
CEAI, Vol.18, No.1 pp. 107-116, 2016                                                                                                              Printed in Romania 
 

 

Flux - A Data-Flow Programming Language 
 

R. Ispas*, L. Negreanu** 


*RAI Software, Bucharest 
Romania (Tel: +40 722 475 870; e-mail: rares@raisoftware.ro). 

**University Politehnica of Bucharest, Bucharest, Romania (e-mail: 
lorina.negreanu@cs.pub.ro) 

Abstract: The goal of this paper is to establish the design requirements of a programming language 
enabled to extract the maximum parallelism from source code. The structure of imperative and functional 
languages are analyzed in regards to parallelism. Next, the data-flow paradigm is introduced. Its major 
obstacles are identified and solutions are provided based on compile-time analysis. The resulting 
language should enable wide-scale parallelism, scaling from instruction to cluster. 

Keywords: parallel programming languages, data-flow parallel programming languages, type systems, 
processes, control systems, neural networks 



1. INTRODUCTION 

There is a wealth of computing architectures, like GPUs, 
mesh-processors, Transport Triggered Architectures, FPGAs, 
which offer much higher performance potential than modern 
CPUs, but which are underutilized because of the difficulty 
of their programming. 

We propose a programming language (Flux) enabled to 
extract the maximum parallelism from source code, scaling 
from instruction to cluster. The imperative and functional 
paradigms are analyzed in regards to parallelism, and they are 
found structurally wanting. A thorough analysis of value-
types and reference-types reveals both paradigms can and 
should be unified under a common conceptual framework. 
The Data-Flow paradigm is presented as an alternative. Our 
form of Data-Flow allows unification of Imperative and 
Functional paradigms. Correctness and execution efficiency 
concerns are addressed using compile-time analysis. A 
generalized syntax based on hypergraphs is introduced. The 
resulting language should allow the maximum utilization of 
existing parallel hardware with the minimum amount of 
human effort and enables the development of the next 
generations of parallel architectures. 

Our goal is to design and implement a data-flow 
programming language to be used as the workhorse of 
parallel programming. That is, develop a simple, efficient, 
minimal, programming language with automatic parallelism 
equivalent to what C was for the serial programming age. By 
automatic parallelism we understand a programming 
language feature which allows the compiler and runtime to 
decide what is parallelizable and does not require explicit 
management of execution resources and locks. We argue that 
C is inherently serial, its parallelism granularity is too high 
and had a bad influence on the development of parallel 
hardware, so it must be replaced. Development of advanced 
parallel architectures is blocked by the non-portability of 

existing code across architectures and the lack of automatic 
parallelization.  

Automatic parallelism is essential should the same code be 
reusable on various parallel architectures, similar to what the 
optimizing Fortran compiler was for the porting of code 
amongst different machine instruction sets. 

The paper is organized as follows. Section 2 introduces the 
constraints of a maximal parallel programming language. 
Section 3 discusses the existing approaches in terms of the 
imperative and functional paradigms. Section 4 presents Flux, 
the data-flow parallel programming language. Section 5 
defines the syntax of the language. Section 6 discusses the 
utilization of Flux in the context of control systems. Section 7 
concludes the paper. 

2. THE MAXIMAL PARALLEL PROGRAMMING 
LANGUAGE 

Assuming an ideal parallel processor with unlimited 
execution resources, an ideal parallel programming language 
would execute all the operations in the program 
simultaneously, yet arrive at the correct result every time. 
This is of course not possible, because operations depend 
logically on each other. The Maximal Parallel Programming 
Language (MPPL) would execute as many of the operations 
in parallel as possible, yet produce a correct result. The 
correctness of the result is left undefined on purpose, to allow 
for a case-by-case optimization. 

The necessary constraints of a MPPL running on an ideal 
parallel processor are surprisingly few: (a) data dependencies, 
a calculation cannot be performed if all its operands are not 
available yet; (b) control dependencies, a calculation should 
count in the final result only if its execution exclusively 
depends on a control branch (IF, SWITCH, etc) which is 
chosen. On a finite processor another constraint appears. The 
execution resource dependency blocks the execution of an 
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operation until an execution unit capable of executing that 
operation becomes available.  

3. EXISTING APPROACHES 

We considered the following programming languages in our 
search for a superior parallel language: C++, D, Java, LISP, 
Haskell, OCCAM, Erlang, Rust, LUCID, BitC, Go, VHDL. 

3.1 Imperative Programming Languages Are Scrambling 
Programmer's Intent 

Let's consider C, the measuring stick of all imperative 
programming languages (IPLs). C is considered a serial 
execution language, but modern super-scalar and SIMD 
processors cannot attain their maximum level of performance 
without having the compiler back-end do extremely difficult 
program analysis beforehand. 

In C, the execution order of all instructions within a function 
is fixed at programming time. Statements are executed 
sequentially, precisely in the order of statements delimited by 
semicolons, regardless of data dependencies requirements. 
More precisely, EVERY instruction is in a implicit control 
dependency relationship with the previous one in the block. 
Attempting to remove that implicit control dependencies will 
trigger hidden data dependencies created by the assignment 
order of variables, variables which are used both as message 
channels as well as data storage. Evaluating operations in the 
wrong order will deliver "messages" to the wrong operation, 
thus producing incorrect results. 

There is a huge amount of research related to the untangling 
of real data dependencies from sequential code. While this 50 
years old research domain has produced amazing results 
(SSA, PDG, pointer aliasing analysis, superscalar processors, 
etc), it is clear that its progresses have slowed to a stop. All 
the easy fruits have already been picked, and yet there is still 
significant parallelism hidden in the C code. The tremendous 
complexity of modern code analysis technologies (such as 

context-sensitive pointer aliasing) begets the question: Why 
flatten all the logic mesh on a line of statements, then attempt 
to reconstruct the original logical structure using 
sophisticated techniques, rather than preserve the ORIGINAL 
logic and dependencies, at programming time? 

3.2  Functional Programming Considered Harmful 

The next largest programming paradigm and the very best 
hope of the academic world is represented by the (pure) 
functional languages. They are called pure because 
calculations contain no side effects. Another perspective is 
that all operands are semantically Pass-By-Value, without 
references. This is commonly implemented by having each 
write operation create a new copy of the object.  

The intended goal for this constraint is that the name of a 
value always represents the same value (same content) within 
the same scope, effectively describing totally defined data 
dependencies. Obtaining data-dependencies would enable 
automatic parallelism at compiler level. It turns out it is not 
so, and the reasons are subtle.  

Firstly, totally defined data-dependencies are too restrictive 
when applied to complex data structures (like arrays and 
structures). In their case, pure functional languages will 
required defining a new name for a container for each 
modification of an internal member. As such, parallel 
assignment of the items in an array is impossible in a pure 
functional programming language. Yes, exactly the most 
parallelizable construct.  

Secondly, inefficiencies generated by copy-semantics ruin 
irreparably the performance and are described in the next 
section. 

To understand more of the structural limitations of pure 
functional languages, let us compare the properties of Value 
Types (VT) versus Reference Types (RT) (Table 1): 

Table 1. Value Types vs Reference types 

Characteristic Value Types Reference Types Advantage 
Deterministic 
Scheduling(result the same 
regardless of schedule 
ordering) 

Total 
Partial (parallel write activity 
may insert extra changes 
between explicit deps) 

VT 

Pointer Aliasing No Yes VT 
Parallel Writes No Yes VT 
Requires Locks No Yes VT 
Allocation Automatic - Static or Stack Explicit Dynamic on Heap VT 
Free Automatic/Container Lifetime Explicit or Garbage Collection VT 
Memory Requirements Write_Branches_Count * sizeof(struct) sizeof(struct) RT 
Extraneous Update 
Distribution Memory 

Recursively Multiplied (1) None RT 

Extraneous Update 
Distribution Processing 

Explicitly Coded Reconstruction (2) None RT 

Basic Efficient 
Implementation 

Requires Special Structures or Flow-
Analysis (to minimize effects above, 
but infeasible in the general case) 

Trivial RT 
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In pure functional programming the update of a member V 
contained within a structure C, contained in another object B, 
within A has the following effects: 

 duplicates the memory allocated to V, C, B and A. 
Differential storage is used in some cases for 
optimization, but that still requires extra memory 
and processing and highly complicates the data 
structures. The intuitive optimization of updating in-
place when there is only one copy is not known to 
be implemented in current compilers, because it can 
be safely performed only on corner cases which are 
non-trivial to produce automatically. 

 distributing the updated objects to interested code 
locations requires explicitly coded logic aware of: 

o the code locations which used the 
precedent structure version 

o the in-order reconstruction of the V, C, B, 
and A structures, because the parent 
structures are using the original V value. 
That implies a cascade of reconstructions 
operations, which are simply not necessary 
in the case of references. More generally, 
all the nodes in the code graph which 
logically refer to that value, must be 
TRANSITIVELY reconstructed. 

 beyond the implied expense in processing and 
memory, these update distribution operations and 
explicit state management break the code 
encapsulation. 

3.2.1 Erlang 

Erlang (Erlang, 2003) is arguably the canonical parallel 
language. It exhibits a parallelism level at least orders of 
magnitude higher than a multi-threaded C program. For 
example, an Erlang program can easily have tens of 
thousands to hundreds of thousands of parallel processes, 
while C has difficulty coping with thousand of threads. The 
copy-on-write semantics is at the foundation of its parallelism 
concept and implementation. It is also its greatest weakness, 
because of the highly inefficient data structures it forces upon 
Erlang programs. Copy-on-write is the most common 
implementation of Value-Types (VT) semantics, also used in 
other pure functional languages, such as Haskell. It is the 
very reason why functional programming languages are 
considered slow and are not used in performance critical 
software. For example, it is common for serial Erlang code to 
execute 20 times slower than the equivalent C++ code.  We 
argue that while Value-Types semantics is critical, we can 
enforce it using compile-time analysis without resorting to 
Copy-on-write implementations. 

Another weakness of Erlang is the lack of symmetry between 
internal function parallelism and process-level parallelism. 
This bad smell points to an insufficient generalization. We 
propose a hypergraph program structure which is auto-similar 
at all magnification levels. 

3.2.2 Rust 

Rust (Rust, 2013) is an experimental programming language 
developed by the Mozilla Foundation which is conceptually 
similar to our approach, more than any other language. Same 
as in Flux, the parallelism properties of the data structures are 
verified at compile-time, and have no runtime performance 
hit (Dobrescu-Balaur et al., 2015).  

The Rust language is very complex, even more complex than 
C++, but there are two main issues relevant to parallelism: 
pointer ownership and local storage versus heap (boxed) 
storage. Both are present as attributes in the type system and 
have their own operators. We argue that these are the wrong 
concepts to use, as they derive from the Value-
type/Reference-Type paradigm, and not the other way 
around.  

The complicated type-system of Rust must be manually 
controlled and involves a lot of work with very ugly code. In 
Flux explicit typing is optional; similar type checks exist, but 
the attributes involved are automatically inferred. The result 
is code which is much more readable than Rust's. 

In Rust parallelism is manually coded by the programmer as 
explicitly defined heavy-weight threads. In Flux parallelism 
is implicit in the logical description of the computations to be 
made; logical threads are very lightweight and are batched 
together on the working queue of a physical processor; the 
allocation of threads to physical resources is optional and is 
done using optimization hints. 

The nearest comparison of what we are trying to achieve 
would be a combination of Rust, but with most of the 
dreadful type specifiers automatized and made invisible and 
Flow Based Programming (StreamIt). 

3.3 Call Stack Considered Harmful 

A programming language construct common to both 
programming paradigms is the call stack. This behind-the-
scenes primitive construct has a pervasive influence on the 
structure of source code, as it forces synchronous message 
passing with strict Request-Reply semantics. That is, the 
return value of a function (Reply) is passed to the same 
location the parameters originated from (Request). The stack 
itself is designed to thread the call tree and cannot function 
with message passing structures resembling direct acyclic or 
cyclic graphs (eg coroutines). The limitations this rigid 
structure forces upon the minds of millions of programmers 
cannot be overestimated.  

From a parallelization perspective, the synchronous nature of 
call stacks blocks pipelined execution. This essential parallel 
construct is unused in modern programming languages. 

Finally the stack requires permanent management, at every 
call and every return the stack must be pushed or pop, even 
when the value on the stack will be required at a subsequent 
function call. With the generous amounts of memory and 
cache available today, the management of the call stack can 
be replaced with allocation of static buffers for input 
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parameters and return values, with the lifetime synchronous 
with that of the containing process. 

3.3.1 Garbage  Collection 

Garbage collection (GC) is an expensive operation, whose 
cost is commonly underestimated: poor performance 
scalability of GCs on massive parallel systems; memory 
inefficiency of GC; complexity of GC logic and the non-
locality of GC forces a high-load on the caching and VM 
subsystems.  

The lifetime of all VT objects within a process can be 
decided statically, and thus reduce the number of instances 
which must be tracked by GC. Furthermore, using escape-
analysis all the references which do not escape the scope of a 
process can be destroyed when the process terminates.  Heap 
can be partitioned in separate heaps for each thread context. 

3.3.2 PI-Calculus 

Flux's control of naming aliasing is directly related to Pi-
Calculus (Milner et al., 1992) and its results can and should 
be used to verify the correctness properties of Flux programs. 
However Pi-Calculus says nothing of the efficiency of the 
resulting computations, nor about the human effort required 
to describe code structures. Our primary concerns are to 
deliver a language which is easy for programmers to write 
with and efficient by default for idiomatic code, and then add 
as much correctness verifications as possible. 

The flaws identified by our analysis of the paradigms of 
imperative and functional languages also apply to OpenCL 
and Cuda (which are slightly adapted implementations of C), 
PQL (an extension of Java), Parallel Haskel and others. In 
particular, OpenCL exhibits bad traits of compiler design, 
such as minimal type safety checks and manual coding of 
basic operations which should have been in the scope of the 
compiler such as scheduling of command queues and SIMD, 
synchronization and data movement. 

3.4 Hardware Evolution Blocked By Lack of Parallel 
Languages 

The instruction sets of modern CPUs are using a von 
Neumann model. In this model the CPU is equivalent to 
processing a single node at a time in the Program 
Dependency Graph (PDG). Modern pipelined superscalar 
processors, are attempting at run-time to find and execute 
neighboring nodes in the PDG. This approach is severly 
limited in scope, generic superscalar CPUs are unable to fill 
more than 4-8 ALUs. 

There is a wealth of hardware architectures which exhibit 
high levels of parallelism, but are currently only used in 
specialized applications, because there is no generic 
programming language able to scale from the very fine 
granularity of logic gates to the very coarse granularity of 
server clusters: 

 

 FPGAs 

 Transport Triggered Architectures 

 GPU programming 

 ultra-wide superscalar processors 

 computer clusters 

A more worrying trend is the huge decrease in transistor 
utilization efficiency: 

Table 2.  Transistor utilization 

CPU Transistors MHz Instructions 
/Hz 

MIPS Transist./ 
Instr. / 
Clock 

8086 29K 10 0.075 0.75 386K 
i7-

3930 
2270M 3200 24 76800 94.5M 

 
We can notice that the transistor budget has increased 245 
times for a unit of work. This overhead can be lowered by 
simplified hardware architectures, which move more of the 
work to compilation. 

4. FLUX - A DATA-FLOW PARALLEL PROGRAMMING 
LANGUAGE 

4.1 The Data Flow Paradigm 

The benefits of the dataflow paradigm have been know for 
the last 40 years, but a combination of factors delayed its rise. 
Only in the last 5 years the growth from the hardware side 
made the current approach non-economical. It is just too hard 
to use a GPU at its full potential using current compiler 
technologies.  

As (Kosinski, 1973) and (Johnston et al., 2004) showed, a 
totally asynchronous model with value-type message 
semantics has remarkable properties, such simplicity, 
automatic, maximal parallelism with implicit-locking, 
excellent modularization properties, safety, force VTS on a 
case by case basis. All visual programming environments use 
a dataflow model - visual programming can open up 
computing to a larger audience.  

However, the implementation of such a system presents 
significant problems, such as inefficiency of transporting 
large value type messages using copying, inefficiency of 
asynchronous message-passing using small-granularity 
threading, unavailability of hardware implementations with 
enough execution resources to run large programs. 

Our proposal addresses each such problem, resulting in a 
programming language which unifies the current best 
solutions from the imperative and functional paradigms into a 
whole, with a focus on performance and safety. 
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4.2 Message Passing 

In the deterministic Data Flow model, each message be a VT 
because a message sent to multiple destinations must be 
received verbatim by all the receivers. 

That is, it must not be modified on-the-flight by instructions 
executing in another branch. This requirement insures that 
graph nodes can be connected in a defined manner, by using 
the names of their dependencies, even if the connection list is 
not itself ordered. 

That does not mean messages objects should be immutable (= 
cannot receive messages on non-const ports), just that a VT 
message should have a single version existing at all times. If 
there are multiple branches and at least one of them modifies 
the message, explicit Copy ( % ) operations must be inserted 
to restore single object version per name property (and thus 
split aliasing entanglement).  

As opposed to Erlang, a node (process) can have multiple 
named inbox queues. 

4.3 Reference Passing with Value-Type Semantics 

Naive copying of message value is prohibitively expensive, 
which is the main reason functional languages are so much 
slower than imperative languages. Java implements VT 
semantics for object references by disabling set() operators 
on common object types such a String. A purely functional 
language, Haskell implements VT semantics by forcing every 
update operation to return a new copy of the full object. Flux 
will use in-place update of VTs, while still enforcing VT 
semantics, by verifying at compile-time that when an object 
reference receives a write message, that is the only branch 
with read or write access to that that object reference. In other 
words, the name of a VT object would expire after the first 
message sent to it. Since no other node following in the 
program graph will be able to connect to it unless a new 
name is assigned total ordering will be preserved. It becomes 
the responsibility of the programmer to insert explicit copy 
operations ( % ) on necessary branches, instead of automatic 
copying the object on every write operation as all pure 
functional languages do. 

This compile-time analysis neatly solves the problem of 
passing copies of large value objects, because they are always 
passed by reference, and VT or RT semantics is determined 
based on code context, on a case by case basis instead of 
object interfaces. 

4.4 Locks Removal 

In a Maximally Parallel Programming Language we start 
with the assumption that every statement and every object is 
executed in a parallel context. In this case RT objects may 
receive simultaneously messages from different threads of 
execution, for which the receiving queue must be locked. 
Locking is an expensive operation and it is unrealistic to lock 
a large majority of the objects in the application. Hence, 

every effort must be made to remove locks while preserving 
the meaning of the program. 

When total ordering can be guaranteed for an object, locks 
can be removed because the scheduler guarantees ordering 
when the receiving object is a VT or the messages are 
delivered within the same execution thread. 

4.5 Data Structures as Processes 

In Flux every data structure is a process itself, which 
communicates with other processes by receiving and sending 
messages to other processes ports. Each process has its own 
internal memory, exclusively controlled, which can be 
accessed only through the defined input and output ports, that 
is, there is no shared state. The execution of a process is 
controlled by its execution context, i.e. processes are run 
sequentially within a thread mapped to a hardware resource. 

4.6 Ports 

For a process, ports are the only access points to and from the 
outside environment. Ports can be either for input or output, 
but not both at the same time. A compound port with multiple 
'wires' must have all its components activated (available) 
before the port itself will become activated. 

4.7 Synchronous versus Asynchronous Channels 

Object ports are linked to each other using communication 
channels. For synchronous channels (i.e. Zero Capacity 
Channels) a trick that can eliminate the runtime cost of 
channel synchronization is compile-time scheduling using 
topological sorting. This way both synchronous and 
asynchronous channels have the same coding interface and 
orthogonality of logic and implementation is preserved.  

4.8 Pipelining 

Even so called "sequential code", that is, a chain of 
operations each dependent on the previous one can be 
parallelized in the case of a stream of input messages. While 
this technique is common in CPU microarchitectures, there is 
no general purpose language implementation which can do 
pipelining using static scheduling. The potential of pipelining 
parallelism is larger than the classic parallelism, as it is NOT 
limited by the classic Amdahl's law (but a complementary 
law, limited by the speed of the slowest step and the dynamic 
program behaviour). 

4.9 Mapping of the Logical Data-Flow Structure to 
Execution Resources 

The pure dataflow model assumes dedicated hardware for 
each operation node. As the hardware architecture is in most 
cases a given von Neumann machine, which can process only 
a single operation node at a time (per ALU, per thread, per 
core), the available operations must be mapped onto available 
execution resources. This process should be done in a post-
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compile but pre-runtime step (like installation), so that the 
local resources can be fully exploited. A thread scope 
attribute can be placed around a set of nodes so that all the 
messaging and operations within the scope are matched to a 
thread. 

4.10 HyperGraph Syntax 

A dataflow program is most naturally expressed as a 
hypergraph, that is, a directed attributed graph in which each 
node and each edge can be a graph itself. A generic graph 
notation can thus be used, greatly simplifying the syntactic 
structure through conceptual unification and elimination of 
exceptions and special cases. Like LISP, Flux is homoiconic, 
although this was not a design goal but a result of the generic 
syntax structure. 

It is the authors' opinion that, while general, lists are too low 
level to preserve the initial structure of the data (similarly to 
how strings are capable of containing any kind of data, yet 
their meaning cannot be extracted unless sophisticated 
parsers are used). By using a more general data structure, the 
information contained in the data can be extracted with less 
effort. 

A hypergraph has the amazing property that all common 
compound data structures, such as pairs, records, arrays, lists, 
maps, sets, etc can be found as parts of some hypergraph. So, 
the approach is inverse to LISP where all complex structures 
are constructed out of lists (the strings of symbolic 
programming), rather the other way around, all the basic 
structures are incomplete views of a single universal 
structure. 

The language syntax is designed to: 

 allow description of complex directed attribute 
graphs to be expressed in the language, with a 
minimal number of coding syntactic-sugar. 

 be minimalistic, i.e. everything which can be 
defined as library functions (IF, FOR, WHILE, 
SWITCH, etc) should not be defined in the compiler 
BNF 

 be concise, input and output ports binding must not 
repeat the node; anonymous ports and nodes must be 
possible; use operator associativity instead of 
markup 

 preserve intent;  

As opposed to Erlang, where processes are relatively 
heavyweight and are stacked on-top functions and lists, in 
Flux the process abstraction is present at the very lowest 
levels of language design, each object and each function is a 
process. The proof that this highly abstracted approach can 
work for VTs is given by the existence of VHDL, a language 
used in hardware design, as such placed at the lowest levels 
of abstraction, where processes are the primary organization 
unit and only VTs exist. The mapping of processes to threads 
is orthogonal on the code logical structure, unlike Erlang 

where calling a function is syntactically different from 
sending a message to a process. 

5. SYNTAX DEFINITION 

5.1 Context Binding 

It is impractical for a human programmer to fully describe the 
code graph, which is enormously complicated even for 
relative small instances. That is why the compiler must 
automate as much connecting as possible. For example, all 
the input ports of nodes within a block must be automatically 
connected to the output ports of its ancestors of the same 
name. This automated binding of "variables" in anonymous 
code blocks, similar to the mechanism in D, can be used to 
define custom control structures. 

5.2 Automatic Resource Collection 

Garbage collection is an expensive operation, whose cost is 
commonly underestimated. The lifetime of all VT objects 
within a process can be decided statically, and thus reduce the 
number of instances which must be tracked by GC. 
Furthermore, using escape-analysis all the references which 
do not escape the scope of a process can be destroyed when 
the process terminates. Heap can be partitioned in separate 
heaps for each thread context. 

5.3 Minimal Language 

While more complex than LISP, the Flux programming 
language uses a small number of concepts, even lower than 
JavaScript (Table 3, Table 4). For example: 

 functions, methods, classes and inner classes are all 
replaced by "process nodes" 

 control statements (IF, FOR, WHILE) are defined in 
the language library from even lower-level 
constructs (automatic binding, boolean choice and 
flow merge) 

 no explicit thread locks 

 no explicit constructor (replaced by copy operator) 

Table 3. Flux Keywords 

Logic and Arithmetic 
Operators 

Syntax 

Greater than gt 

Less lt 

Modulo mod 

Not not 

And and 

Or or 

Xor (bitwise and logical) xor 

division Div 

multiply Mul 
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Table 4. Flux Operators & Syntax 

Semantic Syntax Description 

Graph Operators 

Triplet syntax SrcNode Relation DestNode Default syntax 

Directed relation 

>Relation or Relation> 
(source)Relation Target 
 
<Relation or Relation< 
Target Relation(source) 

Directed relations; all relations (arrows) are marked with special 
markers 

Undirected 
Relation 

=Relation (outPort1 : inPort1 ... outPortN : inPortN otherAttr1, otherAttr2, 
...) 

Common Source 
Triplet 

source (>relation target; 
        >relation2 target) 
rt( source ) { >r1 t1; >r2 
target2 } 

 

Common Relation 

(sources) >relation (targets) 
 
st(relation){ s1 > t1; s2 > 
t2} 

 

Common Target 
(source >relation; source 
>relation) target 
sr(target){ s1 >r1 } 

 

List or tuple () Sequenced list of items or list of attributes specifier 
List delimiter Space Lowest priority delimiter 
2nd order list 
delimiter 

Comma Medium priority delimiter 

3nd order list 
delimiter 

; Highest priority delimiter; acts as end-of-list marker for lower 
priority lists 

Naming operator  
name <= value // rtl 
name => value // ltr  

Code Operators 

Code markup { code } Node containing a non-ordered (parallel) list of processes. In/out 
ports do not need to be declared. Eager evaluation proceeds 

Type instancing 
operator 

Type.var // variable cell 
Type.val // const cell  

Array index 
Array(Type) //type 
array.(index) 
(index):array 

Parenthesis is necessary to not discriminate port "i" by array 
index, and force eval of index 

Maps (aka Arrows, Functions) 

Map Declare 

// map of one rule 
x -> +(x 1)  
// general map 
{  
 
    Symbol1 > Result1; 
    x -> x + 1; // bounded 
rule  
} 

 

Identity function 
(assignment) 

> Copy constructor 

Map Eval, arrow 
notation 

param >f output // ltr 
output f< param // rtl  

Map Eval, classic f( g(x) ) //like ((x) >g ) >f  
Member/inline ltr x:g:f   Shortcut for  f( g(x) )

Special Form 
Relation 

 
#specialFormName(parameters) 
{content} 
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Basic Control  

If 

condition >if{ 
 then > {stmt1} 
 else > {stmt2} 
} 

IF is a node which has two output ports, which are connected to 
 then code block and else code block 

 

While 
while( condition {statements} 
);   

For 
for( i collection 
{statements})   

Repeat 
({statements} condition 
)repeat   

Switch 

caseVar > { 
 case1 > result1; 
 case2 > result2; 
} 

  

 

Object System  

Class 

StringBuilder class< 
{ 
    // fields 
    x > var(Int) 
    // methods 
    append > {} 
    remove > {} 
    toString > {} 
} 

A class is a map from property name to method node 
var() works like a functional "new", ie is idempotent 
 

 

Default 
constructor 

Class.var({param1 > value1; 
param2 > value2 } ) Applies a name-to-position map before the function 

 

    

6. APPLICATION TO NEURAL-NETWORKS 

The increasing technological demands of our days have 
required new solutions to the highly demanding control 
problems. Neural networks by their massive parallelism and 
learning capabilities have proved to be an efficient approach 
to a wide range of applications that involve accuracy of 
classification (Balti et al., 2013) or control architectures, such 
as the model reference adaptive control, the model predictive 
control (Hagan et al., 2002), or the learning controller 
(Dragoicea et al., 2001). 

The field of neural networks covers a broad area. We will 
concentrate on the most popular network architecture, the 
multilayer feed-forward neural networks, currently used in 
control systems. Our focus is the implementation in Flux of 
the backpropagation algorithm - the principal procedure for 
training multilayer feed-forward neural networks.   

The multilayer feed-forward neural network is built up of 
simple components. Starting with a single-input neuron, we 
can extend to multiple inputs, then stack the neurons together 
to produce layers, and finally cascade the layers to form the 
network. The strengths of the connections are denoted by 
parameters called weights, that might be adjusted to improve 
performance. Each output unit takes, as input, the weighted 
sum of the outputs from the units in the previous layer, and 
applies a nonlinear function to the weighted input. Given 
enough layers, the multilayer networks can closely 
approximate any function, which recommends them as 

valuable function approximators for different control 
architectures.  

The backpropagation algorithm (Han et al., 2012) learns by 
iteratively processing a dataset of training tuples, comparing 
the network's predictions for each tuple with the actual 
known target value. For each training tuple, the weights are 
modified so as to minimize the mean squared error between 
the network prediction and the actual target value. Although 
it is not guaranteed, in general the weights will eventually 
converge, and the learning process stops. The Flux 
implementation of the algorithm follows (Source 1): 

Source 1. 

// neuron implementation 
Neuron class< 
{ 
 
  inWeights > Array(Real).var  
  outWeights > Array(Real).var 
  bias > Real.var 
  output > Real.var 
  error > Real.var 
 
  init > 
  { 
    inputs -> 
    ( 
      inputs.0 > output; //output of an unit in the 
input layer is its actual input value 
    }) 
  } 
 
  // compute the output for an unit in the hidden 
and output layers 
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  signal > 
  { 
    inputs > 
    ( 
      sum( i inputs.indexes 
      { 
        i > mul( inWeights.(i) inputs.(i) ) 
      }) bias >+ >sigmoid > output 
    ) 
  } 
 
  // compute the error for an unit in the output 
layer 
  initialError > 
  { 
    target -> 
    ( 
      error < mul( output -(1 output) -(target 
output) ) 
    ) 
  } 
 
// compute the error for an unit in the hidden 
layer 
  hiddenError > 
  { 
    previousError outWeights -> 
    ( 
      error < mul( output -(1 output) sum( k 
outWeights.indexes mul( previousError.(k) 
outWeights.(k) ) ) 
    ) 
  } 
  sigmoid > { x > div( 1 +(1 exp(-(x)) ) } 
} 
 
// layer implementation 
NeuronLayer class< 
{ 
  neurons > Array(Neuron).var() 
 
  mapInputs > 
  { 
    (what inputs) -> 
      for( neuron neurons 
        neuron.(what) < inputs ) 
  } 
 
  mapErrors > 
  { 
    (what errors) -> 
       for( neuron neurons 
         neuron.(what) < errors ) 
  } 
 
} 
 
// network, a multilayer feed-forward network 
Network class< 
{ 
  layers > Array( NeuronLayer ).var 
  learnRate > 0.2 
 
  trainTuple > 
  { 
    (initials targets) -> 
      ( 
        // compute the net output of current layer 
with respect to the previous layer 
        initials > previousLayer 
     
        for( layer layers 
        { 
          layer.mapInputs( signal previousLayer ) 
        }) 
 
 

        // backpropagate the errors 
        previousLayer < layers.last 
 
        for( layer layers.reverse 
        { 
          deltaWeight > Array(Real).var 
 
          for( neuronIdx layer.neurons.indexes 
            neuron < layer.neurons.(neuronIdx) 
            eq( layer layers.last ) >if 
            { 
              // only for last layer 
              then > (neuron.initialError < 
targets.(neuronIdx) ); 
              else > 
              ( 
                // compute the error with respect 
to the higher layer 
                neuron.hiddenError < 
previousLayer.errors.(neuronIdx) 
 
                // recalculate weights 
                for( outNeuronIdx 
previousLayers.neurons.indexes 
                { 
 
                  // weight increment 
                  deltaWeight.(outNeuronIdx) < mul( 
learnRate neuron.output outNeuron.error ) 
 
                  // weight update 
                  neuron.outWeight( outNeuronIdx ) 
=> ow + deltaWeight > ow; 
                  outNeuron.inWeight( neuronIdx ) 
=> iw + deltaWeight > iw ; 
                }) 
              ); 
            } 
 
            neuron.bias => b + mul( learnRate 
neuron.error ) > b //bias increment + update 
          ) 
 
          previousLayer < layer 
        }) 
 
      ) 
  } 
} 
 
//Input: TrainingSet, a data set consisting of the 
training tuples and their associated values 
// learnRate, the learning rate 
// Initialize all weights and biases in network; 
 
trainAll > 
 
  for( epoch range(1 maxEpochs) 
  { 
    for( trainingTuple TrainingSet 
    { 
      trainTuple< trainingTuple.initials 
trainingTuple.targets 
    } 
  }) 
} // end Network class 

The program is structured in three classes describing the 
structure and functionalities of neurons, layers and network.  
The implementation reflects quite accurately the algorithm 
presented in (Han et al., 2012). The idea of the algorithm is to 
repeatedly process training tuples until some terminating 
condition is satisfied. Each training tuple is processed in two 
steps. Firstly, the inputs are propagated forward: the input 
layer passes the inputs unchanged; the output values for the 
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hidden and output layers are computed, which gives the 
network's prediction. Secondly, the errors are propagated 
backward by updating the weights and biases to reflect the 
error of the network's prediction. We considered that the 
whole process is repeated until a specified number of epochs 
is reached. The comments in the Flux program detail each 
step.  

The Flux implementation of the algorithm benefits from the 
parallel capabilities of the language. Moreover, Flux has a 
natural formal representation for all kinds of Petri Nets. For 
example the network in (Vasiliu et al., 2009) figure 1, can be 
represented as simple as: 

 closedLoopPetriNet >  
 ( 
         p1 >t1 p2; p2 p7 >t2 p3 >t3 (p1 p8); p4 > 
  t4 p5; p5 p7 >t5 p6 >t6 (p4 p8); p8 > 
  t7 p7; 
        ) 

7. CONCLUSIONS 

It looks possible to create a programming language faster 
than idiomatic C, the current champion. This paper proposes 
an approach intended to provide a new workhorse for the 
parallel age. Research on programming languages 
disregarded the efficiency of idiomatic programs in favour of 
other attributes important to the academic world, such as 
conceptual elegance, formal analysis-ability and ideological. 
Flux is designed for practical engineering reasons, like run-
time and programmer efficiency, for example even the whole 
infrastructure supporting the VT/RT dichotomy appears as a 
result of the need to tackle parallel computation. 

It is worth mentioning some contributions beyond state-of-
the-art of the approach: (a) implement Value-Type Semantics 
by using compile-time verification of references instead of 
Copy-on-write; (b) achieve automatic parallelization of 
computations using Value-Type Semantics; (c) the first 
general-purpose programming language enabling static 
scheduling of Pipeline Parallelism; even so called "sequential 
code", that is, a chain of operations each dependent on the 
previous one can be parallelized in the case of a stream of 
input messages; while this technique is common in CPU 
microarchitectures, there is no general purpose language 
implementation which can do pipelining using static 
scheduling; the potential of pipelining parallelism is larger 
than the classic parallelism, as it is NOT limited by the 
classic Amdahl's law (but a complementary law, limited by 
the latency of processing steps and the dynamic program 
behaviour); (d) remove the need for explicit threading locks: 
the compiler will insert them for Reference-Types, where 
messages go over thread scopes; (e) preserve the appearance 
of asynchronous parallel programming for very small-
granularity processes like variables and primitive data 
structures by using Zero Capacity Channels (static 
scheduling), which preserves the execution efficiency; (f) 
introduce a unified syntax based on hyper-graphs  (similarly 
to how LISP is based on lists); (g) replace the Call Stack with 
an appropriate parallel data structure; (h) replace the global 

heap with a heap separate to each process groups and 
minimization of the needs for Garbage Collection; (i) 
massive simplification of program structure by replacement 
of variables, methods, members, objects and classes with 
generic nodes; (j) achieve similarity of program structure at 
block, function, object and module level; (k) implement the 
first compiler using high-level inference rules instead of 
hard-coded Abstract Syntax Tree traversals. 

Data-Flow technology research has stalled today. The last 
significant book about Data-Flow (Sharp, 1992) has been 
released in 1992. We argue that a software focused research 
able to work on current CPUs and GPUs can avoid the 
pitfalls associated with low-volume esoteric hardware. 
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