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Abstract: Although periodicity simplifies design and analysis in control theory, it is no more
adapted for embedded systems because it results in a conservative usage of resources. Indeed,
the control signal is computed and updated at the same rate regardless whether is really required
or not. On the other hand, event-driven sampling calls for resources whenever they are indeed
necessary. Event-based PID controllers are proposed in this paper as an alternative to classical
PID approaches, with the same performance but reducing the control updates. The algorithms
are built here without safety limit condition contrary to the seminal event-based PID setup
that was originally proposed by Årzén (1999), in order to reduce the periodicity even more.
Both integral and derivative terms are considered. The different approaches are tested for
controlling the position of a real-time mini quadrotor helicopter. A reduction of the computing
and communication resources utilization is demonstrated for similar final performance.

Keywords: Event-based control, PID control, mini quadrotor helicopter.

1. INTRODUCTION

Advances in fabrication and design of VLSI (very-large-
scale integration) circuits have resulted in the availability
of low-cost, low-power, small-sized computational elements
that are able to communicate via shared and possibly wire-
less communication network. Furthermore, development in
MEMS (microelectromechanical systems), which provide
solid-state sensors and actuators, complements these ad-
vances. The net result is ubiquitous sensing, computation,
actuation and communication that allow the development
of the so called cyber-physical systems (CPS). These CPS
represent an integration of computing devices with phys-
ical processes. In practice, embedded computers and net-
works monitor and control physical processes (usually with
feedback loops) which, in return, affect computations and
communications. The use of small-sized computational
elements emerges as an obvious trend to save space, weight
and energy. However, their implementation can result in
additional challenges since the traditional feedback loop
that operates in continuous-time or at a fixed sampling
rate cannot be used anymore. Therefore, resource-aware
implementations are required.

In this context, recent works addressed alternative frame-
works where the control law is event-driven. Whereas the
control law is computed and updated at the same rate
regardless whether is really required or not in the classical
time-triggered approach, the event-based paradigm relaxes
the periodicity of computations and communications in
calling for resources whenever they are indeed necessary

(for instance when the dynamics of the controlled system
varies). Typical event-detection mechanisms are functions
on the variation of the state (or at least the output)
of the system, like in Årzén (1999); Durand and Marc-
hand (2009); Sandee et al. (2005); Sánchez et al. (2009a);
Åström and Bernhardsson (2002); Heemels et al. (2009);
Lunze and Lehmann (2010); Eqtami et al. (2010). Al-
though event-based control is well-motivated and theoret-
ical results have been stated in the literature in the last
decades, only few works report practical implementation.
It has notably been shown in Åström and Bernhardsson
(2002) that the control law can be updated less frequently
than with a periodic scheme while still ensuring the same
performance. Stabilization of linear and nonlinear systems
is analyzed in Velasco et al. (2009); Tabuada (2007); Marc-
hand et al. (2013); Durand et al. (2014), where the events
are related to the variation of a Lyapunov function or the
time derivative of a Lyapunov function (and, consequently,
to the state too).

Proportional-integral-derivative (PID) controllers are the
most employed controllers in industry or even in hightech
devices because of their capability to provide a satisfac-
tory performance for many processes with a relative easy
design and by the availability of a large number of tuning
rules. However, the growing decentralization of current
processes and the number of involved computational el-
ements demand the redesign of PID control schema. For
this reason, event-triggered PID controllers were addressed
by numerous researches in the last years. An original
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and simple event-based PID control architecture was pro-
posed in Årzén (1999). The suggested scheme updates
the control signal only when the system output crosses
a certain threshold. Whereas an event was enforced with
a mix of level crossings and the use of a timer in order to
bound sampling period (for stability reason) in the initial
approach, this bounded period was then removed in Du-
rand and Marchand (2009) because, in fact, the Nyquist-
Shannon sampling condition is no more consistent in the
asynchronous framework. Nevertheless, a safety limit is
uselessly applied in reported works like in Sánchez et al.
(2009b); Heemels et al. (2009); Mounier et al. (2011). Re-
cently, different event-based PID and PI algorithms were
also developed for open-loop stable first-order systems
with delay, where simulations and experimental results
verify the effectiveness, see Beschi et al. (2012); Ruiz et al.
(2014). As evidenced by the above reviewed literature, very
little attention has been dedicated to design simple and
computational efficiently event-triggered PID controllers
“without safety limit condition”. Therefore, it is proposed
here to clearly highlight the efficiency of such an approach
by implementing a controller for an open-loop unstable
system, that is an unmanned aerial vehicle, and testing
the proposed approach in real-time.

The rest of the document is organized as follows. Classical
(time-triggered) PID controllers and the original event-
based version from Årzén (1999) are introduced in sec-
tions 2 and 3. Event-based PID controllers without safety
limit condition are then detailed in section 4. Different
algorithms are presented but, whereas only the integral
term was addressed in Durand and Marchand (2009) —
as well as in Årzén (1999)) — both integral and derivative
terms are concerned in the present paper. Furthermore, the
proposed algorithms are now based on different approxi-
mation methods. A sketch of stability analysis is given
in section 5. The experimental platform is depicted in
section 6. The different approaches are tested for control-
ling the position of a real-time mini quadrotor helicopter
using a motion capture system with deported controller.
Experimental results highlight the capabilities of the pro-
posed approaches in reducing the control/communication
updates while maintaining similar performance. Conclu-
sions and future works finally end the paper in section 7.

Notation: Afterwards, let j ∈ Z denote the beginning
time of the current control sample in the periodic sampling
scheme, that gives tj := jh̄, where h̄ is the (constant)
sampling period. Also, let k ∈ Z denote the beginning
time of the current control sample in the non-uniform
event-based sampling scheme, that is tk, while hk :=
tk − tk−1 denotes the (varying) sampling interval. In
the present paper, an event is enforced using a level-
crossing detection mechanism, that is when the signal
crosses a given (relative or absolute) threshold ē, also
called level. The different notations for the non-uniform
sampling scheme are represented in Fig. 1(a).

Remark 1.1. Fig. 1(a) is intentionally not thorough since,
actually, an event can only be detected periodically, at a
discrete instant tj (and not at any instant t) by construc-
tion of the event-based mechanism. Typically, if an event
occurs (because a level crossing is detected) at a given time
t between two sampling instants tj−1 and tj , the sampling
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Fig. 1. Event-driven control scheme.

instant for the event-based scheme really occurs at time
tk = tj (and not t), as represented in Fig. 1(b). This will
be further discussed in section 3, however, next figures will
not be as detailed anymore for the sake of not overload.

2. CLASSICAL (DISCRETE-TIME) PID CONTROL

Equations of the continuous-time PID controller are

u(t) = up(t) + ui(t) + ud(t) (1)

with

∣∣∣∣∣∣∣∣∣∣

up(t) = Kpe(t)

ui(t) = Ki

∫ t

t0

e(t)dt

ud(t) = Kd
de(t)

dt
where u is the control signal and e is the error between the
measurement and a given reference to track, up, ui and ud
are the proportional, integral and derivative parts of the
PID controller, Kp, Ki and Kd are tunable parameters.

In frequency (Laplace) domain, this gives

∣∣∣∣∣∣∣∣

Up(s) = KpE(s)

Ui(s) =
Ki

s
E(s)

Ud(s) = KdsE(s)

(2)

where s is the Laplace operator. Moreover, a low-pass filter
is added in the derivative term (to avoid problems with
high frequency measurement noise), which yields

Ud(s) =
Kds

1 + Tfs
E(s) (3)

where Tf is the filter’s time constant.

The control architecture is depicted in Fig. 2(a), where H
is the plant to control, y its sensed output and ysp a given
reference to track. Cc is the continuous-time controller,
derived from equations (2)-(3). It is based on the error
signal e := ysp − y to compute the control signal u that
acts on the plant input.
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Fig. 2. Classical PID controller setups.

Fundamental differences for a discrete-time version are
that i) the discrete controller operates on samples of the
sensed plant output rather than on continuous signals, i.e.
tj instead of t, and ii) the dynamics are implemented by
algebraic recursive equations instead of differential equa-
tions (Franklin et al. (1997)). The architecture is depicted
in Fig. 2(b), where Cd is the discrete-time controller.
An analog-to-digital (AD) converter changes a physical
variable into a binary number (error of quantization is
neglected in the present paper). The conversion occurs
repetitively every constant sampling period h̄, the sampled
signal is y(tj). The reference is directly considered as a
discrete signal ysp(tj) here, but it could also be converted
and sampled. The error is e(tj) := ysp(tj)−y(tj). The con-
troller then feeds the control signal u(tj), that is changed
to a continuous variable u(t) by a digital-to-analog (DA)
converter, with a constant value throughout the sampling
period h̄ thanks to a zero-order hold (ZOH).

Algebraic recursive equations for the digital controller can
be obtained making some approximations on the mapping
of the s-plane in (2)-(3) to the z-plane. The resulting
algorithm in discrete-time domain is

u(tj) = up(tj) + ui(tj) + ud(tj) (4)

where tj denotes the (periodic) sampling instants.

Remark 2.1. The control signal (4) is sent to the actuator
of the plant as soon as it is available, assuming the
time delay is minimized by making the calculations of
the control law as short as possible (Åström and Murray
(2008)). This explains why tj can be in both left and right
sides of formulas in the sequel.

The proportional part is easily straightforward from (2)

up(tj) = Kpe(tj) (5)

However, several solutions exist for the integral and deriva-
tive parts. In this section, first-order approximation meth-
ods are applied. Three cases are treated in particular. More
complex approximation methods could be applied (but
this is not the aim of the present paper).

2.1. The forward difference approximation (or explicit
Euler’s method) is based on the first-order Taylor

series expansion given by s =
1− z−1

h̄z−1
.

The forward approximation gives

∣∣∣∣∣∣

ui(tj) = ui(tj−1) +Kih̄e(tj−1)

ud(tj) =
Tf − h̄
Tf

ud(tj−1) +
Kd

Tf

[
e(tj)− e(tj−1)

] (6)

2.2. The backward difference approximation (or implicit
Euler’s method) is based on the first-order Taylor

series expansion given by s =
1− z−1

h̄
.

The backward approximation gives

∣∣∣∣∣∣

ui(tj) = ui(tj−1) +Kih̄e(tj)

ud(tj) =
Tf

Tf + h̄
ud(tj−1) +

Kd

Tf + h̄

[
e(tj)− e(tj−1)

] (7)

2.3. The bilinear approximation (or Tustin’s method),
based on the trapezoidal rule, is a first-order ap-
proximation of the natural logarithm function, that
is an exact mapping of the z-plane to the s-plane:

s =
2

h̄

1− z−1

1 + z−1
.

The bilinear approximation gives

∣∣∣∣∣∣∣∣

ui(tj) = ui(tj−1) +
Kih̄

2

(
e(tj) + e(tj−1)

)

ud(tj) =
2Tf − h̄
2Tf + h̄

ud(tj−1) +
2Kd

2Tf + h̄

[
e(tj)− e(tj−1)

](8)

These three first-order approximation methods are illus-
trated in Fig. 3 for the integral part computing. Note that
the different approximations work for smooth signals and
are more accurate for smaller sampling period h̄. This
is why some improvements will be mandatory in a non-
uniform sampling scheme where the (varying) sampling
interval can increase. This will be further explained in
section 3.
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Fig. 3. Comparison of three first-order numerical methods
of approximation used for discretization.

Remark 2.2. Whereas the backward and bilinear methods
are numerically stable, the forward one can be numerically
unstable for some h̄: the numerical solution can grow very
large for equations where the exact solution does not,
especially for stiff equations. Intuitively, this is because
the forward approximation only considers the last value of
the signal to integrate (and not the current one). For this
reason, the forward method should not be a good solution
when the sampling interval can become huge.

Remark 2.3. The bilinear method reduces the error of
approximation but is more complex in return. This is
why this method will not be detailed in the sequel.
Nevertheless, an extension to the techniques proposed
afterwards is trivial.
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3. EVENT-BASED PID CONTROL

3.1 Årzén’s event-based PID controller

An original event-based PID controller was proposed for
the first time in Årzén (1999). The basic setup consists in
two parts: a time-triggered event detector and an event-
triggered PID controller (Ceb), as depicted in Fig. 4.

e(tj) u(t)DA +
ZOH

e(tk) u(tk)Ceb
+

−

y(tj) sampler
+ ADevent-based

PID controller

request

y(t)

ysp(tj) time-triggered
event detector

Fig. 4. Event-based PID controller setup.

Time-triggered event detector:

An event detector is used for level-crossing detection. This
first part is periodically sampled with the period h̄ (that
is the same as for the corresponding conventional time-
triggered PID). Typically, it runs like a zero-order holder.
However, the holding instants (afterwards called events)
are non uniform in time and decided with respect to the
input dynamics. Therefore, the aim of the event logic is
to determine the events. Then, the output holds the input
signal constant between two successive events. A request
is also generated at each event to trigger the second part
(i.e. the event-triggered PID controller).

In the original Årzén’s setup, an event occurs:

i) either when the relative measurement crosses a given
level ē, that is when

∥∥e(tj)− e(tk−1)
∥∥ ≥ ē (9)

ii) or if the maximal sampling period is achieved, that is
when

tj − tk ≥ hmax (10)

This second condition was added in order to ensure stabil-
ity by fulfilling the Nyquist-Shannon sampling condition.
Furthermore, as noticed in section 2, the different methods
of approximation are more accurate for a smaller sampling
period. In this sense, hmax allows to limit the increase of
the sampling interval hk := tk − tk−1.

Remark 3.1. Conditions (9) and (10) are only verified at
a periodic instant tj (since the event detector is time
triggered with a constant sampling period).

Event-triggered PID controller:

The second part calculates and updates the control signal
only when a request is received from the first part, that
is when an event was detected by the event detector. The
length of the (varying) sampling intervals hk is defined by
two successive events. The control signal is kept constant
during the interval hk.

For the event-based PID control law, the forward and
backward difference approximation methods are applied
for the integral and derivative parts respectively in Årzén
(1999), that gives

ui(tk+1) = ui(tk) +Kihke(tk) (11)

ud(tk) =
Tf

Tf + hk
ud(tk−1) +

Kd

Tf + hk

[
e(tk)− e(tk−1)

]

(12)

where the varying interval hk replaces the constant period
h̄ in the conventional equations (6) and (7).

Remark 3.2. Instead of calculating the integral part at the
current time ui(tk) based on the previous value of the
signal e(tk−1) — as this was the case in (6) — in (11)
it is pre-calculated at the current sampling time tk for the
next sample (in order to reduce the control delay) using the
current value of the signal e(tk). Then, the next integral
part ui(tk+1) will be used in the PID control law (4) at
the next event tk+1. This is possible because the change
of the error remains lower than ē between two successive
events by construction, thanks to condition (9).

In the sequel, the initial Årzén’s proposal is firstly im-
proved correcting a forgetfulness in the discretization of
the integral part (see section 3.2). Then, the safety limit
condition (10) is removed and the event-based PID con-
troller is modified in consequence (see section 4), changing
either the event condition (that is the way to generate
an event in order to calculate a new control signal) or
the control equations (adapting the conventional control
strategy to an event-driven framework).

3.2 Discretization improvement for the integral part

The method of discretization has to be carefully selected
in a non-uniform sampling interval scheme. For instance,
a forgetfulness was done in the original Årzén’s approach,
as noticed in Durand and Marchand (2009). Indeed, it is
shown in Fig. 5(a) that the forward difference approxima-
tion needs the next sampling interval hk+1 to calculate
the next integral part, whereas the current interval hk is
applied in the Årzén’s mix up (11). Actually, the correct
(non-uniform sampling) forward equation should be

ui(tk+1) = ui(tk) +Kihk+1e(tk) (13)

However, the next value hk+1 is not a priori known
(since it varies). If one still wants to use the forward
approximation, a solution may be to post-calculate the
current integral part by shifting the time instants in
(13), that gives ui(tk) = ui(tk−1) + Kihke(tk−1). But the
interest in reducing the control delay is no more reached
and a old value of the error is applied. Furthermore,
the forward approximation is not numerically stable (as
noticed in Remark 2.2).

Calculating the integral part with a more recent value
of the error seems a better solution. For this reason, the
backward difference approximation is generally preferred.
Then, the integral part is calculated with the current
sampling period hk and error e(tk), as represented in
Fig. 5(b). From (7), the (non-uniform sampling) backward
equation for the integral part is

ui(tk) = ui(tk−1) +Kihke(tk) (14)

Remark 3.3. In order to simplify the understanding,
Fig. 5(a) and Fig. 5(b) illustrate idealized behaviors of
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Fig. 5. Comparison between forward and backward ap-
proximations in the non-uniform sampling scheme.

the event-based scheme since they do not consider the
synchronization of the events with the event detector sam-
pling instants tj . Indeed, the time of level crossing could be
between two successive time-triggered sampling instants,
that are tj − h̄ and tj , because the event detector is time
driven with the constant sampling period h̄ by construc-
tion (see section 3.1). Nevertheless, the right behavior will
be discussed and taken into account in the sequel.

4. ANALYSIS AND MODIFICATION OF THE
EVENT-BASED SCHEME

In order to simplify the original Årzén’s event-based setup,
the safety limit condition (10) — initially introduced
for stability reason — is removed here. However, several
modifications are mandatory with such a simplification.

4.1 Boundary of the integration increment

Fig. 6 depicts an example of the error e between the
measured signal y (i.e. output of the controlled system)
and a given reference to track ysp, in order to visualize
how it behaves during transient and steady-state intervals
(note that the error signal is zoomed but proportions are
respected). Typically, many events should occur when the
measured signal is converging to the reference (i.e. during
transients) since the error is varying. Conversely, no event
should be enforced once the measured signal vanishes
close to the reference (i.e. during steaty-state intervals).
By removing the safety condition (10), the duration of a
steady-state interval can increase as far as the error does
not cross the threshold level ē — because of (9) — whereas
it was limited to hmax before. This allows to reduce even
more the control updates but new problems have to be
considered, in particular when the reference drastically
changes after a large steady-state interval. This can lead to
overshoots whereas the system output is over-corrected in
case of huge sampling interval hk and/or huge error e(tk).
Such a case is deeply analyzed here.

e = ysp − y

y
ysp

time

time

h̄

hk − h̄

ē

tk−1 tk

Fig. 6. Boundary of the integration increment between two
successive events after a large steady-state interval in
the non-uniform sampling scheme.

Actually, issues come from the calculation of the integral
part (14) that involves the product hke(tk) — afterwards
called the integration increment Γk. Indeed, the integra-
tion increment is over-estimated in the current version of
the control algorithm. However, in fact the time interval
between two successive events after a large steady state
can be divided into two parts, as drawn in Fig. 6, that are
i) the time interval where the signal is really in a steady
state and ii) the time interval required to detect a new
level crossing.

i) The first part starts the last time a control signal was
computed, that is at the sampling instant tk−1, and
finishes just before the reference changes. Because of
the time-triggered event detector, this time is tk − h̄.
During this interval, i.e. hk−h̄, the error remains very
small, it is lower than the detection level ē else this is
not the steady state.

ii) Then, because the error becomes higher than the
detection level ē, the second part starts. A request
is sent and a new control signal is finally calculated
at time tk. This instant does not necessarily occurs
exactly when the reference changes because of the
periodic behavior of the time-triggered event detec-
tor (see Fig. 1(b) and Remark 3.1), nonetheless the
interval to detect the level crossing is bounded by the
sampling period h̄.

To summarize, the time interval between two successive
events can be divided into i) a first part where the
sampling interval increases but the error remains small
and ii) a second part where the error could become large
but only during a short instant. Taking into account such
considerations makes the integration increment Γk :=
hke(tk) will not explode anymore, since both h(·) and e(·)
compensate themselves each other. Finally, the integral
part (14) is hence bounded in practice

ui(tk) = ui(tk−1) +KiΓk (15)

with Γk ≤ (hk − h̄)ē+ h̄e(tk)

and this boundary has to be integrated in the event-based
control algorithms without safety limit condition that are
then developed in section 4.5 based on that result.
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Furthermore, note that the inequality (15), which was ini-
tially built for the steady-state intervals, is finally correct
for the whole running. Indeed, (15) becomes (14) during a
transient phase (where an event is enforced at each time-
triggered sampling period) since hk = h̄ in this case.

4.2 Sampling interval in the derivative term

The derivative part of the event-based PID controller can
be canceled when removing the safety limit condition (10),
because a huge sampling interval hk makes vanishing (12).

In practice, the derivative term calculates the slope of the
error over time in order to predict the system behavior.
As a consequence, if this rate of change vanishes, the
derivative action will not be applied anymore. For this
reason, a modification is also required. The two parts of
the time interval between two successive events after a
large steady state (see Fig. 6) are also analyzed here:

i) During the first part, the time derivative of the error
remains small because the error is lower than ē, the
reference does not change and the control is kept con-
stant. The only reason to have an important derivative
is in case of perturbation, but the perturbation is
assumed to be small enough (else it will enforce a new
event). For these reasons, the derivative term can be
neglected in the first part of the steady state.

ii) During the second part, the time derivative of the
error becomes really important because of the refer-
ence change. Nevertheless, whereas hk is considered
in the existing approach (12), only the interval h̄ can
be considered because, in practice, the rate of change
can only occur during the level detection interval.

To summarize, only the last sampling period h̄ is taken
into account in the derivative part, which hence remains
as defined in (7) for the backward case.

4.3 Forgetting factor of the sampling interval

Another solution when removing the safety limit condi-
tion (10) consists in adding a forgetting factor of the
sampling interval so that, after a long steady-state interval,
the value of hk is reduced enough to not impact the control
signal too much. This is true for both the integral as
well as the derivative parts. The idea is to replace the
linearly varying sampling interval hk in (14) and (12) by an
exponentially decreasing one. The approach proposed here
is somehow similar to the anti-windup mechanism used in
control theory, where the error induced by the saturation
has to be compensated.

For the derivative term, an exponential function is chosen
such that the impact of the sampling interval decreases as
the elapsed steady-state time increases, that is

hdexp(hk) = h̄+ (hk − h̄)e−αd(hk−h̄) (16)

where αd > 0 is a degree of freedom to increase/decrease
the exponential sampling interval (16). Such a forgetting
factor allows to have hdexp(hk) close to the sampling
interval value hk when it is small, whereas only the
last sampling period h̄ is considered when it is large (as
suggested in section 4.2).

For the integral term, an exponential function is chosen
such that

hiexp(hk) = hke
−αi(hk−h̄) (17)

where αi > 0 is a degree of freedom to increase/decrease
the exponential sampling interval (17). This forgetting
factor allows to have hiexp(hk) close to the sampling
interval value hk when it is small, whereas it exponentially
vanishes when hk increases.

The dynamics of (16) and (17) with respect to hk is
depicted in Fig. 7.

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

Fig. 7. Evolution of the exponential forgetting factor with
respect to the sampling interval, for h̄ = 0.05 s and
αi = αd = 1 s−1.

4.4 Level-crossing mechanism

Årzén suggested to calculate and update the control signal
using a relative measurement (9), that is when the error
changes enough from its last value, i.e.

∥∥e(tk)−e(tk−1)
∥∥ ≥

ē (see section 3.1). However, such a setup creates troubles
because the system can reach a final (undesired) value
which is different of the reference. In this case, no event
occurs anymore whereas the system is not stabilized. For
this reason, an absolute measurement is preferred here as
in Durand and Marchand (2009). A new control signal is
thus calculated as soon as the current error crosses the
detection level, that is when

∥∥e(tj)
∥∥ ≥ ē (18)

Remark 4.1. With the proposed method, the number of
samples should inevitably increase during the transients
but, at least, the error between the system output and
the reference will be lower than ē during the steady-
state intervals. This was not the case before. In fact, this
modification was not required in the original Årzén’s setup
because the system always reached the reference thanks to
the safety limit condition (10).

Remark 4.2. Whereas the level-crossing detection mecha-
nisms in (9) and (18) are different (relative vs. absolute),
the meaning of the constant ē is the same: it is a threshold
used to enforce the events. Therefore, the setup detailed
before, in particular in Fig. 6, is still true.

4.5 Event-based PID control without safety limit condition

Based on the suggested modifications above, different
strategies are proposed: the first one where nothing else
is done than removing the safety limit condition (10), and
the other ones where the integral and/or derivative parts
of the control law are modified in order to reduce their
impact after a large steady-state interval.
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Algorithm 1 – Only without safety limit condition:

This case corresponds to the Årzén’s proposal where
the safety limit condition (10) is removed without doing
anything else. Important overshoots are expected because
of the principle described in section 4.1.

Remark 4.3. This first algorithm is presented in order to
show that the modifications which follow are required.

Algorithm 2 – Saturation of the integration increment:

This strategy consists in bounding the integration incre-
ment Γk after a large steady-state interval in order to
reduce the overshoots (as discussed in section 4.1). The
product between h(·) and e(·) is thus saturated according
to (15), which yields

ui(tk) = ui(tk−1) +KiΓsat(tk) (19)

with Γsat(tk) = (hk − h̄)ē+ h̄e(tk)

Only the last sample is taken into account for the deriva-
tive term, as defined for the classical approach in (7) (see
section 4.2 for further details).

Algorithm 3 – Exponential forgetting factor of the sampling
interval:

A forgetting factor of the sampling interval is added in
such a way it does not impact the control signal too much
after a long steady state (as discussed in section 4.3).
The exponentially decreasing sampling intervals hdexp(hk)

in (16) and hiexp(hk) in (17) are applied in the derivative
and integral parts respectively. This gives

ui(tk) = ui(tk−1) +KiΓexp(tk) (20)

with Γexp(tk) = hiexp(hk)e(tk)

ud(tk) =
Tf

Tf + hdexp(hk)
ud(tk−1)

+
Kd

Tf + hdexp(hk)

[
e(tk)− e(tk−1)

]
(21)

Algorithm 4 – Hybrid strategy:

This is a mix of the previous algorithms. In fact, in the
first case the integration increment increases with respect
to h(·) and e(·), as drawn in Fig. 8(a). The second strategy
minimizes the impact of the integration increment but
it still increases with respect to both h(·) and e(·), as
shown in Fig. 8(b). Finally, the third algorithm adds an
exponential forgetting factor of the sampling interval in
such a way that the integration increment decreases but, as
a result, the product between h(·) and e(·) is higher when
the sampling interval is small, as represented in Fig. 8(c).
The idea here is to have a small impact of the sampling
interval all the time. For this reason, it is proposed to apply
the exponential forgetting factor into the algorithm with
saturation, which leads

ui(tk) = ui(tk−1) +KiΓhybrid(tk) (22)

with Γhybrid(tk) =
(
hiexp(hk)− h̄

)
ē+ h̄e(tk)

The evolution of the integration increment of this “hybrid”
algorithm is represented in Fig. 8(d).
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Fig. 8. Evolution of the integration increment for the
different algorithms, with h̄ = 0.05 s, ē = 0.01 and
αi = 1 s−1.

On the other hand, the exponential forgetting factor of
the sampling interval is applied in the derivative term, as
previously defined in (21).

4.6 Simulation results

Consider a continuous-time second-order system in its
general form

H(s) =
κ

1 +
2ζ

ωn
s+

1

ω2
n

s2

(23)

where κ is the static gain, ζ is the damping ratio and ωn
is the natural frequency. Consider also the PID controller
in (2) and the desired closed-loop system as a first-order
system of the form

Hcl(s) =
1

1 + τs
(24)

for a given time constant τ . Then, a naive solution (using
pole compensation) for the control parameters is

Kp =
2ζ

κτωn
, Ki =

1

κτ
, Kd =

1

κτω2
n

(25)

whereas the filter’s time constant Tf in (3) is chosen with
respect to the value of the sampling period h̄.

Remark 4.4. The values of the control parameters (25)
are obtained by pole placement of the closed-loop system
considering the time-triggered PID controller. Then, the
event-based PID controllers are designed with these same
values. Note that the aim here is to find the best control
synthesis (otherwise pole compensation would clearly not
be chosen), but to compare the proposed event-based
approaches with the classical time-triggered one. In other
words, the event-based scheme tries to be as close as
possible of the time-triggered closed-loop shaping.

Remark 4.5. The control parameters are computed in the
continuous-time domain in (25). Another solution could
be to directly calculate them in discrete-time domain, this
is detailed in Durand and Guerrero-Castellanos (2015).
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Consider the application case above, with:

• The continuous-time second-order system (23), where
κ = 0.2, ζ = 0.8 and ωn = 0.5 s−1;
• The desired closed-loop system as a first-order system

of the form (24), where τ = 1.98 s;
• The sampling period h̄ = 0.1 s;
• The PID control parameters are as defined in (25)

(using pole compensation), that gives Kp = 8.08,
Ki = 2.53 s−1, Kd = 10.11 s and Tf ≈ 5h̄;
• The exponential decay αi = αd = 10 s−1 and detec-

tion limit ē = 0.01 in the event-based controllers.

The different event-based PID algorithms without safety
limit condition are compared in Fig. 9 for both backward
and bilinear approximation methods. Note the reference
changes (from 0 to 1) at time t = 5 s. On the one hand,
the frequency of updates is reduced in all event-based cases
compared to the classical time-triggered strategy. This is
depicted in the (extra) bottom plot, where ‘1’ means the
control law is calculated and updated during the sampling
period h̄, ‘0’ means the control is kept constant. Further-
more, when the safety limit condition (10) is removed
(algorithm 1), an important overshoot occurs after a large
steady-state interval as expected. Such an overshoot is
reduced when saturating the integration increment (al-
gorithm 2), applying an exponential forgetting factor of
the sampling interval (algorithm 3) or mixing both latter
strategies (algorithm 4). On the other hand, the bilinear
approximation method in Fig. 9(b) gives better results
than the backward one in Fig. 9(a) in terms of frequency
updates and tracking performance (but with a little bit
more complex control algorithm in return).
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Fig. 9. Simulation results: closed-loop system responses
with event-based PID controllers using the different
algorithms without safety limit condition.

Finally, the hybrid algorithm 4 with bilinear approxima-
tion is compared with the Årzén’s algorithm in Fig. 10 (the
original Årzén’s algorithm was modified in order to also

implement the bilinear approximation). However, whereas
only absolute measurement (18) enforces events in the
proposal case, events are enforced either with the relative
measurement (9) or when the safety limit condition (10)
is satisfied with Årzén. On the one hand, it can be noticed
periodic events because of such a safety limit condition. On
the other hand, the proposal only generates events during
transients and then no event during steady states.
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Fig. 10. Simulation results: comparison with Årzén’s event-
based PID controller (bilinear approximation).

5. STABILITY ANALYSIS

Only a sketch of analysis is given here, because the
principle is trivial: if the system becomes unstable due
to the fact that between two successive events it runs
in open loop, then the dynamic of the error activates
the event condition and, hence, the system is driven in
a stable regime. In other words, the event-based scheme
consists in generating events when the system becomes
unstable (that is when the error grows), while keeping the
control signal constant when the system is stable (when
the measure is closed to the reference value). The closed-
loop stability is based on the stability property of the
PID controller (assuming the control parameters lead to a
stable closed-loop system). Note that the controller runs in
open loop between two successive events (e.g. tk−1 and tk),
but in fact it is a closed-loop system thanks to the event
detector which periodically monitors the system output
(at each periodic sampling time tj) and decides when to
update the control signal. In the worst case (in term of
frequency of events), the event-based feedback works as
when applying the classical discrete-time controller: the
events occur periodically, with h̄ as the sampling period
(the minimum sampling time by construction). Conversely,
when the interval between two successive events increases,
stability is still ensured because the error remains lower
than ē by construction, thanks to the triggering condition
(18), then allowing a practical stability.

6. EXPERIMENTAL RESULTS: APPLICATION TO A
MINI QUADROTOR HELICOPTER

Unmanned aerial vehicles (UAVs), and particularly the
mini quadrotor helicopters, give rise to great enthusiasm
in research because of its high manoeuvrability, its pay-
load capacity and its ability to hover, see Castillo et al.
(2004). However, the quadricopter is nonlinear, unstable
and under-actuated with only four input forces (voltage
of each rotor) for six output coordinates to control (roll
φ, pitch θ and yaw ψ for the attitude; x, y and z for the
position). Fortunately, its model can be broken down into



44 Control Engineering and Applied Informatics

two subsystems: one defining the translation movement
(position) and the other one the rotation movement (atti-
tude). Both are coupled in cascade since the translational
subsystem depends on the rotational one, but the rota-
tional subsystem is independent of the translational one.

The algorithms proposed in the present document will be
tested in practice for such a control architecture. Event-
based control is quite new for UAVs systems, since the
system has to be actively actuated to remain stable.
Nevertheless, attitude control was addressed in Téllez-
Guzmán et al. (2012); Guerrero-Castellanos et al. (2013,
2014) and position control is now addressed here.

6.1 Experimental platform

The system is a 18 grams Blade Nano QX quadricopter
(see Fig. 11). In order to release the platform from de-
cision making related to guidance and navigation, posi-
tion and orientation are calculated by a Vicon motion
capture system, where the movement of the vehicle is
processed through T40s high-resolution cameras (based
on the principle of inverse projection and triangulation).
Measurements are sent to the control unit through a UDP
frame every 2ms. Control algorithms are programmed in
Matlab/Simulink and implemented in the control unit side
in real time at 200Hz to a target computer using xPC
target toolbox. Finally, control variables are sent to the
quadricopter through a built-in bridge that converts UDP
frames to DSMX 2.4Ghz protocol. An overview of this
architecture is presented in Fig. 12.

θ

φ

ψ

x

z

y

Fig. 11. Representation of the different control variables in
the mini quadrotor helicopter.

Motion capture

Vicon unit

Control unit

UDP frames

DSMX UDP frames

Vicon Tracker

Matlab/Simulink xPC target
iRC: Ethernet to DSMX bridge

Blade Nano QX

Fig. 12. Experiment architecture.

The leveling control of the mini quadricopter (the control
of pitch θ and roll φ) is done in a (non accessible) internal
loop. Only the control of x, y, z positions and yaw ψ angle
is possible. It is assumed that all the control variables can
be independently controlled. It is also assumed that both
pitch and roll similarly behave (thanks to the symmetry of

the quadcopter) and, consequently, x and y positions too.
The aim of the control strategy is to stabilize the x and y
positions of the quadrotor helicopter to a given reference.
The yaw angle ψ and altitude z are not addressed here
and will be constant. In other words, the control objective
consists in calculating the angles φ and θ as well as the
thrust T (all needed by the internal loop) that will drive
the quadcopter to a given position x and y.

6.2 System model for position control

Let consider the dynamical system model

mξ̈ = mg +RTb3 (26)

where ξ = (x y z)
T

, m is the mass, g = [0 0 g]
T

with g the
gravitational constant, T is the thrust of the quadricopter.
b3 is a unit vector of the body fixed frame and R is the
rotation matrix to express the orientation of the body fixed
frame in the inertial frame

R =

[
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

]

︸ ︷︷ ︸
Rz

[
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

]

︸ ︷︷ ︸
Ry

[
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

]

︸ ︷︷ ︸
Rx

Developing these equations gives the model

mẍ = T (cosψ sin θ cosφ+ sinψ sinφ) (27)

mÿ = T (sinψ sin θ cosφ− cosψ sinφ) (28)

mz̈ = T cos θ cosφ−mg (29)

6.3 From nonlinear to linear control

The tricky idea consists in dividing the controller into
two cascaded parts, as suggested in Hably et al. (2006):
a first one that contains a linear control law (i.e. a PID
controller here) and a second part used to compensate
for the nonlinearities of the system. The second part is
calculated in such a way that the model obtained from
its input to the output of the system behaves like a simple
and linear system (i.e. a double integrator here, as detailed
below). Therefore, the PID controller acts on the (virtual)
double integrator system, while the whole controller (i.e.
both PID and nonlinear parts) drives the real system.

In practice, reformulating (29) gives

T cos θ cosφ = m(z̈ + g) (30)

It is assumed that the quadrotor helicopter will not flip in
order to avoid a situation where φ = ±π/2 or θ = ±π/2.
Multiplying (27) and (28) by sinψ and cosψ respectively,
and dividing the difference by (30) gives the relation
for φ. Similarly, multiplying (27) and (28) by cosψ and
sinψ respectively, and dividing the sum by (30) gives
the relation for θ. The relation for T is easily obtained
from (30). This yields

φ = tan−1

(
cos θ

ẍ sinψ − ÿ cosψ

z̈ + g

)

θ = tan−1

(
ẍ cosψ + ÿ sinψ

z̈ + g

)

T = m
z̈ + g

cos θ cosφ
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Then choosing

φ = tan−1

(
cos θ

rx sinψ − ry cosψ

rz + g

)
(31)

θ = tan−1

(
rx cosψ + ry sinψ

rz + g

)
(32)

T = m
rz + g

cos θ cosφ
(33)

with rx, ry and rz as virtual control inputs from the
position errors on x, y and z axes respectively. Therefore,
the (virtual) system to control can be written as three
independent double integrators

ξ̈ = r (34)

where r = (rx ry rz)
T

. Eventually, considering the atti-
tude control dynamics on the x and y accelerations as a
first-order system leads to the transfer functions

x =
ωx

s2(s+ ωx)
rx (35)

y =
ωy

s2(s+ ωy)
ry (36)

z =
1

s2
rz (37)

To summarize, the position control of the quadcopter
consists in controlling three independent (filtered) double
integrators (35)-(37). This will be fulfilled by a PID
controller. Then, nonlinear equations (31)-(33) — i.e. the
second part of the controller — allow to calculate the
variables needed for the orientation control.

Remark 6.1. The altitude z is actually a double integrator
system which gain decreases with respect to the battery
load. This is no more detailed in the sequel since only the x
and y positions are addressed, nevertheless the battery will
be charged before each experiment to reduce its impact.

Remark 6.2. Since it is assumed that the drone similarly
behaves in x and y axes, then the control parameters will
be tuned only once and applied for both axes in the sequel.

6.4 Performance indexes

Performance indexes, introduced in Sánchez et al. (2009b),
are recalled here. They allow to compare the different
event-based proposals with respect to classical approaches:

• The number (Nb) of samples required to perform the
test bench (normalized and expressed in percentage);
• The IAE index, which gives information on the refer-

ence tracking (and so on the performance):

IAE =

N∑

j=0

∣∣e(tj)
∣∣dt

• By analogy, the IAU index gives information on the
control effort:

IAU =

N∑

j=0

∣∣u(tj)
∣∣dt

where N is the final simulation time.

The performance indexes obtained for the different exper-
iments (detailed below) are summarized in Table 1 for x
and y positions. Results are discussed in section 6.5.

Table 1. Performance indexes for different ex-
periments with several PID control strategies.

(a) Control of the position along x.

Nb (%) IAE IAU

backward method 100 1.78 12.42
Classical PID

bilinear method 100 1.59 12.59

algo 1 94.92 1.88 12.74

algo 2 88.46 1.86 11.94

algo 3 92.50 1.71 11.29

Event-based PID

backward

algo 4 88.61 1.79 12.22

(ē = 10mm) algo 1 82.27 1.71 10.90

algo 2 97.88 2.75 17.84

algo 3 90.61 1.64 10.81
bilinear

algo 4 91.19 1.69 10.81

algo 1 63.70 2.37 15.31

algo 2 67.32 2.81 17.40

algo 3 66.20 2.59 17.54

Event-based PID

backward

algo 4 67.97 2.74 17.90

(ē = 50mm) algo 1 63.70 2.26 13.99

algo 2 63.89 2.79 18.01

algo 3 59.09 2.36 15.07
bilinear

algo 4 60.01 2.44 14.61

(b) Control of the position along y.

Nb (%) IAE IAU

backward method 100 1.55 10.29
Classical PID

bilinear method 100 1.43 8.79

algo 1 99.26 2.25 15.09

algo 2 89.81 1.74 10.90

algo 3 69.31 1.39 8.91

Event-based PID

backward

algo 4 77.50 1.61 11.00

(ē = 10mm) algo 1 78.73 1.69 10.62

algo 2 99.26 2.73 18.67

algo 3 78.58 1.54 9.68
bilinear

algo 4 81.43 1.50 8.85

algo 1 61.13 2.23 13.53

algo 2 64.66 2.73 16.84

algo 3 63.70 2.72 17.85

Event-based PID

backward

algo 4 65.39 2.66 17.52

(ē = 50mm) algo 1 58.43 2.22 13.02

algo 2 64.01 2.68 16.81

algo 3 55.90 2.32 14.17
bilinear

algo 4 55.01 2.04 12.36

6.5 Experimental results

The mini helicopter has to track three points in the space,
which coordinates are (x, y, z) = (0, 0, 1), (0, 1, 1), and
(1, 1, 1) respectively. The altitude is kept the same (i.e. 1m
high) for the three points because the study only focuses
on x and y position control (z is not depicted in the plots).
Typically, the quadricopter has to draw a triangle in the
xy-plane. The system goes to one point to the following
point after a waiting time of 10 s in order to analyze both
the reference tracking and the stabilization. This gives
different steps at different instants, which are filtered in
order to avoid abrupt changes in the position references.

The system trajectory in the xy-plane are compared for
several strategies, for both backward and bilinear approx-
imation methods:

• Classical (time-triggered) PID controllers;
• Event-based PID controllers without safety limit con-

dition, where the control signal is calculated and
updated only when the system output crosses a given
level ē:
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◦ With saturation of the integration increment (al-
gorithm 2);

◦ With exponential forgetting factor of the sam-
pling interval (algorithm 3);

◦ With hybrid strategy (algorithm 4).

The control parameters (obtained by trial and error) are
Kp = 3, Ki = 0.1 s−1 and Kd = 2 s. The sampling
period is h̄ = 0.01 s, the derivative filter’s time constant
is Tf ≈ 2h̄. The event-based control parameters are αi =
αd = 1 s−1 and ē = 10 or 50mm. Note that the battery
quadrotor is charged before each new experiment.

Experimental results are represented in Fig. 13 for the
time-triggered PID control when using either the back-
ward or the bilinear approximation methods, for a 26 s
interval time interval. The top plot shows the reference
and the measured positions. The bottom plots show the
angles (roll φ and pitch θ) and control signals. One can
see in Fig. 13(b) that the bilinear method gives better
performance than the backward one in Fig. 13(a), this is
also verified when comparing the IAE and IAU indexes for
both methods in Table 1.

Experimental results for the event-based control are repre-
sented in Fig. 14 (only algorithm 4 with bilinear method is
depicted but all of them give more or less similar results).
Extra bottom plots show the sampling instants in these
event-based control schemes (‘1’ means the control law is
calculated and updated during the sampling period h̄, ‘0’
means the control is kept constant). In the different cases
(even those not represented), the measured positions in
Fig. 14(a) and performance indexes in Table 1 are close
to the desired ones when the detection level is small, i.e.
ē = 10mm, with a reduced frequency of updates (30% less
of updates in the better case). When the detection level
increases, i.e. ē = 50mm in Fig. 14(b), the frequency of
updates decreases even more (until 45% less of updates)
but with weaker performance in return (because of the
unstable behavior in open loop that occurs between two
successive events, see section 5), so the IAE and IAU
indexes increase.

To summarize, the tradeoff between performance and fre-
quency of control updates is clearly highlighted. One can
hence imagine how the computing resources utilization can
be reduced in embedded systems (as well as communica-
tions in the case of a deported controller as in the present
application).

Remark 6.3. Performance can be increased with other
values of the control parameters, αi and αd for instance,
but this is not the aim of the present work.

7. CONCLUSIONS AND FUTURE WORKS

This paper recalled the classical time-triggered PID con-
trol scheme using different methods of approximation. The
event-based paradigm was then introduced and event-
based PID control algorithms were developed. The pro-
posed approaches are built without safety limit condition,
contrary to the original setup in Årzén (1999), and both
integral and derivative terms were considered. The dif-
ferent approaches were tested in simulation and then on
a real-time system: a mini quadrotor helicopter using a
motion capture system to provide its position, where the
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(b) Bilinear algorithm.

Fig. 13. Experimental results of the time-triggered PID
controller (backward and bilinear approximation
methods).
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(b) ē = 50mm.

Fig. 14. Experimental results of the event-based PID
controller (bilinear method, algorithm 4 for different
detection levels ē).
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controller is deported and communications are hence of
high importance. Experimental results showed the effec-
tiveness of the proposals with a reduction of the computing
and communication resources utilization. The advantage
of an event-driven scheme was hence highlighted and the
encouraging results strongly motivate to continue develop-
ing event-based control strategies.

Next step is to consider delays, as in Durand (2013).
Nonlinear strategies will also be a trajectory for future
works, with event-based control laws in the spirit of Marc-
hand et al. (2013); Durand et al. (2014). Eventually, a
cooperative approach, where several systems are controlled
together through a (wireless) network, will be the next
application to highlight the interest of event-based tech-
niques in reducing computation/communication resources.
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