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Abstract: In this paper, a new adaptive second order sliding mode control approach is extended to a class 
of complex interconnected systems with mismatched interconnections and unknown disturbances. The 
novel contribution of this paper is to remove two common limitations hindering the application of the 
sliding-mode control to complex interconnected systems: 1) the exogenous disturbances must be bounded 
by a known function of the outputs or by a known function of the state; 2) the control input is affected by 
chattering problems. First, based on a new adaptive law, a continuous decentralized adaptive sliding 
mode controller is designed to ensure the reachability of the system states without chattering problems by 
using output variables only. Second, existence conditions of linear sliding surfaces are derived to 
guarantee the asymptotic stability in terms of constrained linear matrix inequalities. Final, numerical 
examples are given to prove the effectiveness of the proposed method. 
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1. INTRODUCTION 

With the development of science and technology, there is an 
increasing need to control complex interconnected systems in 
changing environments where nonlinearity, mismatched 
uncertain, unmodeled dynamics, and exogenous disturbances 
are the main sources of complexity. An efficient control 
strategy for these systems is decentralized control. The 
advantage of decentralized control is to use local signals at 
the level of each subsystem in the controller implementation 
for large-scale interconnected systems, and this therefore 
overcomes the limitations of the traditional centralized 
control. Various decentralized controllers have been 
developed for large-scale interconnected systems in the 
presence of uncertainties (see, for example, Wu, 2002; 
Mahmoud, 2009; Ghosh et al., 2009; Zhang et al., 2012; Wu, 
2012; Chai and Osman, 2015). However, most of them 
require the availability of the states of each subsystem, which 
cannot be guaranteed in practice because some state variables 
may be difficult/costly to measure and sometimes have no 
physical meaning, and thus cannot be measured at all. This 
motivated the authors of (Ye et al., 2005; Chen and Li, 2008; 
Xi and Ding, 2007; Mehraeen et al., 2011; Koo et al., 2014; 
Yan et al., 2004; Cheng and Chang, 2008; Kalsi et al., 2010; 
Yan et al., 2010) to develop decentralized output feedback 
controllers for large-scale systems. In (Ye et al., 2005), a 
decentralized adaptive control scheme is presented for large-
scale systems with unknown control directions. The authors 
of (Chen and Li, 2008) developed a decentralized output-
feedback neural network control scheme for a large-scale 
nonlinear system, where does not require any matching 
conditions on the parametric uncertainties. These approaches 
given in (Ye et al., 2005; Chen and Li, 2008) are achieved 

under assumption that large-scale nonlinear systems have 
special structure. In (Xi and Ding, 2007), a solution to the 
problem of global decentralized output regulation is proposed 
for a class of interconnected systems by using error 
information. In (Mehraeen et al., 2011), a new neural network 
-based nonlinear decentralized adaptive controller is 
developed for a class of large-scale nonlinear by using the 
dynamic surface control. In (Koo et al., 2014), a 
decentralized fuzzy control approach is proposed to stabilize 
a class of nonlinear large-scale systems by using an observer-
based output-feedback scheme. The authors of (Yan et al., 
2004) developed a new sliding mode control scheme for 
nonlinear large-scale system where the disturbances are the 
function of outputs. In order to handle the mismatched 
perturbations, the authors of (Cheng and Chang, 2008) have 
presented a new adaptive sliding surface in which all system 
states are assumed to be measurable. In (Kalsi et al., 2010), a 
decentralized dynamic output feedback based linear 
controller is proposed for a class of matched uncertain 
interconnected systems. In (Yan et al., 2010), a global 
decentralized static output feedback sliding mode control 
strategy is presented for interconnected time-delayed systems 
where the interconnection parts are functions of the system 
output. However, the approaches given in (Yan et al., 2004; 
Cheng and Chang, 2008; Kalsi et al., 2010; Yan et al., 2010) 
suffered the drawback of severe chattering in the control 
input. In addition, this chattering phenomenon is very 
harmful for actuators used in practical electromechanical 
systems.  

Many authors have proposed the second order sliding mode 
control (SOSMC) scheme to avoid chattering problems such 
as (Chang, 2012; Li and Zheng, 2012; Mondal and Mahanta, 
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2013; Das and Mahanta, 2014). In (Chang, 2012), a new 
SOSMC law was developed for a class of mismatched 
uncertain systems with exogenous disturbance. This 
technique can guarantee that the system is stable and the 
chattering problem is removed. The study of (Li and Zheng, 
2012) proposed a robust adaptive SOSMC scheme for a class 
of uncertain non-linear systems where the upper bounds of 
uncertainties are not required to be known in advance. 
Recently, an adaptive tuning law is proposed such that the 
mismatched perturbations are rejected during the sliding 
mode (Mondal and Mahanta, 2013). This approach can 
ensure asymptotical stability of the whole system and remove 
chattering in the control input. In (Das and Mahanta, 2014), 
based on the linear quadratic regulator method, an optimal 
second order sliding mode controller was proposed for a class 
of matched uncertain systems. However, these approaches 
given in (Chang, 2012; Li and Zheng, 2012; Mondal and 
Mahanta, 2013; Das and Mahanta, 2014) are achieved under 
assumption that the second derivative of all state variables 
must be existed, even though mathematical model of systems 
are the first order. This condition may be difficult to satisfy 
for many practical systems. In addition, these control method 
based on small scale systems therefore cannot be applied for 
complex interconnected systems. To the best of our 
knowledge, no SOSMC strategy has so far been developed 
for complex interconnected systems. The main contributions 
of this paper are as follows: 

- A new continuous decentralized adaptive output feedback 
sliding mode control strategy is proposed to ensure the 
reachability of the system states without chattering 
problems by using output variables only. 

- A new adaptive law is developed to solve the unknown 
exogenous disturbances in the complex interconnected 
systems.  

2. SYSTEM DESCRIPTION AND PRELIMINARY 
RESULTS 

Let the complex interconnected systems to be controlled be 
represented by the following form:  
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where in
ix R is the state vector, im

iu R  is the control 

input, and ip
iy R  is the output for the ith subsystem, 

respectively. ,  ,  i i iA B C  and ijH  are system matrices of the 

complex interconnected systems with appropriate 
dimensions. The vector ( , )i ix t  is a matched non-linearity in 

the ith subsystem. The mismatched uncertainty of the 
complex interconnected systems iA  and ijH  are supposed 

to satisfy 

 
( , ) ,       ( , )i i i i i ij ij ij j ijA D F x t E H M F x t N      

where ,  ij ijM N , iD , iE  are known constant real matrices 

with appropriate dimensions, and ( , )i iF x t , ( , )ij jF x t  are 

norm-bounded unknown matrix as ( , ) 1i iF x t   and 

( , ) 1ij jF x t  , respectively. 

The following assumption is required for the complex 
interconnected systems (1): 

Assumption 1: The matrices iB  and iC   satisfy the 

following relations: 
rank( ) ,  rank( )  and  .i i i i i iC p B m p m     (2) 
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(13) of paper (Yan et al., 2012) that there exists a coordinate 
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Two matrices 2
i im m

iB R   and 2
i ip p

iC R  are invertible. 

3. MAIN RESULTS 

In this section, a new adaptive second order sliding mode 
control strategy is developed to stabilize the complex 
interconnected systems (3)-(4). First the sliding surface 

( ( ))i ix t , which is linear with respect to the output variable 

iy , is given by 
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and the sliding manifold is defined as 

( ) ( ( )) ( ( ))i i i i i is t x t x t      (6) 

where ( - ) 20   i i
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T

i i i iK P   , the 

matrix ( )i i im n m
i R     is designated so that 2iK  is 

invertible, ( ) ( ) 0i i i in m n m
iP R      will be designed later, 
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diagonal matrix. With the definition of sliding surface and 
sliding manifold as above, the continuous decentralized 
adaptive output feedback second order sliding mode control 
scheme is given as below: 
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and the adaptive laws are 
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Then the following main results are derived. 

Theorem 1: Consider the closed loop of the complex 
interconnected systems (3)-(4) with the continuous 

decentralized adaptive output feedback second order sliding 
mode controller (7). Then, every solution trajectory is 
directed towards the sliding manifold ( ) 0is t   and once the 

trajectory hits the sliding manifold ( ( ( )) 0i ix t  and 

( ( )) 0i ix t  ) it remains on the surface for all 1( )i iz t  . 

And the resulting ( i in m ) reduced-order dynamics of the 

closed loop system (3)-(4) restricted to the sliding manifold 
( ) 0is t   is asymptotically stable if there exists symmetric 

positive definite matrix ( ) ( )i i i in m n m
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Proof. There are two main parts involved in the proof of 
theorem 1. The first part is to prove that the the continuous 
decentralized adaptive output feedback second order sliding 
mode control law (7) drives the system trajectory onto the 
sliding manifold and maintain the trajectory on the sliding 
manifold for all subsequent time, i.e. the reachability 
condition is satisfied. The second part is to prove that the 
( i in m ) reduced-order dynamics restricted to the sliding 

manifold ( ) 0is t   is asymptotically stable. Before the proof 

of the first part, some statements should be noted in the 
following: Firstly, from equation (3), one can obtain  
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Taking the derivative of ( ( ))i ix t and using equation (17) 
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The second time derivative of ( ( ))i ix t  can be given as 
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Secondly, the following assumption is derived as: 

Assumption 2. The disturbances ( )i t  in (21) are assumed 

to be bounded and satisfy the following condition: 
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where ia , ib  and ic  are unknown bounds. In most of 

systems, the bounds of the system uncertainties are 
commonly unknown in advance and therefore it is difficult to 
realize the error term ( )i t  in equation (21). So adaptive 

tuning laws given in equations (12), (13) and (14) are 
proposed to estimate ( )i t . 

Thirdly, the following lemmas are recalled, which will be 
used in the proof of Theorem 1 

Lemma 1 (Zhang and Xia, 2010): Let X , Y  and F  are real 

matrices of suitable dimension with TF F I  then, for any 
scalar 0  , the following matrix inequality holds: 
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matrices of suitable dimension then, for any scalar 0  , the 

following matrix inequality holds: 
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Now, the first part of theorem 1 will be proved by defining a 
Lyapunov function as (Mondal and Mahanta, 2013; Xia et al., 
2011): 
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Finally, we achieve 

( ) 0.V t     (25) 

The detailed proof of ( ) 0V t   can be found in Appendix A. 

The equation (25) indicates that the system states reach the 
sliding manifold and stay on it thereafter.                                                   

Following the proof of the first part, now it is necessary to 
prove that the ( i in m ) reduced-order dynamics restricted to 

the sliding manifold ( ) 0is t   is asymptotically stable. The 

second-order sliding mode dynamics is determined from the 
basic equality condition ( ) ( ) 0i i i ix x   , whereas the 

proposed controller reaches the condition asymptotically. 
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0 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 1 1
1 1

1 1 1 1

( )

(

).

L
T T T T T
i i i i i i i i i i i i i i

i

L L
T T T T
j ij i i i i ij j i i ij ij ij j

i j
j i

T T T T
j ij ij ij i i

V z A P P A P D F E E F D P z

z H P z z P H z z PM F N z

z N F M P z



 


   

  









  (27) 

Applying Lemma 1 and Lemma 2 to equation (27), it is easy 
to acquire that 

0 0.V     (28) 

The detailed proof of 0 0V   can be found in Appendix B. 

The inequality (28) shows that if LMI (15) is feasible, which 
further indicates that the ( i in m ) reduced-order sliding 

mode dynamics (26) is asymptotically stable.                     �  

Design procedure: The proposed continuous decentralized 
adaptive output feedback second order sliding mode control 
strategy can be implemented as below. 

Step 1: If assumption 1 is satisfied then calculate the 
coordinate transformation matrix iT  following the technique 

given in (Yan et al., 2012). 

Step 2: Find a feasible solution of LMI (15) and calculate the 

sliding surface parameter i im p
iK R  . 

Step 3: Design the sliding surface ( ( ))i ix t  and sliding 

manifold ( )is t  according to equations (5) and (6). 
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Step 4: Design the continuous decentralized adaptive output 
feedback second order sliding mode controller ( )iu t  using 

equation (7). 

Remark 1: The parameters i   and i   in the controller (7)  

play a significant role in determining the convergence rate of 
the sliding surface. It is evident that a higher value of i   and 

i  will force the system states to converge to the origin at a 

high speed. Since a large value of i   and i  will need a 

very high control input which is often not desirable in 
practice, these parameters cannot be chosen too large. Hence, 
a compromise has to be made between the response speed 
and the control input. 

Remark 2: The scalars ˆ 0i  , 0i  and 0i   in the 

adaptive laws (12)-(14) determine the convergence rate of the 

estimated bounds ˆ ( )ia t , ˆ ( )ib t  and ˆ ( )ic t . Practically, any 

scalars ˆ 0i  , 0i  and 0i   can be used to estimate the 

disturbance but a large value only is used for faster 
estimation of disturbance resulting in larger the band of the 
bounded region and vice versa. 

Remark 3: It is obvious from (7) that ( )u t  is discontinuous 

but integration of ( )u t  yields a continuous control law ( )u t . 

Therefore the undesired high frequency chattering of the 
control signal is removed.                                                                                          

Remark 4: The decentralized output feedback control 
strategy for the interconnected systems could be found in 
these papers (Yan et al., 2004; Cheng and Chang, 2008; Kalsi 
et al., 2010; Yan et al., 2010). However, these methods had 
the limitation of severe chattering in the control input. 
Therefore, the continuous decentralized output feedback 
control strategy equation (7)  has been developed to avoid 
chattering problems in the control input. 

Remark 5: These approaches given in (Chang, 2012; Li and 
Zheng, 2012; Mondal and Mahanta, 2013; Das and Mahanta, 
2014) are achieved under assumption that the second 
derivative of all state variables ix  must be existed, even 

though mathematical model of systems are the first order. 
Therefore, the control methods given in (Chang, 2012; Li and 
Zheng, 2012; Mondal and Mahanta, 2013; Das and Mahanta, 
2014) could not be applied for the complex interconnected 
system (1). 

4. NUMERICAL EXAMPLES 

To evaluate the effectiveness of the present study, three 
examples are tested below. 

Example 1 (Kalsi et al., 2010): The first subsystem 

parameters are as 1
0   1

0   0
A

 
  
 

, 1
0

1
B

 
  
 

,  1 0  1C  , 

11 2
1

12

x
x R

x

 
  
 

, 1
1u R ,   1

1 11y y R  , 

 1
1

1   15
10

T
D  ,  1 1   1E   and 1 12sin( )F x , 

 12
1

1   8
10

T
M  , 12 22cos( )F x ,  12 1  1  1N  .  

The second subsystem parameters are as 

2

0           1          0

0          0          1

-40.8  - 41.5 - 9.35

A

 
   
  

,  2

0

0

1

B

 
   
  

,  2 0     0      1C  , 

21
3

2 22

23

x

x x R

x

 
   
  

, 1
2u R ,   1

2 21y y R  , 

 2
1

0.9  1.2  200
15

T
D  ,  2 1    1    1E  , 2 21sin( )F x , 

 21 1    1
T

N  ,  21
1

1.3    3    150
15

M  and 21 11cos( )F x .  

The disturbances 1( )t  and 2 ( )t are assumed to satisfy 

1 1 1 11 1 12 11 12( ) 1 1 1t a b x c x x x         (29) 

and 

21 21
2 2 2 2 23 23

22 22

( ) 1 1 1 .
x x

t a b c x x
x x


   

        
   

   (30) 

Remark 6: Since 1 1 12 1[   ] 2 ( ) 1rank B A H rank B     , 

2 2 21 2[   ] 3 ( ) 1rank B A H rank B      and equations (29)-

(30), it is to say that the interconnected system considered in 
this example consists of  mismatched uncertainties and 
unknown disturbances.  

It is easy to know that the assumption 1 is satisfied because 

1 2rank( ) rank( ) 1B B   and 1 2rank( ) rank( ) 1 C C  . 

Therefore the coordinate transformation matrices of two 

subsystems are found to be 1
-1  0

1   1
T

 
  
 

 and 

2

0   1   0

-1   0   0

1   1    1

T

 
   
  

. From these transformation matrices, we 

achieve 12 22 12 22 1B B C C    . By solving LMI (15), we 

have 1 6.0886P   and 2
30.6739  -16.3025

0
-16.3025   48.3512

P
 

  
 

, the 

scalars 1 60,   2 20  , 1 10,   2 150  , 1 30   and 

2 100  . Since the LMI (15) is feasible and 

1,  1, 2i im p i    then the sliding matrices are 

1 12 1 1 1 0.0061TK K P       (31) 

and 

2 22 2 2 2 0.0017.TK K P       (32) 
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Based on the analysis in Remark 1 and Remark 2, the design 
parameters in the control scheme are chosen to be 1 0.08,   

2 0.07  , 1 0.001  , 2 0.002  , 1̂ 0.01q  , 2ˆ 0.02q  , 

1 0.1q  , 2 0.1q  , 1 0.1q  , 2 0.1q  , 1̂ 40  , 1̂ 40  , 

2 40  , 1 40   1 40  and 2 40  . From equation (6), 

the sliding manifold of two subsystems are 

1 1 10.0061 0.0488s y y   and 2 2 20.0016 0.0032 0s y y   . 

According to (7), the continuous decentralized adaptive 
output feedback second order sliding mode controller of the 
two subsystems are 

1 1 1
0

1 1 1

( ) 0.001 {164.2[ ( ) 0.08

         0.074 0.054 ]sign( )} ,

t

u t t s

y y s dt

  

 




  (33) 

and 

2 2 2
0

2 2 2

( ) 0.001 588.2[ ( ) 0.07

       0.109 0.017 ]sign( )

t

u t t s

y y s dt

  

 




  (34) 

where 1 1 1 1 1
ˆˆ ˆ( ) 0.0061 ( ) 0.0000034 ( ) 0.0017t a t b t c y    , 

2 2 2 2 2
ˆˆ ˆ( ) 0.0016 ( ) 0.0000034 ( ) 0.0017t a t b t c y     and the 

adaptive laws are designed as 1 1ˆ ( ) 0.4 ( ) 0.00006,a t a t    

1 1
ˆ ˆ( ) 0.8 ( ) 0.000001b t b t   , 1 1 1ˆ ˆ( ) 4 ( ) 0.0006c t c t y   , 

2 2ˆ ( ) 0.8 ( ) 0.00003,a t a t    2 2
ˆ ˆ( ) 4 ( ) 0.000001b t b t    and 

2 2 2ˆ ˆ( ) 4 ( ) 0.0003c t c t y   . 

The initial conditions of two subsystems are chosen to be 

 1(0) 5   5
T

x   and   2 (0) 5  5  5
T

x  . The system states, 

sliding manifold and the control input of the interconnected 
system by applying the proposed continuous decentralized 
adaptive output feedback sliding mode controller (7) are 
plotted in Fig. 1 to Fig. 6, respectively.  

Remark 7: According to Fig. 1 and Fig. 6, the proposed 
controller (7) produces smaller input variation and smoother 
chattering free control input as compared to the one in (Kalsi 
et al., 2010).  

 

Fig. 1. Time responses of system states 21x (solid), 

22x (dotted), 23x ( dashed). 

    

Fig.  2. Time responses of system states 11x  and 12x . 

 

Fig. 3. Time responses of sliding manifold 1s . 

 

Fig. 4. Time responses of sliding manifold 2s . 
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Fig. 5. Time responses of continuous control input 1u . 

 

Fig. 6. Time responses of continuous control input 2u . 

Remark 8: The control schemes given by (Kalsi et al., 2010) 
are based on dynamical output feedback which requires more 
hardware for implementation due to the associated closed-
loop system possessing a dynamical order double that of the 
actual system. This limitation has been solved by applying 
the proposed continuous static output feedback controllers 
(33)-(34). 

Example 2: The control systems of two inverted pendulums 
connected by a spring (Zhiming et al., 1996), and composed 
of two subsystems as follows: 

2

1

( ( , )) ,  1, 2;  1,2i i i i i i i ij j
j
j i

i i i

x A x B u x t H x i j

y C x





     




  (35) 

where 2i
i

i

x R



 

  
 

, 1
iu R , 1

i iy R   
 , 

0   1

1   0iA
 

  
 

, 

0

1iB
 

  
 

,  0   1iC  ,   0   0
1   0

1   0ij iH B
 

    
 

, 

( , ) 0.5 0.2i i i i i ix t A x B        , 1,  2;  1,  2;  i j i j   . 

Each pendulum might be positioned by a torque input 
,  1,  2iu i   applied by a servomotor at its base. 

The transformation matrices of two subsystems are 

1 2
-1   0

0    1
T T

 
   

 
. The initial conditions are taken as 

1(0) 0.5   and 2 (0) 0.4   , and the others initial values 

are chosen zeros. By applying the proposed continuous 
decentralized adaptive output feedback second order sliding 
mode control scheme (7) to control the large-scale system 
(35), the simulation results are given by Fig. 7 and Fig. 8, 
respectively, where Fig. 7 and Fig. 8 express the angular 
displacements of the pendulums from vertical and the 
trajectories of the control inputs. 

 

Fig. 7. System responses. 

 

Fig. 8. Control inputs 

Remark 9: From Fig. 7 and Fig. 8, it is marked that the 
proposed continuous decentralized adaptive output feedback 
second order sliding mode control scheme (7) yields faster 
settling time, smaller input variation, and lower control 
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energy than those achieved by using the controller given in 
(Zhiming et al., 1996). 

Remark 10: It would be declared that the existing 
decentralized control method in (Zhiming et al., 1996) can 
also be applied to the inverted pendulum system. However, 
the considered system (35) in this paper is not required to 
measure the angular displacements of the pendulums from 
vertical. Therefore, the aforementioned decentralized control 
approach cannot be applied to control the system (35). 

Example 3: The design procedure presented is applied to 
design an adaptive robust decentralized load-frequency 
controller for a three-area interconnected power system, 
which are from paper (Lim, Wang, and Zhou, 1996). The 
state vector is  

( ) ( ) ( ) ( ) ( ) ( )
T

i i gi gi i ix t f t P t X t E t t          (36) 

where ( )if t , ( )giP t , ( )giX t , ( )iE t  and ( )i t  are the 

changes of frequency, power output, governor valve position, 
integral control and rotor angle deviation, respectively. The 
disturbances 1( )t , 2 ( )t  and 3 ( )t are assumed to satisfy 

1 1( ) 1t a   , 2 2( ) 1t a    and 3 3( ) 1t a   . 

It is easy to know that the assumption 1 is satisfied. Therefore 
the coordinate transformation matrices of three subsystems 
are given by   

 1

  -1            0           0        0              0 

    0            0           0        1               0

    0            0           0        0            -1

    0            1           0     

T 
    0              0

-3.0867  - 3.0179   -1   - 0.5759   - 0.1704

 
 
 
 
 
 
  

,  

 2

  -1            0           0        0              0 

    0            0           0        1               0

    0            0           0        0            -1

    0            1           0     

T 
    0              0

-9.1231  -5.0849  -1   - 3.1351   -1.5942

 
 
 
 
 
 
  

 and 

3

  -1            0           0        0               0 

    0            0           0        1               0

    0            0           0        0            -1

    0            1           0    

T 
     0              0

-16.7645 -8.4590  -1  -13.3088   - 2.5296

 
 
 
 
 
 
  

.  

Then the matrices 12 -13.021B  , 

12

0          -1         0            0

0            0         1             0

-0.575    0.17   - 3.017  -1

1            0         0            0

C

 
 
 
 
 
 

,  22 -14.468B  , 

22

0          -1         0             0

0            0         1              0

-3.135   1.594   - 5.084   -1

1            0         0              0

C

 
 
 
 
 
 

, 32 -14.881B   and 

32

0          -1         0           0

0            0         1            0

-13.3   2.529  -8.459  -1

1            0         0           0

C

 
 
 
 
 
 

 are non-singular.  

Using the LMI-solver, it is found that the feasible solution 
of (15) is attained at  

1

43.1482  - 25.8322    8.1622  - 20.3276

-25.8322   15.7039   - 4.7802   12.1736
0

  8.1622   - 4.7802    1.6900   - 3.8326

-20.3276   12.1736   - 3.8326    9.6163

P

 
 
  
 
 
 

, 

2

18.3889   -8.2135    4.2891   -8.2108

-8.2135    3.8963   -1.8270    3.6701
0

 4.2891   -1.8270    1.1467   -1.8948

-8.2108    3.6701   -1.8948    3.7153

P

 
 
  
 
 
 

 and 

3

0.1237   - 0.0659    0.0609   - 0.0184

-0.0659    0.3022    0.0758    0.0056
0

 0.0609    0.0758    0.1484   - 0.0107

-0.0184    0.0056   - 0.0107    0.0096

P

 
 
  
 
 
 

, the scalars 

1 0.5,   2 0.5  , 3 0.5  , 1 0.05,   2 0.06  , 

3 0.04   1 10  , 2 9   and 3 9.5  . The sliding surface 

matrices are  

   1 12 1 1 10  0  0   0  0  0   0  0  0   0.9TK K P       , 

   2 22 2 2 20  0  0   0  0  0   0  0  0   0.9TK K P        and 

   3 32 3 3 30  0  0   0  0  0   0  0  0   0.9TK K P       . 

From equation (6), the sliding manifold of the three 
subsystems are 

 
 

1 1

1

-0.1534   -2.7161   -0.9000   -0.5183

  -0.0218   -0.3857   -0.1278   -0.0736

s y

y






  (37) 

 
 

2 2

2

( ) -1.4348   -4.5764   -0.9   -2.8216

   -0.2052   -0.6544   -0.1287   -0.4035

s t y

y






  (38) 

and 

 
 

3 3

3

( ) -2.2766   -7.6131   -0.9  -11.9779

   -0.3301   -1.1039   -0.1305   -1.7368 .

s t y

y






  (39) 

According to equation (7), the continuous decentralized 
adaptive output feedback second order sliding mode 
controller of the three subsystems are 

1 1 1
0

1 1 1

ˆ( ) [0.0853(0.9 ( ) 868.3845

     311.697 7.8181 )sign( )] ,

t

u t a t s

y y s dt

 

 




  (40) 
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2 2 2
0

2 2 2

ˆ( ) [0.0768(0.9 ( ) 957.7044

      705.4611 9.7406 )sign( )]

t

u t a t s

y y s dt

 

 




  (41) 

and 

3 3 3
0

3 3 3

ˆ( ) [0.0747(0.9 ( ) 2420.1

       1096.4 150.3298 )sign( )]

t

u t a t s

y y s dt

 

 




  (42) 

where the adaptive laws are considered as 

1 1ˆ ( ) ( ) 0.9,a t a t    2 2ˆ ( ) 2 ( ) 0.9a t a t    and 

3 3ˆ ( ) 2 ( ) 0.9a t a t   . 

Case 1: For testing the robustness of the continuous 
decentralized adaptive output feedback sliding mode 
controller, the system with nominal parameters is used and 
load changes of 0.01p.u. MW is applied to all areas. The 
simulation results of ( )if t  and ( )giX t  for the proposed 

controller are shown in Figs. 9-10. It is showed that the 
frequency deviations converge to zero in about 3.5 s. The 
increment in governor-valve position ( )giX t  in each area is 

to compensate for the local load change of 0.01p.u. MW. 

 
Fig. 9. The ( )if t for Case 1. 

 
Fig. 10. The ( )giX t  for Case 1. 

Case 2: The unmatched uncertainties in the three areas are 
considered in this Case as: 

cos( )   0   0   0   0

0   sin( )   0   0   0

0.01 0   0   cos( )   0   0 ,  1,  2,  3.

0   0   0   sin( )   0

0   0   0   0   cos( )

i i i

t

t

D F E t i

t

t

 
 
 
   
 
 
  

  (43) 

The system performances with the continuous decentralized 
adaptive output feedback second order sliding mode 
controller are tested under mismatched parameter uncertainty 
(43) and apply load changes of 0.02 p.u. MW to all areas. 
The simulation results of ( )if t  and ( )giX t  for the 

proposed  robust controller are shown  in  Figs. 11-12. It is 
observed that the frequency deviations converge to zero in 
about 4 s. The increment in governor-valve position ( )giX t  

in each area is to compensate for the local load change of 
0.02 p.u. MW. 

 

Fig. 11. The ( )if t for Case 2. 

 
Fig. 12. The ( )giX t  for Case 2. 

Remark 11: In comparing the simulation results with the 
results given by (Lim, Wang, and Zhou, 1996), the proposed 
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continuous decentralized adaptive output feedback sliding 
mode controller (40)-(42) can assure not only a fast response 
speed but also the smaller overshoot. Therefore, the designed 
controller is robust and effective to control the matching and 
unmatched parameter uncertainties of interconnected multi-
area systems. 

Remark 12: The method proposed by (Lim, Wang, and 
Zhou, 1996) can not be applied for a three-area 
interconnected power system presented if the state variable 

( )if t  is unmeasurable. This limitation has been removed by 

the proposed continuous decentralized adaptive output 
feedback second order sliding mode controller (40)-(42) 
because the proposed controller (40)-(42) only use four 
output variables ( ( )giP t , ( )giX t , ( )iE t  and ( )i t ). 

5. CONCLUSION 

In this paper, a new second order sliding mode control law is 
presented for the purpose of stabilizing an mismatched 
uncertain complex interconnected systems with unknown 
disturbance. It has been shown that the sliding mode 
dynamics is asymptotically stable and the reachability of the 
system states is guaranteed. The main contribution of this 
paper is to introduce an adaptive second order sliding mode 
control approach to complex interconnected systems in order 
to control both the chattering and mismatched uncertainties 
without measurement all of state variables, which is 
impossible to achieve with the conventional sliding-mode 
control approach. Three examples showed the superiority of 
the proposed approach over the traditional sliding-mode 
control, particularly regarding the reduction of chattering 
levels on the control input. 
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APPENDIXES 

Appendix A: The proof of 0V   

According to equation (24) and property AB A B , it 

generates 
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Since 1 2( )i i i i i it a b z c z    , we get 
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Since 1 1
2 2 2i i i i iz K K C y   and equations (16) and (45), we 

achieve 

2 2
1 1

1 1
2 2 2

1

1 1 1

ˆ( ) ( )

   + ( )

1 1 1ˆˆ ˆ   
ˆ

TL L
i

i i i i i i i i i
ii i

L

i i i i i i i i i
i

L L L

i i i i i i
i i ii i i

s
V t y y K B u

s

K a b c K K C y

a a b b c c
q q q

   



 

 



  

   

 

  

 



  

  

  


  (46) 

where  i , i  and ˆi  are given by equations  (8), (9) and 

(10), respectively.  
Substituting the controller (7) into (46), it is clear that 
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Considering equations (12), (13) and (14), the inequality (47) 
can be rewritten as 
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Then, equation (48) can be rewritten as 
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Using equations (23) and (49) yield 
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where min( ),   1,2,...,i i L   . By using Young’s 

inequality 2 22ab a b   and choosing ˆ , ,
ˆi i
i iq q

     

 i
iq
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, it can be shown that 
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Equation (51) can be expressed as 
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Taking the limit as t  approaches infinity on both sides of 
equation (52), it can be seen 
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In addition, using equations (23) and (52), it is easy to see 
that 
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It follows that 
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Then, one gets 
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So that  
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where 2 2 2ˆi i i i i i ia b c        and min( )i  . From 

equations (53) and (57), the decrease of  ( )V t  eventually 

drives the trajectories of the closed-loop system into 
0.5

( ) i
is t




  (Mondal and Mahanta, 2013; Krstic et al., 

1995; Na et al., 2013). Therefore, the trajectories of the 
closed-loop system are bounded ultimately as 
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which is a small set containing the origin of the closed-loop 
system. In order to guarantee the bounded motion around the 
sliding surface, the positive parameter i  is chosen large 

enough such that ( ) 0V t   when ( )V t  is out of a certain 

bounded region which contains an equilibrium point (Mondal 
and Mahanta, 2013; Krstic et al., 1995; Na et al., 2013). 
 
Appendix B: The proof of 0 0V   

 Applying Lemma 1 to equation (27) yields 
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where the scalars 0i   and 0i  .  By Lemma 2 and 

equation (59), it is obvious that 
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where the scale 0i  . In addition, by the Schur complement 

of (Boyd et al., 1998), LMIs (15) is equivalent to the 
following inequality 
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According to equations (60) and (61), it is easy to get that 

0 0.V                                                                                  (62) 

 


