3. 
Firstly, the robot approaches to the local extremum point of 
the region via the gradient climbing rules (31) and (37). It 
should be noted that although the gradient climbing rules 
includes sign terms, the control inputs will oscillate only 
when the robot reaches to an extremum point because the 
gradient of a function will change its sign only around the 
extremum points. This will cause no problem because once 
the robot reaches an extremum point; it will leave this point 
and begin a new search towards the other extremas.  

 

Fig. 17. Signal distribution function given in (41). 

As shown from Fig. 18, once the first extremum point is 
found, “Gradient Climbing Mode” is deactivated and “Single 
Move Mode” is activated where the robot moves linearly for 
a predefined amount of time in order to reach to a different 
region. Then, again via the “Gradient Climbing Mode”, the 
robot reaches extremum point of this new region. The flow 
diagram of the robot operation was given before in Fig. 6. 
Since the second extremum point is the global extremum, 
control algorithm stopped and the robot remained on this 
point.  

 

Fig. 18. The trajectory of the mobile robot for multiple 
extremum case. 

4.4 Effect of the Step Size Magnitude in Gradient Climbing 
Performance 

In the gradient climbing mode, the robot moves towards the 
extremum point i.e. the signal source via the rules given in 
(31) and (37). In these equations, V1 and V2 determine the 
step sizes in the gradient climbing phase on x and y axes. In 
order to examine the effect of the step size magnitude value 
on the gradient climbing performance of the mobile robot, the 
simulation study shown in Section 4.1 is repeated with three 
different step size values. The step size magnitudes are taken 
equal during motions on x and y axes i.e. V1=V2. Fig. 19 
shows changes of the signal values and Fig. 20 shows the 
trajectories of the robots.  

From Fig. 19, it is realized that increment of the step size 
magnitude improves gradient climbing time. When the step 
size is chosen as V1 = V2 = 1, the robot finds the signal source 
in approx. 7 sec. For the step size of 0.5, the duration 
becomes approx. 11 sec and for the step size of 0.1, it will be 
approx. 60 sec. Hence, the magnitude of the step size has a 
major effect on the performance of the algorithm.  

It should be noted that increment of the step size may result 
the robot miss some extremum points, i.e. signal sources. If 
the signal sources are located close to each other, in other 
words if one extremum point is near to its neighbour 
extremum point, then a big step size may result the robot pass 
by one extremum point and approach to the other one. Hence, 
the step size of the robot should be selected such that while 
the robot is able to visit all extremum points, at the same time 
it can find the extremum points in a shorter time.  
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Fig. 19. Change of the signal values during gradient climbing 
with different step sizes. 
 

 

Fig. 20. Trajectories of the mobile robot during gradient 
climbing with different step sizes 

4.5 Comparison of the Results with Existing Implementations 

In Zhang et al., 2007b, extremum seeking algorithm was used 
for an autonomous vehicle. A velocity actuated point mass 
was considered as the vehicle model, which has motion 
characteristics similar to the omni-directional mobile robot 
model considered here. Perturbation based extremum seeking 
algorithm was utilized as the source seeking controller. Both 
stationary and moving signal source case was studied. In this 
methodology, periodic perturbations such as asinωt were 
added to the control inputs of the autonomous vehicle. The 
perturbation asinωt created periodic response in the motion 
output of the robot, which is either in phase or out of phase 
with asinωt. When input and output sinusoids are in phase, it 
means that the vehicle is moving in positive gradient region 
of the signal distribution function (in case of a concave 
function) and when they are out of phase, it is understood that 
the vehicle is moving in negative gradient region. By using 
filters, this information was deduced and motion direction of 
the vehicle was determined. Since this algorithm used 

sinusoidal perturbations, the motion of the autonomous 
vehicle showed circular trajectories as shown in Fig. 4b and 
Fig. 5b in Krstic et al., 2007b. The control inputs had 
continuous oscillations during the entire motion of the robot 
as shown in Fig. 4c, Fig. 4d, Fig. 5c and Fig 5d (Krstic et al., 
2007b). On the other hand, in the proposed control algorithm 
here, the robot shows straight trajectories during motions on x 
and y axes, as shown in Fig. 12, Fig. 15 and Fig. 18. The 
control inputs are constant during motions on x axis and y 
axis as shown in Fig. 14. The control inputs start to oscillate 
only when the robot finds the extremum point. Henceforth, 
the proposed control methodology here is advantageous 
because of less aggressive control effort. 

5. CONCLUSION 

Unlike classical regulative control schemes, extremum 
seeking covers control problems where the operation point 
for optimum system performance is unknown and it is 
searched online. In this paper, a new global extremum 
seeking method is proposed for the source seeking controller 
of an omni-directional mobile robot model. The key features 
of the proposed controller are summarized as follows: 
Without knowing the signal distribution function and the 
location of the extremum points, and without using a GPS 
signal and inertial measurements, the robot can find the 
global extremum point i.e. the most powerful signal source 
among the other local extremas. Hence, the developed 
controller is suitable for robots operating in unknown terrains 
with no GPS and inertial measurements. Only the signal 
magnitude should be measured via a sensor mounted on the 
robot during its motion. In the gradient climbing mode, the 
motion of the robot is determined via the estimation of the 
gradient of the performance function. For the gradient 
estimation, the functions u1 and u2 given in (7) and (8) are 
used. Since u1 and u2 are discontinuous functions of s, their 
values will oscillate with high frequencies when .0s  
However, the values of u1 and u2 are not directly used as 
control inputs. Their values are passed through low pass 
filters. Hence, the high frequency oscillations in u1 and u2 
will not enter directly to the control inputs. Since the gradient 
of a function changes its sign only around the peak points, the 
control inputs calculated from (31) and (37) will oscillate 
only around the extremum points. This will cause no problem 
because once the robot reaches an extremum point; it will 
leave this point and begin a new search towards the other 
extremas. Finally, after visiting all extremas, the robot will 
move towards the global extremum point by repeating its 
motion history backwards. This is the first global extremum 
seeking algorithm in the literature that has been developed for 
an omni-directional mobile robot model. Via the simulation 
studies it has been shown that the control algorithm can seek 
and find both stationary and non stationary signal sources and 
it can find the global extremum point when there are local 
extremas. 
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