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Abstract: In this paper, a new validity criterion determining the optimal decomposition and the 
minimum linear model bank was employed to design a controller for a nonlinear system. Based on the 
gap metric, the proposed validity criterion quantifies the compactness degree for a model-base. For a 
decomposition giving a low degree of compactness, the optimal linear model bank providing sufficient 
information for multimodel controller design of the nonlinear system was obtained without models 
redundancy. To validate the relevance of the proposed method, multimodel H∞ control algorithm was 
applied to three nonlinear processes for set point tracking. 
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
1. INTRODUCTION 

The multimodel approach is considered as one of the popular 
methods used to solve modeling problem and complex 
control, nonlinear and/or ill-defined processes. This approach 
approximates complex systems based on a set of local linear 
systems to which classical control design techniques can be 
easily applied (Zribi et al., 2017; Kangji et al., 2017;  Samia 
and Moufida, 2016; Du et al., 2009, Ciprian et al., 2008; 
Ciprian, 2003; Sergiu et al., 2005). One of the major 
problems in the multiple-model technique lies in determining 
the number of linear models and their locations used to 
ensure better control performance (Hariprasad et al., 2012; 
Zribi et al., 2012a). It has been proven that when an excessive 
number of models are used the composite model captures 
better the process of nonlinear behavior; but it may lead to a 
large and a complex computation. Nonetheless, too few 
models may be unable to get the desired performance. 

Recently, (Galán et al., 2003) use the gap metric as a 
guideline for selecting local models. The models base is 
obtained by grouping models that have the same closed-loop 
performances. Afterwards, (Du et al., 2012, 2013, 2014) 
propose a method, which is an extension of the method 
proposed by (Galán et al., 2003), to select operating points 
and the minimum linear model bank for nonlinear systems 
via gap metric and margin stability. In (Wen et al., 2004), by 
specifying the desired performance through a pre- and/or 
post-compensators, it is shown that the H∞ loop-shaping 
approach can integrate the procedure of operating points 
selection as well as the local controller design through gap 
metric. In (Hosseini et al., 2012), an algorithm incorporating 
a nonlinearity measure and a modified gap based metric was 
meant to perform the optimal operating range decomposition.  

Clustering algorithms has been also used to create an 
organized model bank from a dataset where the optimal 
number of models for the operating regime decomposition is 
determined by employing cluster validity measures based on 
geometric distance (Zribi et al., 2012b; Elfelly et al., 2012). 

Despite it shows good control performance and stability 
features of closed-loop systems, the optimal partition given 
by the validity criteria may result in redundant linear models, 
because the designers use excessive local linear models to 
guarantee the global stability and robust performance.  

In order to avoid linear model redundancy and simplify the 
structure of a multimodel controller, a new validity criterion 
for decomposition of the nonlinear space to a number of 
linear models was proposed. Based on the gap metric, the 
proposed criterion quantifies the degree of compactness for 
the decomposition by computing similarity between local 
models. Thus, the optimal decomposition which can provide 
sufficient information for controller design is expected to 
have a low degree of compactness. 

This paper was organized according to following outline: In 
Section 2, the Fuzzy c-means (FCM) for the determination of 
the models’ base for nonlinear systems was first proposed. 
Then, the gap metric as tool to analyse the relationships 
among candidate local models was presented. To design a 
controller for a nonlinear system, a new criterion for 
systematic determination of an optimal model bank was 
described in section 3. In Section 4, three examples were 
considered to check the relevance of the proposed approach. 
Finally, conclusion was provided in Section 5. 

2. FUZZY CLASSIFICATION BASED LOCAL MODEL 
DEVELOPMENT AND GAP METRIC  

2.1  Fuzzy c-means 

The first stage of the proposed algorithm consists on 
developing the local models. Based on the data set, the FCM 
clustering algorithm was employed to divide behavior in 
local ones. Then, a given identification procedure was 
applied to get local models.  

FCM clustering algorithm previously developed by (Dunn, 
1973) and subsequently improved by (Bezdek, 1981), 
represents a data clustering technique allowing each data 
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point to belong to more than one cluster with different 
membership degrees ranging between 0 and 1.  

The objective of the FCM method is minimizing the function 
given by the following equation: 
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where : 

m: weighting exponent (real number greater than 1) which is 
a constant that influences the membership values; 

uji: degree of membership of xi to cluster j, such as                

uii ∈ [0,1],
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 dji  is  the  distance  between  the point xi and different 
centers vj; 

N: number of observations; 

C: number of clusters (2 ≤ C < N); 

The FCM algorithm that minimizes (1) is described in the 
following: 

Step1: Fix  the number of clusters C and  randomly  pick  
initial  set of  centers  V=(v1,v2,…,vc). Choose the stopping 
criteria ε. 

Step2: Compute membership degrees and the new cluster 
centers in each iteration k. 
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Step3: Test of the convergence: if 

1k kerror V V    then stop else go to step 2. 

The classification results are then used for the parametric 
identification of the local models. The multiple linear models 
will be obtained by linearizing the system around the 
cluster’s center. 

2.2  Review of Gap Metric 

The gap metric was first introduced into the system theory in 
(Zames and El-Sakkary, 1980; El-Sakkary, 1985), as a 
suitable tool for the study of the uncertainty in feedback 
systems. It provides a measure to calculate the distance 

between two dynamic systems from closed loop stability 
view point (Galán et al., 2003; Christopher, 2017).  

P(s) is equal to p×m rational transfer matrix with the 
normalized right coprime factorization given by the following 
equation: 

1P N M       with    
~ ~

M M N N I               (4) 

where ( )
�

 denotes complex conjugate, i.e ( ) ( )TM s M s 
�

.  
The graph of P is the subspace of H2 (standard Hardy space 
in the right half of the complex plane) given by: 

2( )
M

G P H
N

 
  
 

                                                                  (5) 

For two finite-dimensional linear systems P1 and P2 with the 
same number of inputs and outputs, the gap between P1 and 
P2 is defined as:  

1 21 2 ( ) ( )( , ) G P G PP P                                                   (6) 

where ( )G P  denotes the orthogonal projection onto G(P). 

Let 1
1 1 1P N M  and 1

2 2 2P N M   be the normalized right 

coprime factorizations of P1 and P2, respectively. Typically 
the gap metric for two dynamic models P1 and P2 can be 
calculated as: 
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The gap metric (0≤δ≤1) represents the notion of distance in 
the space of linear systems. The tendency of the gap metric of 
two systems toward 0 indicates that the distance between the 
two linear systems is small (i.e., the two systems are close) 
and means the existence of at least one feedback controller 
stabilizing both systems. On the contrary, if the gap is closer 
to 1, then the two systems dynamic behaviors are apart and 
they behave differently when they are placed in a control 
loop. 

3. VALIDITY CRITERION IN OBTAINING A REDUCED 
MODEL BANK 

3.1  Research in the optimal number of models 

Indices shown in graph clustering are generally based on the 
comparison of intracluster connectivity (the clusters 
compactness) as well as the inter-cluster variability (i.e., the 
separability between clusters) (Isacenkova et al., 2014; 
Arbelaitz et al., 2013). To assess the quality of graph 
clustering results (Boutin and Hascoet, 2004) provide a good 
review of validity indices and define a new normalized 
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compactness index using the measure of similarity instead of 
distance. 
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where 0 ( , ) 1i jsim v v   defines the similarity index between 

the two nodes vi and vj. If ( , ) 0i jsim v v  , then vi and vj are 

disconnected. 

Based on their intra-connectivity characteristics, the graph 
compactness (Cp) is a cluster validity crietrion that indicates 
how ‘compact’ (or homogeneous) the graphs are. It is 
bounded by 0 and 1, where a small value indicates that the 
graph is completely disconnected. Motivated by this 
observation, a new crietrion for optimal systematic 
determination of model bank to design a controller for a 
nonlinear system is proposed. It requires, firstly, the 
determination of the model bank using clustering algorithm, 
then, validating the obtained model bank by computing a 
proposed validity criterion. 

In clustering algorithms, the most widely validity criteria 
used to construct model bank employ a geometric distance. 
The drawback of the geometric distance is that measures the 
separation between linear systems in the open-loop sense 
instead of the closed-loop sense which can easily lead to 
linear model bank redundancy since designers tend to use 
more local linear models than needed in order to guarantee 
the global stability and robust performance. A new similarity 
measure, based on the gap metric, is proposed to overcome 
the above-mentioned shortcoming of traditional validity 
criteria and to avoid linear model redundancy. 

For example, consider two local linear models P1 and P2 for a 
non linear system: 
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The two open-loop models look quite different, since 

1 2 2000P P


   . However, the gap metric between P1 and 

P2 is 1 2( , ) 0.002P P    which shows that P1 and P2 are close 

to one another in the closed loop-sense, only one of them will 
be needed to provide sufficient information for controller 
design. 

Thus, a new normalized criterion denote DC that use the gap 
metric as a similarity measure instead of geometric distance 
is proposed. 
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where ij is the gap metric between two linear models Pi and 

Pj and C is the number of models in the model bank. 

The proposed criterion ranges from 0 to 1. A high value of 
the proposed criterion means that the obtained model bank 

may includes redundant (similar) models. To avoid linear 
model redundancy and simplify the structure of a multimodel 
controller, we propose the minimization of the proposed 
criterion. These results imply that when the optimal partition 
is attained, the presented criterion is minimal. The 
minimization of the criterion allows one to find an optimal 
model bank that contains no redundant and well-separated 
models in the closed loop-sense. 

3.2  Multimodel control 

After obtaining the local models/controllers of a nonlinear 
system, these local linear controllers will be combined into a 
global one to act on the nonlinear system. In the proposed 
control strategy, the controller output is obtained by fusion of 
generated local controllers pondered by weighting functions. 
The global control output is presented by the following 
equations. 
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where uj  is the control output of the jth local H∞ controller 
and the weights rj are adjusted based on the gap metrics 
defined by: 
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where j  is the gap metric between linearized model of the 

system at the current state and the jth local model defined in 
the model bank. 

The weight function rj returns a number between 0 and 1 that 
indicates the level of contribution of the local controller at 
that value of the output. A small gap metric j  between the 

linearized model of the system at the current state and a local 
model defined in the model bank means that the 
corresponding weight is high. It also indicates that the 
corresponding local controller dominates the control action. 

Nonlinear system

Local
model P1

Local  controller
K1

Local
model Pj

Local  controller
Kj

Local
model P

C

Local  controller
K

C

Global  controller
K 

 

 

 

Fig. 1.  Schematic diagram of the multimodel control. 
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The schematic design of the used multimodel control is given 
in Figure 1. It consists on building a local model in every 
subspace. Then, a local controller was attributed to each local 
model. Eventually, the obtained local models and controllers 
are combined in order to establish a powerful global model 
and controller.  

4. SIMULATIONS RESULTS 

To validate the efficiency of the proposed validity criterion, 
comparison with other traditional indices (Table 1) used in 
the field of fuzzy clustering algorithm such as partition 
coefficient, partition entropy and compactness separability 
(Arnaud et al., 2002) was done.  

Table 1. Description of the cluster validity criteria. 

Validity 
criteria 

Functional description Optimal cluster 
number 

Partition 
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4.1 Example 1: Isothermal CSTR 

The above algorithm has been applied to a simple nonlinear 

process. The process chosen is an isothermal continuous 

stirred tank reactor (CSTR) in which a first-order irreversible 

reaction takes place (Henson and Seborg, 1990; Doyle et al., 

1998). The relevant mass balance is: 

( )A
A Ai A

dC
K C C C u

dt
                            (14) 

where CA is the concentration of the reactant and u is the 
dilution rate. The rate constant K is 0.028 min-1 and the initial 
concentration CAi is 1.0 mol/L.  

First, the system is excited by an adequate signal u(k) in the 
range [0;1] to collect the measurement CA(k+1) at different 
instants. The input vectors [CA(k+1),u(k)] are subjected to 
fuzzy classification as discussed earlier. The total length of 
the sequence is 1000. By linearizing the system around the 
cluster’s center, the dynamics of the system can be modelled 
by a first order transfer function. Then, the gap metric is 
performed on the obtained models to compute the validity 
criterion.  The minimization of the proposed criterion DC 
allows to find the optimal partition corresponding to the 
number of models.  

For this example, Table 2 illustrates the results obtained for 
different numbers of models with different validity criteria. 

All the criteria, including the proposed criterion, indicate that 
C=2 is the optimal model number. 

Table 2. Values of different criteria for the first example. 

Number of 
models 

2 3 4 5 6 

Dc 0.038 0.2464 0.2988 0.3639 0.3525 
PC 0.9 0.87 0.67 0.89 0.65 
PE 0.18 0.19 0.2 0.27 0.28 
XB 0.5 2 4.92 7.8 3.5 

Using the proposed criteria, DC, the local liner models 
obtained by the optimal decomposition are: 
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Two local linear H∞ controllers are designed to control the 
presented system where the corresponding transfer functions 
are given by the following expressions: 
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The global multimodel H∞ controller based on the two local 
controllers is combined according to (12).  

Figure 3 shows the responses using our proposed scheme and 
a neural network controller (NNC) where the inverse model 
of the process was used as a non-adaptive controller, with 
respective control structure (Fig. 2) (Andrasik, 2004). As is 
seen in Fig. 3, it can easily be observed that the dynamic 
response of the NNC is sluggish and present static errors. An 
excellent tracking performance is achieved via the proposed 
method where the two local linear models are used for 
controller design. The accurate tracking behaviour approves 
the adopted method to get a reduced model bank to design 
multilinear controller. 

Neural Network

controller
Plant

TDL

TDL

Setpoint
X

 

Fig. 2.  Block diagram of direct inverse control. 

In our proposed method, the knowledge of the extent of 
influence of each controller provides a know-how of the 
dominant dynamics in that operating space. The weighting 
functions used to combine the local H∞ controllers works on 
the assumption that when a particular gap is small, the 
corresponding weight is high (Fig. 4). In addition, it is 
indicated that the corresponding local controller dominated 
the control action. For instance, it can be concluded that 
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controller K1 is most active and that controller K2 is the least 
active when the process operates at a set point of 0.94.  
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Fig. 3.  Closed-loop responses and control inputs moves 
((dotted) setpoint; (solid) with the proposed method; (dash-
dotted) with NNC). 
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Fig. 4.  Calculated gap metrics ((dotted) δ1; (solid) δ2) 
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Fig. 5.  Closed-loop responses and control inputs moves of 
CSTR using one model ((dotted) setpoint; (solid) with K1; 
(dashed) with K2). 

Fig. 5 shows the performances of the two local controllers in 
the entire operating range. The output under controller K1 

(solid line) cannot track the reference at high concentration 
values and at small values the output under controller K2 
(dashed line) oscillates fiercely. Neither local controller is 
able to perform the tracking task in the entire operating space. 

4.2  Example 2: Nonisothermal CSTR 

A benchmark CSTR where an irreversible first-order reaction 
takes place is considered. The mathematical model was taken 
from the paper (Uppal et al.,1974), where x1, x2, and u are the 
dimensionless reagent conversion, the temperature (output), 
and the coolant temperature (input), respectively. The system 
under study is described by the following set of nonlinear 
differential equations. 
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The nominal values for the constants in (19) are Da=0.72, 
B=8, γ=20 and β=0.3. 

The system is excited in its full operating range by a control 
input u(k) of random amplitude in the range [-2;2]. Then, the 
measurements x1(k+1) and x2(k+1) are collected at different 
instants. The total length of the sequence is 2000. The input 
vectors [x1(k+1),x2(k+1),u(k)]   are, then, presented to the 
FCM algorithm. By linearizing the system around the 
cluster’s center, the dynamic data in each cluster can be 
modeled by second-order transfer function. 

Table 3 shows results of the validity indexes. Of the indexes 
considered, only the PC criterion indicates that C=3 may be 
as the optimal partition. The other indexes consider that C= 2 
as the optimal number of models. 

Table 3. Values of different criteria for the second 
example. 

Number 
of models 

2 3 4 5 6 

Dc 0.001 0.2904 0.3082 0.299 0.31 
PC 0.64 0. 74 0.71 0. 62 0.65 
PE 0.2 0.23 0.29 0.25 0.28 
XB 7.9 18.2 8.5 15.8 13.5 

Based on the proposed criterion, the following models are 
obtained from linearization around the cluster’s center.  
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The H∞ controllers designed based on corresponding local 
models are respectively given by:  
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Simulation results of the NNC and of the proposed controller 
are shown in Fig. 6. It is obvious, from simulation results, 
that a NNC is unable to satisfactorily control the process 
because of imperfect inverse mapping. In fact, the dynamic 
responses are far from satisfactory, as indicated by the large 
static errors. Based on the two linear local models, obtained 
by the proposed method, it is seen that all the output quickly 
and accurately follows the reference signal over the operating 
space. 

The metric gaps, in Fig. 7, between the dynamic local model 
at the current state and the two obtained local models defined 
in the model bank are used to calculate weighting functions 
in order to combine the local H∞ controllers into global 
controller. It is worth noting that the closed-loop transient 
behavior is more than likely influenced by the controller 
synthesized around the unstable region. 
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Fig. 6.  Closed-loop responses and control inputs moves  
((dotted) setpoint; (solid) with the proposed method; (dash-
dotted) with NNC). 
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Fig. 7.  Calculated gap metrics ((dotted) δ1; (solid) δ2). 
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Fig. 8.  Closed-loop responses and control inputs moves of 
CSTR using one controller ((dotted) setpoint; (solid) with K1; 
(dashed) with K2). 

If only one model is used to control the system (Fig. 8), we 
also get an expected result. In fact, the results indicate when 
only the controller K1 is used some degradation in 
performance is observed especially around unstable regions 
whereas when only the controller K2 is used the setpoint is 
not well attained. In this case, the degradation due to a large 
plant-model mismatch confirms the proposed decomposition 
method aiming to get a smaller and effective linear model 
bank for multimodel controller design. 

4.3 Example 3: a multivariable process 

 The proposed method can be applied to both SISO systems 
and MIMO systems. Consider the following square process 
two-inputs–two-outputs (TITO) (Koivo, 2002): 
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where u1, u2 are the inputs, y1, y2 are the outputs, and x1, x2 
are the state variables. The ranges of state variables and 
inputs are    0,1 , 0,1i iy u  . 

In order to excite a rich variety of dynamical modes in the 
plant, the system identification data were generated using 
uniformly random inputs signal that varies between 0 and 1. 
Then, the collected outputs are used to construct the vector to 
be clustered to know [x1(t),x2(t),u1(t-1),u2(t-1)].  

By linearizing the system around the cluster’s center, a local 
model is fitted to each cluster. On the obtained models, the 
gap metric was performed to compute the proposed criterion 
of validity. 

For the data set from the TITO system, DC and PE indicate 
that C=3 is an optimal model number. However, the PC and 
XB index give us, respectively, that C=4 and C=2 are a good 
model number estimate. 
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Table 4. Values of different criteria for the third example. 

Number 
of models 

2 3 4 5 6 

Dc 0.46 0.332 0.349 0.37 0.36 
PC 0.62 0. 66 0.88 0. 68 0.65 
PE 0.11 0.09 0.22 0.25 0.29 
XB 12.4 27.1 20.9 14.5 16.5 

Based on the proposed criterion, a decentralized control 
structure will be used. By linearizing the system around the 
cluster’s center, the obtained local models are: 
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               (27) 

Based on the obtained models of the studied system, the 
transfer functions for the H∞ controllers are: 
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                                                                     (28) 
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                                                                                           (30) 

The global multimodel H∞ controller based on the three local 
controllers is combined by their weighting functions 
according to (12).  

The response of the global controller is evaluated for 
successive set-point changes in the whole operating space. 
The closed-loop profile for the complete model bank 
(P1 ;P2 ;P3) shows satisfactory performance, as depicted in 
Fig.9. The selection of the linear model bank is approved by 
the fast and efficient tracking behavior. 
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Fig. 9.  Closed-loop response of TITO system using three 
controllers. 

Figure 10 shows the metric gaps, between the linearized 
model of the system at the current state and the three local 
models defined in the model bank, used to calculate the 
global controller. 
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Fig. 10.  Calculated gap metrics ((dotted) δ1; (solid) δ2; 
(dashed) δ3) 
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Fig. 11.  Closed-loop response of TITO system using two 
controllers ((dotted) setpoint; (solid) with K1 and K2; (dashed) 
with K2 and K3; (dash-dotted) with K1 and K3). 

When only two models are used the results indicate that 
performances in tracking are not satisfactory. If only the two 
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linear models (P1 and P3) are used for controller design the 
dynamic responses are sluggish. The second combination, 
using models P2 and P3, exhibits some degradation in 
performance as indicated by the static errors. And for the last 
combination (P1 and P2) the performance is quite bad in the 
last period: The outputs are oscillating. 

Closed-loop simulations confirm that the proposed method is 
a useful and effective tool for choosing linear model bank for 
multivariable systems. 

5.  CONCLUSION 

This study presents a new validity crietrion able to 
decompose the operating space and to determine the 
minimum linear model bank for a nonlinear system. Based on 
the gap metric, the proposed criterion quantifies the degree of 
similarity between local models for decomposition. The 
optimal decomposition is obtained by minimizing the 
proposed criterion with respect to the number of models. 
Multimodel H∞ control algorithm is validated for set point 
tracking of two benchmark nonlinear chemical processes and 
a multivariable process. The examples we have chosen show 
the ability of our criterion to determine the optimal linear 
model bank for nonlinear systems. 

It should be noted that the proposed weighting functions used 
to combine local controllers into a global one is based on the 
process model. In case of an unavailability of the process 
model, a dynamic model can be identified by a linearization 
procedure. To accommodate this situation, we may extend 
the proposed method in our future. 
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