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Abstract: A novel unscented particle filtering based log-likelihood ratio (LLR) approach for Fault 
detection and isolation (FDI) in nonlinear stochastic systems is proposed. It is well-known that the 
particle filter (PF) is used for the state estimation of nonlinear and non-Gaussian system but the key step 
in the filter design is the selection of a suitable proposal density to represent the true posterior density. 
The traditional PF when used for the FDI problem does not always guarantee that all particles lie in the 
likelihood region as the proposal density for this filter is independent of the measurement data. The new 
approach utilizing PF with unscented Kalman filter (UKF) proposal to solve the FDI problem assures that 
the estimated states (particles) lie within the high likelihood region because the proposal density in the 
unscented particle filter (UPF) is dependent on the current measurement. The detection and isolation of 
faults are carried out through maximum likelihood estimation and hypothesis testing method. The 
efficacy of the proposed method is demonstrated through an implementation on two highly nonlinear 
systems- a chemical reactor system and a three phase induction machine. The simulation results obtained 
from this method are compared with that of FDI technique using the generic particle filtering algorithm 
as state estimator. 

Keywords: Fault detection and isolation, proposal density, unscented particle filter, log-likelihood ratio, 
nonlinear stochastic system.  


1. INTRODUCTION 

Modern engineering systems greatly focus on increasing 
safety and reliability. So the degree of automation used on 
these systems has become more complex. Sometimes, this 
increased level of complexity causes such systems 
susceptible to unexpected faults. As a result, it has motivated 
the researchers to propose various methods for solving the 
fault detection problem (Isermann, 1984; Baseville, 1997; 
Zarei and Shokri, 2014; Van Eykeren and Chu, 2014; Flett 
and Bone, 2016; Huang et al., 2016). Fault detection and 
isolation (FDI) is an increasingly important issue in designing 
systems with safety and reliability. The FDI methods provide 
an alarm tool which can detect if a fault is present in the 
monitored system and also determine the type, location and 
time of fault. Thus, this detection enables one to take 
appropriate corrective action before catastrophic failures. It is 
also noted that if the abnormal process behaviour and faults 
are detected and isolated as quickly as possible; the industries 
can largely maintain high safety and reliability standards 
(Baseville, 1997). 

The FDI approaches are classified into two major categories 
such as model-based and non-model-based approaches. It is a 
well-known fact that the best analytical model normally 
represents complete concise knowledge of the system. The 
model-based approaches use an explicit mathematical model 
of the system to be monitored. Hence, the model-based 
methods tend to be more powerful and provide a better 

performance if the process is well modelled (Chen and 
Patton, 1999). Model-based FDI is performed by two steps: 
residual generation that reflects the fault on the system; then 
residual evaluation for decision making based on these 
residuals (Kadirkamanathan et al., 2002). The residual 
computed is used to decide when and where a fault has 
occurred during the abnormal behaviour of the process. The 
residual is usually generated either using an observer for 
deterministic systems or a filter for stochastic systems which 
leads to the observer-based and innovation–based FDI 
approaches respectively. Initially, FDI schemes was applied 
to the stochastic linear systems in which the noises being 
Gaussian. Under such cases, the Kalman filter (KF) is 
normally employed for state estimation and measurement 
prediction (Frank and Ding, 1997). The predicted 
measurement is then compared with the actual measurement 
(sensor data) in order to calculate the residual, based on 
which some statistical hypothesis tests are carried out for 
fault detection. Fault isolation is achieved by using the 
multiple model and log-likelihood ratio (LLR) test methods 
(Willsky and Jones, 1976). 

Extension of the KF based FDI approach for the nonlinear 
stochastic systems have also been considered in the literature 
by replacing the KF by the extended Kalman filter (EKF) 
(Foo et al., 2013). The EKF based approach approximates the 
nonlinear system by employing the linearization technique 
through Taylor series method but such approximations can 
sometimes result in divergence of the filter. Therefore, this 



76                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

approach cannot be always guaranteed to work well for all 
fault detection problems as it can lead to high rate of false 
alarms. The unscented Kalman filter (UKF) based FDI 
approach overcomes the limitations faced in the above 
approach by using an unscented transformation (UT) 
technique to pick a minimal set of sample points (sigma 
points) around the mean in order to generate more accurate 
estimated state and predicted measurement (Mirzaee and 
Salahshoor, 2012). Unlike EKF, the UKF eliminates the need 
to perform any analytical calculations by using the concept of 
sample statistics (Julier and Uhlmann, 2004). But the FDI 
approaches making use of EKF or UKF can be applied only 
to nonlinear systems which assume the noises to be Gaussian. 

The Particle filter (PF) is considered as a more powerful state 
estimation technique than Kalman-based estimators because 
of its asymptotic optimality and ability to tackle non-
Gaussian systems (Li and Kadirkamanathan, 2001).  In recent 
years, the PF based FDI approach for nonlinear and non-
Gaussian systems have attracted much attention in the 
literature (Orchard and Vachtsevanos, 2009; Marseguerra and 
Zio, 2009; Alrowaie et al., 2012; Tadic and Durovic, 2014; 
Bozhao et al., 2014). The transition prior is usually chosen as 
the proposal density in the design of PF. As the selected 
proposal density is independent of current measurement, the 
state space is explored without any knowledge of 
observations (Jayaprasanth and Jovitha, 2014). Hence, such 
PFs when used for FDI can sometimes become inefficient 
and sensitive to outliers, thereby causing the filter to diverge. 
So under such conditions, the performance of FDI approach 
based on PF can be greatly affected. 

In this paper, the PF with UKF proposal which incorporates 
the most recent measurement known as unscented particle 
filter (UPF) is employed to develop a new method for solving 
the FDI problem in general stochastic nonlinear and non-
Gaussian systems. The potential advantage of using UPF for 
fault diagnosis is that it involves UKF to generate proposal 
density which moves the particles towards the region of high 
likelihood. The validity of the proposed approach is 
illustrated through simulations on a chemical reactor system 
and three phase induction machine. 

2. PROBLEM STATEMENT 

The model-based FDI approach based on a multi-model 
method is developed in this work for stochastic nonlinear 
systems. It is assumed that in this method if N  possible 
known faults occurs in the system then 1N   models are 
taken in to consideration as 

0 1{ }N
s sM M M                                                              (1)                                                                                                                          

where M indicates the total model and 0M  corresponds to 

the normal or fault-free system model and sM , for 

1, 2,...,s N represents the ths faulty model. 

It is considered throughout this paper that the normal system 
behaviour and all the possible faults of the system can be 
expressed by the following discrete stochastic nonlinear state 
space models indexed by 0 1, ,..., NM M M M . 

( ) ( ) ( ) ( )( )
1 1 1( , , )M M M MM

k k k kx f x u v                                               (2)                  
( ) ( ) ( )( ) ( , )M M MM
k k ky g x n                                                      (3)                  

where ( )Mf  and ( )Mg  are the nonlinear state transition 

function and the nonlinear measurement function for the 
respective models and both are assumed to be known and 
bounded. kx

 
is the system state vector at the sample instant 

k , ku
 
is the system input and ky  is the measurement vector. 

The system noise kv  accounts for unknown disturbances in 

the system and the measurement noise kn  accounts for 

sensor inaccuracies. The noises kv  and kn
 
are two sequences 

of independent and identically distributed random variables 
with zero mean and its respective known covariance matrices 

are denoted as TE( )k kQ v v  and TE( )k kR n n , where E(.)  
denotes the mathematical expectation operator. 

The two main steps considered to provide solution to the FDI 
problem are as follows: 

 Fault detection: This step decides a model shift or 
detects a change from the normal model 0M

 
to one 

of the faulty models 1{ }N
s sM   and also estimates the 

time ft at which the change has occurred. 

 Fault isolation: This step determines which of the 

faulty model among 1{ }N
s sM  , the considered system 

has moved to. 

The model given by (2) and (3) is generic enough to define 
system faults as well as sensor faults. It must be noted that 
the calibration faults are considered as a key source of errors 
(Balaban et al., 2009; Sharma et al., 2010). The calibration 
error in the sensor can occur either due to the bias fault or 
scaling fault. This paper specifically emphasizes on detection 
and isolation of component fault in the system and bias fault 
in the sensor which are most frequently occurring in practice.  

One of the greatest difficulty in FDI approach for the 
nonlinear system described by (2) and (3) is the presence of 
unknown and unmeasured state variables. Generally, the 
solution to the above problem is provided by the design of 
state estimators or filters. Hence, the model-based FDI 
approach proposed in this work employs a bank of UPFs 
where each UPF corresponds to a known possible fault and 
runs in parallel with a UPF that corresponds to the normal 
model. 

3. BAYESIAN STATE ESTIMATION 

The dynamic state estimation problem is usually solved by 
using recursive Bayesian state estimation methods which 
involves the construction of the probability density function 
(pdf) of the current state kx , given the measurements up to 

time k , i.e., 1:ky . So the key in calculating the conditional 

pdf 1:( | )k kp x y  is Bayes theorem and the estimation of this 

pdf normally involves two steps- prediction and update. This 
section focuses on the state estimation (filtering) algorithms 
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that form the basis for the development of a new FDI 
approach. 

3.1  Particle Filter 

Sequential Monte Carlo (SMC) methods are a set of 
simulation based methods which provide a convenient and 
attractive approach for computing the conditional pdf 

1:( | )k kp x y . The PFs are based on SMC method which can 

deal with both the nonlinear and non-Gaussian state estimate 
estimation problem (Arulampalam et al., 2002). The basic 
idea of PF is to approximate 1:( | )k kp x y  using a set of 

particles (random samples) 1{ } pNi
k ix   with associated weights 

1{ } pNi
k iw   as 

1:
1

( | ) ( )
pN

i i
k k k k k

i

p x y w x x


                                              (4)                                                                                           

where   is the Dirac delta function. As the number of 
particles, pN increases, the PF tends to provide a good 

approximation to 1:( | )k kp x y . Furthermore, it has been a 

very important alternative to Kalman-based filters because of 
its generality and robustness. The potential advantage of the 
PF is that the complete probability distribution information of 
the state is obtained, and not just the expectation of the state 
estimate. 

 The concept of importance sampling is used to obtain the 

particles and its associated weights. The particles i
kx  are 

generated from a known density called importance density or 
proposal density 1:( | )k kx y  which is easy to sample from, 

and the corresponding weights of the particles are defined as 

1:

1:

( | )

( | )

i
i k k
k i

k k

p x y
w

x y



                                                                   (5)                                                                                                                          

If the density function 1:( | )k kx y is only dependent on the 

current measurement ky and the past state 1kx  , then the 

importance weights can be updated as 

1
1

1

( | ) ( | )

( | , )

i i i
i i k k k k
k k i i

k k k

p y x p x x
w w

x x y








                                           (6)                                                                                                         

The PF normally uses the transition prior density 1( | )i i
k kp x x   

as the proposal density from which the particles are drawn as 

1( | )i i i
k k kx p x x                                                                    (7)                                                                                                                         

However, as this proposal density is independent of current 
measurement ky , the states are estimated without the 

knowledge of measurements (Ristic et al., 2004). 

The assumption in (7) is used to obtain a simple form of 
importance weights from (6) as 

( | )i i
k k kw p y x                                                                     (8) 

and then the normalized weights are calculated as 

1

( | )

( | )
p

i
i k k
k N

i
k k

i

p y x
w

p y x





                                                              (9)                 

After a few iterations, the weights of most particles become 
insignificant due to the modelling errors and noise which 
makes the particles drift away from the true state. As a result, 
the problem of degeneracy occurs which cannot be avoided 
because the variance of the importance weights increases 
over time (Doucet et al., 2000). Therefore, this problem is 
solved by a resampling technique which removes the 
particles with small normalized importance weights and 
concentrates upon particles with large weights. Thus, a new 
particle set is generated by sampling with replacement from 

the original set 1{ } pNi
k ix   with probability pr( )j i i

k kkx x w  and 

j corresponds to the particle index after resampling.  

3.2  Unscented Particle Filter 

The proposal density 1( | , )k k kx x y   in the particle filtering 

algorithm can very well approximate the true posterior 
density by incorporating the most recent measurement 

ky through a bank of UKFs. Such PF using UKF to proposal 

density is referred as UPF (Van der Merwe et al., 2000). The 
idea is to use for each particle (index i), a separate UKF to 
generate and propagate a Gaussian proposal distribution; that 
is, 

1( | , )i i
k k kx x y  N ˆ( ; , )i i i

k k kx x P                                          (10)                

where ˆi
kx  and i

kP  are estimates of the mean and covariance of 

a particle (index i) computed by UKF at time k  using 
measurement ky . In summary, the unscented particle filtering 

algorithm for the current time step k  is as follows 
(Jayaprasanth and Kanthalakshmi, 2016): 

a) For 1: pi N  

 Run UKF 

ˆ[ , ]i i
k kx P  UKF 1 1[ , , ]i i

k k kx P y   

 Draw a particle from the proposal density 

as i
kx   N ˆ( ; , )i i i

k k kx x P  

End 
 

b) For 1: pi N  

 Calculate importance weight for each 

particle as 1

1

( | ) ( | )

( | , )

i i i
i k k k k
k i i

k k k

p y x p x x
w

x x y




  

 Normalize: 

1

p

i
i k
k N

i
k

i

w
w

w





 

End 
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c) Resample to get an updated particle set 1{ , } pNj j
jkx i  , 

where j refers to the particle index after resampling. 

Now the updated relationship is represented as 
parent ( )j i . 
 

d) For 1: pj N  

 Assign Covariance: 
jj i

kkP P  

End 

The above steps form a single iteration and are recursively 
applied at each instant k .  

4. FAULT DETECTION AND ISOLATION ALGORITHM 

The model-based FDI methods are by nature the most 
powerful fault diagnosis methods. The UPF based LLR 
approach for detection and isolation of fault is discussed in 
the following sections. 

4.1  FDI based LLR Test 

The more versatile approach in fault diagnosis problem is 
modelling faults as changes in system parameters θ  which 
are reflected by changes in the (2) and/or (3). One of the 
popular ways to monitor changes in θ  is to monitor the 
likelihood function of the measurements, ( | θ)kp y under the 

hypothesis testing methods (Alrowaie et al., 2012). The 
hypothesis testing method involves a null hypothesis and an 
alternative hypothesis which is defined as follows: 

Null Hypothesis 0 0H : θ θ   

Alternative Hypothesis 1 0H : θ θ   

Suppose if 0θ θ
 
then it is assumed that the null hypothesis 

is true but instead if 0θ θ
 
then it is considered that the 

alternative hypothesis is deemed to be true. 

In this paper, the normal model and the faulty model is 
referred as null hypothesis and alternative hypothesis 
respectively. Hence, if a faulty condition is occurred in the 
actual system then it is assumed that alternative hypothesis is 
true. These hypotheses are tested by performing the well-
known LLR test. Neyman-Pearson lemma states that this 
LLR test is the most powerful test for testing hypotheses. 
This test is conducted in order to monitor the logarithm of the 
ratio between the likelihood function of the measurements 
from the faulty model and from the normal model. The LLR 
test statistic which is used in this paper is defined as 

 θ

0

sup ( | θ)
log

( | θ )
kk

k

p y

p y

 
   

  
                                              (11) 

where sup is the supremum function.  

The evaluation of the LLR test statistic can be successful 
only if the estimation of the likelihood function is maximum 
which is commonly known as maximum likelihood

estimation (MLE). But the estimation of likelihood function 
is not straight-forward due to the hidden states in the system 
model. So these states of the system are estimated using the 
Bayesian filters and then from the estimated states, the 
likelihood function of the measurements is evaluated. 
Therefore, the selection of an optimal filter plays a vital role 
in maximizing the likelihood estimate. Hence, it must be 
noted that for the system subjected to fault at the unknown 
fault onset time ft , the approach of modelling faults as 

changes in system parameters θ  is replaced by its MLE, 
( | )k kp y x . 

Consider if there are N  faulty models then the problem of 
fault isolation is to identify the most likely alternative 
hypothesis among the following N  hypotheses: 

Alternative Hypothesis 1 1H : θ θ   

   

Alternative Hypothesis H : θ θN N
 

As a result, N  LLR test statistics are obtained and the 
hypothesis corresponding to the largest value of test statistic 

k  is accepted. The larger value of k  indicates that its 
corresponding faulty model has a maximum probability to 
provide good representation of the system fault. It is so 
because the estimate of the likelihood function of this faulty 
model is of higher value compared to that of other faulty 
models. 

4.2  UPF based LLR Approach to FDI 

Li and Kadirkamanathan combined the LLR test with PF and 
developed the particle filtering based LLR method for 
detection and isolation of faults (Li and Kadirkamanathan, 
2001). In the PF based FDI approach, the PF assumes the 
transition prior as proposal density which does not take the 
current measurement in to account. The performance of this 
filter may diverge because of such weaker assumption. In this 
paper, the LLR test is combined with the UPF for FDI in 
stochastic nonlinear systems in order to overcome the 
difficulties faced in the above method. The UPF based FDI 
approach presented here uses the UKF as the proposal density 
in the UPF algorithm which is dependent on the current 
measurement. 

Consider the stochastic nonlinear system governed by one of 
1N   models given by (2) and (3). In order to identify the 

faulty model that best describes the fault in the system, UPF 
is implemented for each of these faulty models sM , for 

1, 2,...,s N  and all these filters are made to run in parallel 

with an UPF implemented for the normal model 0M and the 

corresponding LLR test statistic is evaluated. 

The primary step in the UPF based LLR approach to FDI is 
to compute the likelihood function for each hypothesized 
model by using UPF, and then activating in parallel N LLR 
tests for all the faulty models. The LLR test statistic is 
calculated as  
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0

( )

( )

( | )
( ) log

( | )

sM
k k k

s M
k k

p y x
M

p y x

 
   

  
                                          (12)                                                                                                    

where 1 2, , ...,s NM M M M  represents the N faulty models 

and k is calculated for each of the faulty model. 
( )( | )sM

k kp y x and 0( )( | )M
k kp y x  are the likelihood functions 

of the measurement ky for the faulty model and normal 

model respectively. These likelihood functions are estimated 
at each instant k  from the hidden state vector kx  which are 

recursively estimated using the UPF. This proposed approach 
guarantees that the UPF propagates the particles towards the 

likelihood function ( )( | )sM
k kp y x and ensures maximum 

likelihood for one of the faulty model which signifies the 
system fault. 

In this approach, pN  particles are generated from the UPF at 

each instant k  for each of the faulty model as 
( ){ : 1,..., }sM i

pkx i N  and the normal model as 

0( ){ : 1,..., }M i
pkx i N . The likelihood function ( )( | )sM

k kp y x  

is evaluated for the faulty model by taking average of 
likelihood obtained for each of the particle (index i) as 

( ) ( )

1

1
( | ) ( | )

p

s s

N
M M i

k kk k
p i

p y x p y x
N 

                                 (13)                                                                                                

The likelihood function for the normal model is also 
evaluated in the same manner as 

0 0( ) ( )

1

1
( | ) ( | )

pN
M M i

k kk k
p i

p y x p y x
N 

                                  (14)                                                                                             

For both the above cases, the likelihood is computed for each 
of the particle (index i) using the formula, 

 
( )T ( )11 1

( | ) exp
2(2 ) det( )

i ii
k k k km

p y x r R r
R

   
 

        (15)                                                               

where ( )i
kr and is the prediction error based on the thi particle 

which corresponds to the difference between the actual 
measurement and predicted measurement of the system with 
m-dimensional state vector and R is the measurement noise 

covariance. The critical term ( )T ( )1i i
k kr R r  in (15) is the square 

of the prediction error normalized by its covariance based on 

the thi particle. 

The decision function kh for fault detection based on LLR 

between the two hypotheses, 0H and 1H  is given by 

 

1

0

H

1

H

max k
k i

i k
h 

 


 


                                                               (16)                                                                                                                          

where k
i corresponds to individual LLR value evaluated for 

the period from i  to k . 0   is a threshold which is chosen 
in such a way to provide a reasonable tradeoff between false 
and missing alarms. Equation (16) suggests to accept 1H  

whenever kh   or else accept 0H . 

Likewise, the decision function kd  involving double 

maximization for both detection and isolation of the fault 
from the N possible faulty models is given by  

11
max max ( )

s N

k
k i s

i k M M M
d M 

   
                                        (17)                 

The solution of (17) indicates which of the N faulty models 
has the maximum value of LLR and that corresponding 
model can be considered to provide a good representation of 
the fault in the system. The unknown fault onset time ft  in 

the true system is calculated as 

ˆ min{ : }f kt k d                                                             (18)                 

where ˆ
ft  is the estimated fault time which gives the 

minimum value of k  among all kd  . 

Generally, if the states of a system are independent to each 
other, then the number of required particles, pN increases 

exponentially with the state dimension. The UPF algorithm 
has the promising capability to provide more accurate 
estimated states with very minimum number of particles 
compared to PF because it is more stable and allows one to 
control the rate at which the tails of the proposal density go to 
zero. So the PF based FDI approach usually requires large 
number of particles, whereas, the proposal density used in the 
UPF in the proposed approach largely contributes for 
reduction in the required number of particles to achieve 
improved FDI performance. In practice, the number of 
particles required in the filter design is usually decided 
empirically by conducting some initial experiments on the 
considered system (Chen et al., 2005). The computation time 
of the UPF based FDI algorithm is comparatively higher than 
the PF based FDI algorithm but the time required to run an 
algorithm is not an issue with the advent of fast processors in 
the market. This paper assumes that the faults defined by the 

models 1{ }N
s sM   are not dependent on each other and also do 

not occur simultaneously as the likelihood of the 
simultaneous faults are generally not very high. 

5.  RESULTS AND DISCUSSIONS 

This section presents the efficacy of the proposed UPF based 
LLR method for FDI by conducting simulation studies on 
two highly nonlinear stochastic systems- a chemical reactor 
and a three phase induction machine.
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5.1  Application to a Chemical Reactor System 

5.1.1  System Description 

The chemical reactor system considered in this section is 
taken from (Prakash and Senthil, 2008). A chemical reactor 
that is mostly commonly used in the process industry is 
continuous stirred tank reactor (CSTR). It is used primarily 
for liquid phase reactions. The CSTR considered here is a 
constant volume reactor in which an irreversible and 
exothermic reaction A  B takes place. It is normally 
operated under steady state conditions. Due to the occurrence 
of non-isothermal nature of the reaction, a cooling jacket is 
used to remove heat from the reactor. A mathematical model 
of the reactor derived from its mass-balance relationship 
takes the following form: 

  0

E

RTA
Af A A

dC q
C C K C e

dt V

 
 
                                     (19)                                                                                         

   

 

0

hA

1 c p

E
A RT

f
p

q Cc pc
c c

p

H K CdT q
T T e

dt V C

C
q e T T

C V







 
 
 

 
  
 


   

 
   
  

                      (20)                     

 

Table 1.  Steady-state values for CSTR. 
 

Process variable Steady state operating 
condition 

Product concentration ( )AC  0.0989 mol/L 

Reactor temperature ( )T  438.7763 K 

Coolant flow rate ( )cq  103 L/min 

Process flow rate ( )q  100 L/min 

Feed concentration ( )AfC  1 mol/L 

Feed temperature ( )fT  350 K 

Inlet coolant temperature ( )cT  350 K 

CSTR volume ( )V  100 L 

Heat transfer term (hA)  7 x 105 cal/(min K) 

Reaction rate constant 0( )K  7.2 x 1010 min-1

Activation energy term ( / )E R  1 x 104 K 

Heat of reaction ( )H  -2 x 105 cal/mol 

Liquid density ( , )c   1000 g/L 

Specific heats ( , )p pcC C  1 cal/(g K) 

The state vector x  and the measurement vector y for this 

system is T[ ]AC T  and [ ]T
 

respectively. The system 

parameters and its steady state operating data are given in 
Table 1. The steady state operating condition of the states are 
chosen as initial states of the system. The system and

measurement noise covariance matrices are assumed as 

2

2

(0.00098) 0

0 (0.438)
Q

 
  
 

   and 2(0.438)R      

5.1.2  FDI Algorithm Performance on CSTR System 

The simulation study on the CSTR system is carried out by 
considering two kinds of fault- the component fault 

1( )M M and sensor fault 2( )M M . The UPF-based LLR 

approach for FDI developed in this paper is used to detect 
and isolate these two faults and in order to highlight its 
effectiveness, it is compared with the PF based LLR 
approach. Furthermore, a performance comparison of both 
the approaches is carried out under the same conditions.  

Simulations have been carried out with a sampling time of 
0.083 min as the CSTR is a slow dynamical process. The 
analysis of this system under fault is carried out by 
considering the number of particles, 30pN  for UPF based 

approach and 200pN  for PF based approach.  The false 

alarms can be normally minimized by selecting higher value 
of threshold for decision making and the missing alarms can 
be minimized by choosing its lower value.   Hence, through 
simulation studies, the decision making threshold for this 
faulty system is chosen as 20   because the false alarms 
and missing alarms are greatly reduced under this value. The 
performance of the proposed approach on the CSTR system 
is analyzed both under normal conditions (error-free faulty 
model) and in the presence of modelling errors as follows: 

Case 1:  Normal conditions 

The component fault is considered in this system by 
assuming a leakage fault in the cooling jacket of reactor 
which therefore results in the reduction of coolant flow rate. 
Hence, the component fault is modelled by the reduction in 
the nominal coolant flow rate by 3%. This fault is simulated 
to occur in the actual system at instant 45k   at which the 
system model is shifted from 0M M (normal model) to 

1M M (component fault). The sensor fault is modelled by a 

jump from the nominal value provided by the temperature 
sensor to 2% faulty biased sensor value in order to test the 
sensitivity of the proposed approach over the existing 
approach. The sensor fault is simulated in this case to occur 
at instant 60k   at which the system model is shifted from 

0M M  to 2M M (sensor fault).  

It is observed from Figs. 1 and 2, the LLR computed by the 
proposed UPF based approach suddenly raises to high value, 

134   at the time of detection of component fault 
compared to that of 54   in the PF based approach. Figs. 1 
and 2 also indicate that there is no sensor fault as its LLR 
value lies around zero. Hence, the component fault can be 
detected and isolated by proper evaluation of LLR test 
statistic. 
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Fig. 1. Detection and isolation of component fault in CSTR 
using UPF based LLR algorithm. 
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Fig. 2. Detection and isolation of component fault in CSTR 
using PF based LLR algorithm. 
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Fig. 3. Detection and isolation of sensor fault in CSTR using 
UPF based LLR algorithm. 
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Fig. 4. Detection and isolation of sensor fault in CSTR using 
PF based LLR algorithm. 
 

Similarly, Figs. 3 and 4 show that at the time of detection of 
sensor fault, the proposed approach has a LLR test statistic of 
large peak, 455   compared to that of 146   in the PF 
based approach. It is inferred that the UPF based approach 
provides sharp increase in LLR at the time of detection of 
such abrupt faults, whereas, in the PF based approach, the 
LLR response to abrupt faults is not so rapid. Also the large 
LLR obtained from the proposed algorithm under the 
occurrence of faults guarantees a very minimum chance of 
missing alarm. 

Table 2.  FDI algorithm performance on CSTR under 
normal conditions 

Type of 
Fault 

UPF based FDI PF based FDI 
Fault 

detection 
instant  

LLR 
test 

statistic   

Fault 
detection 
instant 

LLR 
test 

statistic   
Component 

fault 
47 134 51 54 

Sensor 
fault 

60 455 62 146 

 

The performance comparison of both the FDI approaches 
under different faults in CSTR is shown in Table 2. The true 

component fault onset instant is 
45ft 

. The component 

fault is detected at 
ˆ 47ft 

 in the UPF based approach and 
ˆ 51ft 

 in the PF based approach among which the new 
method gives a relatively closer estimate of fault onset 

instant. The true sensor fault onset instant is 
60ft 

. The 

sensor fault is also detected at 
ˆ 60ft 

 in the proposed 

approach but it is detected only at 
ˆ 62ft 

 in the PF based 
approach. 
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Table 3.  Comparison of fault detection delay under normal 
conditions for CSTR. 

 

Type of Fault Average fault detection delay 
UPF based FDI PF based FDI 

Component fault 1.2 4 
Sensor fault 0 2.2 

Further, 100 Monte Carlo simulations are carried out to 
assess the performance of the proposed approach. Table 3 
shows the average fault detection delay for both the 
approaches for 100 Monte Carlo runs, clearly indicating the 
superior performance of the UPF based FDI approach over 
PF based approach. 

Case 2:  Presence of modelling errors 

The problem that arises in the generic PF under the presence 
of modelling error is that its likelihood function becomes 
very minimum because of the transition prior as proposal 
which can move the weights of particles towards zero. As a 
result, these particles tend to lie either in the tail of the 
likelihood or far away from the likelihood region. Thus, the 
PF exhibits less robustness to the plant-model mismatch. The 
robustness issues with the PF are also reported in (Shenoy et 
al., 2011). Such problems can also cause the PF based FDI 
approach to perform poorly in the presence of modelling 
errors. The UPF generally has the capability to move the 
particles towards the regions of high likelihood. This 
potential advantage causes the stability of the UPF to be 
better than the PF even under plant-model mismatch. Hence, 
the UPF based FDI approach can also prove to be more 
robust than the PF based approach in the presence of 
modelling error. 

This case illustrates the performance of both the FDI 
approaches in the presence of modelling error. In this case 
also, the component fault is simulated to occur in the actual 
system causing reduction in the coolant flow rate by 3% and 
the sensor fault is simulated to occur with 2% biased sensor. 
But the component fault is modelled by considering the 
reduction in the coolant flow rate by 6%, thereby introducing 
model error. Similarly, the sensor fault is modelled by 
considering 4% biased sensor. As described in the previous 
case, the component fault and sensor fault are made to occur 
at instant 45k   and 60k   respectively. 

It is noticed from Figs. 5 and 6, the component fault is 
detected in the proposed UPF based approach at ˆ 48ft   at 

which large LLR test statistic 81   is obtained compared 
to that of 28   obtained in the PF based approach at 
ˆ 56ft  . Figs. 7 and 8 shows that the sensor fault is detected 

in the proposed approach at ˆ 60ft 
 
at which 186   is 

obtained compared to that of 75   obtained in the PF 

based approach at
 

ˆ 66ft  . It is observed from Figs. 5 to 8 

that the proposed approach in the presence of modelling 
errors assures very less missed alarm rate compared to that of 
PF based approach. Thus, the new UPF based FDI approach 
exhibits more robustness than the existing PF based

approach. 
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Fig. 5. Detection and isolation of component fault in CSTR 
using UPF based LLR algorithm in the presence of modelling 
error. 
 

0 20 40 60 80 100
-60

-40

-20

0

20

40

60

80

Sampling Instants

Lo
g-

Li
ke

lih
oo

d 
R

at
io

(L
LR

)

 

component fault

sensor fault

 
 

Fig. 6. Detection and isolation of component fault in CSTR 
using PF based LLR algorithm in the presence of modelling 
error. 
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Fig. 7. Detection and isolation of sensor fault in CSTR using 
UPF based LLR algorithm in the presence of modelling error. 
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Fig. 8. Detection and isolation of sensor fault in CSTR using 
PF based LLR algorithm in the presence of modelling error. 

Table 4.  Comparison of fault detection delay under 
modelling errors. 

Type of Fault Average fault detection delay 
UPF based FDI PF based FDI 

Component Fault 3.4 9.7 
Sensor Fault 0.6 7.1 

The average fault detection delay calculated for both the 
approaches is shown in  Table 4 which indicates that the FDI 
performance using UPF based LLR approach can outperform 
the PF based LLR approach in the presence of modelling 
errors. 

5.2  Application to a Three Phase Induction Machine 

5.2.1  System Description 

The highly nonlinear three phase induction machine 
considered in this section is taken from (Kandepu et al., 
2008). The three phase induction machines are widely used in 
industrial drives because they are rugged, reliable and 
economical. Nowadays, induction machines are very widely 
used in variable-frequency drive  (VFD) applications. The 
state space model for a symmetrical three phase induction 
machine is, 

1 1 1 1 2 2 3 2

2 1 1 1 2 2 4

3 3 1 4 3 1 5 4

4 3 2 1 5 3 4 4

5 5 1 4 2 3 6 3

,

,

( ) ,

( ) ,

( )

x m x z x m x z

x z x m x m x

x m x m x z x x

x m x z x x m x

x m x x x x m z

   

   
   

   

  







                                         (21)   

                                                                                                  

where the state variables 1x and 2x  are the stator flux 

components, states 3x and 4x  are the components of rotor 

flux and 5x is angular velocity of the rotor. All the state 

variables are normalized. The system inputs, the frequency 
and the amplitude of stator voltage are indicated by 1z and 2z

 
respectively, and the load torque is indicated by 3z  . The 

parameters 1m  to 6m
 
used in the system state equation are 

the parameters depending on the considered induction 

machine. The output (measurement) equations with 
parameters 7m

 
and 8m

 
are given as 

1 7 1 8 3

2 7 2 8 4

,y m x m x

y m x m x

 

 
                                                              (22)                  

where the outputs 1y and 2y
 
represents the normalized stator 

currents. For simulation, the system inputs and the model 
parameters are obtained from (Kandepu et al., 2008). 

5.2.2  FDI Algorithm Performance on Induction Machine 

The experimental study is carried out for the induction 
machine by considering sensor bias fault in the measurement. 
In this section, the sensor fault in the outputs 1y and 2y  are 

considered as sensor-1 fault 1( )M M  and sensor-2 fault 

2( )M M  respectively. The sensor-1 and sensor-2 faults are 

modelled as a jump in the nominal value of sensor to 5% 
faulty biased sensor value. The sensor-1 fault is simulated to 
occur in the true system at an earlier instant 5k   at which 
the system model is shifted from 0M M  to 1M M . 

Similarly, the sensor-2 fault is assumed to occur at instant 
10k   at which the system model is shifted from 0M M  to 

2M M . 
 

The initial condition of the normalized states of this system 
are considered as 

T[0.2 0.6 0.4 0.1 0.3]x      

The system and measurement noise covariance matrices are 

chosen as 4
510Q I and 2

210R I respectively and nI  

indicates the identity matrix of order n x n . Simulations have 
been carried out with a sampling interval of 0.1sec. In this 
case, the particle count pN

 
is considered as 20 and 100 for 

the UPF based approach and PF based approach respectively. 
The decision making threshold for this system under fault is 
chosen as 2  which provides a reasonable tradeoff 
between false and missing alarms. 
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Fig. 9. Detection and isolation of sensor-1 fault in three phase 
induction machine using UPF based LLR algorithm. 
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Fig. 10. Detection and isolation of sensor-1 fault in three 
phase induction machine using PF based LLR algorithm. 
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Fig. 11. Detection and isolation of sensor-2 fault in three 
phase induction machine using UPF based LLR algorithm. 
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Fig. 12. Detection and isolation of sensor-2 fault in three 
phase induction machine using PF based LLR algorithm. 
 

The true sensor-1 fault onset instant is 5ft  . It is noticed 

from Figs. 9 and 10, the sensor-1 fault is detected in the 
proposed UPF based approach at ˆ 5ft  at which larger LLR 

test statistic, 12   is obtained compared to that of 3.6   

obtained in the PF based approach at
 

ˆ 7ft  . The true  

sensor-2 fault onset instant is 10ft  . Figs. 11 and 12 shows 

that the sensor-2 fault is detected in the proposed approach at 
ˆ 10ft 

 
at which 18   is attained compared to that of 

2.5   obtained in the PF based approach at ˆ 11ft  .  

Table 5.  FDI algorithm performance on Induction machine. 

Type of 
Fault 

UPF based FDI PF based FDI 
Fault 

detection 
instant  

LLR 
test 

statistic   

Fault 
detection 
instant 

LLR 
test 

statistic   
Sensor-1 

fault 
5 12 7 3.6 

Sensor-2 
fault 

10 18 11 2.5 

Table 6.  Comparison of fault detection delay for Induction 
machine. 

Type of Fault Average fault detection delay 
UPF based FDI PF based FDI 

Sensor-1 fault 0 2.3 
Sensor-2 fault 0.3 1.6 

 

The performance comparison of both the FDI approaches 
under sensor faults in three-phase induction machine is 
shown in Table 5. Hence, it is clear from Table 5 that the 
proposed method provides relatively larger LLR value during 
the occurrence of fault and minimum fault detection instant 
than the PF based approach. Table 6 shows the average fault 
detection delay for both the approaches for 100 Monte Carlo 
simulations for the considered induction machine. 

6. CONCLUSIONS 

A new approach for solving the FDI problem in stochastic 
nonlinear systems has been developed by combining the UPF 
algorithm with the LLR test in the multi-model environment. 
This new UPF based FDI approach detects changes in the 
system behaviour and isolates a corresponding fault using a 
bank of UPFs running in parallel. Its effectiveness has been 
demonstrated through exhaustive simulation studies on a 
highly nonlinear chemical reactor system and a three phase 
induction machine. The Simulation results indicate clearly 
that the FDI performance of the proposed approach 
outperforms PF based approach in terms of efficacy by giving 
relatively minimum fault detection delay and large LLR test 
statistic during the occurrence of fault in the system. This 
approach is designed for detection of abrupt faults and is 
unable to handle incipient faults. It requires sufficient 
knowledge of the possible system faults. The UPF based 
approach for detection and isolation of faults provides higher 
degree of robustness than the PF based approach even in the 
presence of modelling errors.  
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