
CEAI, Vol.18, No.1 pp. 107-116, 2016 Printed in Romania

Flux - A Data-Flow Programming Language

R. Ispas*, L. Negreanu**

*RAI Software, Bucharest
Romania (Tel: +40 722 475 870; e-mail: rares@raisoftware.ro).

**University Politehnica of Bucharest, Bucharest, Romania (e-mail:
lorina.negreanu@cs.pub.ro)

Abstract: The goal of this paper is to establish the design requirements of a programming language
enabled to extract the maximum parallelism from source code. The structure of imperative and functional
languages are analyzed in regards to parallelism. Next, the data-flow paradigm is introduced. Its major
obstacles are identified and solutions are provided based on compile-time analysis. The resulting
language should enable wide-scale parallelism, scaling from instruction to cluster.

Keywords: parallel programming languages, data-flow parallel programming languages, type systems,
processes, control systems, neural networks

1. INTRODUCTION

There is a wealth of computing architectures, like GPUs,
mesh-processors, Transport Triggered Architectures, FPGAs,
which offer much higher performance potential than modern
CPUs, but which are underutilized because of the difficulty
of their programming.

We propose a programming language (Flux) enabled to
extract the maximum parallelism from source code, scaling
from instruction to cluster. The imperative and functional
paradigms are analyzed in regards to parallelism, and they are
found structurally wanting. A thorough analysis of value-
types and reference-types reveals both paradigms can and
should be unified under a common conceptual framework.
The Data-Flow paradigm is presented as an alternative. Our
form of Data-Flow allows unification of Imperative and
Functional paradigms. Correctness and execution efficiency
concerns are addressed using compile-time analysis. A
generalized syntax based on hypergraphs is introduced. The
resulting language should allow the maximum utilization of
existing parallel hardware with the minimum amount of
human effort and enables the development of the next
generations of parallel architectures.

Our goal is to design and implement a data-flow
programming language to be used as the workhorse of
parallel programming. That is, develop a simple, efficient,
minimal, programming language with automatic parallelism
equivalent to what C was for the serial programming age. By
automatic parallelism we understand a programming
language feature which allows the compiler and runtime to
decide what is parallelizable and does not require explicit
management of execution resources and locks. We argue that
C is inherently serial, its parallelism granularity is too high
and had a bad influence on the development of parallel
hardware, so it must be replaced. Development of advanced
parallel architectures is blocked by the non-portability of

existing code across architectures and the lack of automatic
parallelization.

Automatic parallelism is essential should the same code be
reusable on various parallel architectures, similar to what the
optimizing Fortran compiler was for the porting of code
amongst different machine instruction sets.

The paper is organized as follows. Section 2 introduces the
constraints of a maximal parallel programming language.
Section 3 discusses the existing approaches in terms of the
imperative and functional paradigms. Section 4 presents Flux,
the data-flow parallel programming language. Section 5
defines the syntax of the language. Section 6 discusses the
utilization of Flux in the context of control systems. Section 7
concludes the paper.

2. THE MAXIMAL PARALLEL PROGRAMMING
LANGUAGE

Assuming an ideal parallel processor with unlimited
execution resources, an ideal parallel programming language
would execute all the operations in the program
simultaneously, yet arrive at the correct result every time.
This is of course not possible, because operations depend
logically on each other. The Maximal Parallel Programming
Language (MPPL) would execute as many of the operations
in parallel as possible, yet produce a correct result. The
correctness of the result is left undefined on purpose, to allow
for a case-by-case optimization.

The necessary constraints of a MPPL running on an ideal
parallel processor are surprisingly few: (a) data dependencies,
a calculation cannot be performed if all its operands are not
available yet; (b) control dependencies, a calculation should
count in the final result only if its execution exclusively
depends on a control branch (IF, SWITCH, etc) which is
chosen. On a finite processor another constraint appears. The
execution resource dependency blocks the execution of an

108 CONTROL ENGINEERING AND APPLIED INFORMATICS

operation until an execution unit capable of executing that
operation becomes available.

3. EXISTING APPROACHES

We considered the following programming languages in our
search for a superior parallel language: C++, D, Java, LISP,
Haskell, OCCAM, Erlang, Rust, LUCID, BitC, Go, VHDL.

3.1 Imperative Programming Languages Are Scrambling
Programmer's Intent

Let's consider C, the measuring stick of all imperative
programming languages (IPLs). C is considered a serial
execution language, but modern super-scalar and SIMD
processors cannot attain their maximum level of performance
without having the compiler back-end do extremely difficult
program analysis beforehand.

In C, the execution order of all instructions within a function
is fixed at programming time. Statements are executed
sequentially, precisely in the order of statements delimited by
semicolons, regardless of data dependencies requirements.
More precisely, EVERY instruction is in a implicit control
dependency relationship with the previous one in the block.
Attempting to remove that implicit control dependencies will
trigger hidden data dependencies created by the assignment
order of variables, variables which are used both as message
channels as well as data storage. Evaluating operations in the
wrong order will deliver "messages" to the wrong operation,
thus producing incorrect results.

There is a huge amount of research related to the untangling
of real data dependencies from sequential code. While this 50
years old research domain has produced amazing results
(SSA, PDG, pointer aliasing analysis, superscalar processors,
etc), it is clear that its progresses have slowed to a stop. All
the easy fruits have already been picked, and yet there is still
significant parallelism hidden in the C code. The tremendous
complexity of modern code analysis technologies (such as

context-sensitive pointer aliasing) begets the question: Why
flatten all the logic mesh on a line of statements, then attempt
to reconstruct the original logical structure using
sophisticated techniques, rather than preserve the ORIGINAL
logic and dependencies, at programming time?

3.2 Functional Programming Considered Harmful

The next largest programming paradigm and the very best
hope of the academic world is represented by the (pure)
functional languages. They are called pure because
calculations contain no side effects. Another perspective is
that all operands are semantically Pass-By-Value, without
references. This is commonly implemented by having each
write operation create a new copy of the object.

The intended goal for this constraint is that the name of a
value always represents the same value (same content) within
the same scope, effectively describing totally defined data
dependencies. Obtaining data-dependencies would enable
automatic parallelism at compiler level. It turns out it is not
so, and the reasons are subtle.

Firstly, totally defined data-dependencies are too restrictive
when applied to complex data structures (like arrays and
structures). In their case, pure functional languages will
required defining a new name for a container for each
modification of an internal member. As such, parallel
assignment of the items in an array is impossible in a pure
functional programming language. Yes, exactly the most
parallelizable construct.

Secondly, inefficiencies generated by copy-semantics ruin
irreparably the performance and are described in the next
section.

To understand more of the structural limitations of pure
functional languages, let us compare the properties of Value
Types (VT) versus Reference Types (RT) (Table 1):

Table 1. Value Types vs Reference types

Characteristic Value Types Reference Types Advantage
Deterministic
Scheduling(result the same
regardless of schedule
ordering)

Total
Partial (parallel write activity
may insert extra changes
between explicit deps)

VT

Pointer Aliasing No Yes VT
Parallel Writes No Yes VT
Requires Locks No Yes VT
Allocation Automatic - Static or Stack Explicit Dynamic on Heap VT
Free Automatic/Container Lifetime Explicit or Garbage Collection VT
Memory Requirements Write_Branches_Count * sizeof(struct) sizeof(struct) RT
Extraneous Update
Distribution Memory

Recursively Multiplied (1) None RT

Extraneous Update
Distribution Processing

Explicitly Coded Reconstruction (2) None RT

Basic Efficient
Implementation

Requires Special Structures or Flow-
Analysis (to minimize effects above,
but infeasible in the general case)

Trivial RT

CONTROL ENGINEERING AND APPLIED INFORMATICS 109

In pure functional programming the update of a member V
contained within a structure C, contained in another object B,
within A has the following effects:

 duplicates the memory allocated to V, C, B and A.
Differential storage is used in some cases for
optimization, but that still requires extra memory
and processing and highly complicates the data
structures. The intuitive optimization of updating in-
place when there is only one copy is not known to
be implemented in current compilers, because it can
be safely performed only on corner cases which are
non-trivial to produce automatically.

 distributing the updated objects to interested code
locations requires explicitly coded logic aware of:

o the code locations which used the
precedent structure version

o the in-order reconstruction of the V, C, B,
and A structures, because the parent
structures are using the original V value.
That implies a cascade of reconstructions
operations, which are simply not necessary
in the case of references. More generally,
all the nodes in the code graph which
logically refer to that value, must be
TRANSITIVELY reconstructed.

 beyond the implied expense in processing and
memory, these update distribution operations and
explicit state management break the code
encapsulation.

3.2.1 Erlang

Erlang (Erlang, 2003) is arguably the canonical parallel
language. It exhibits a parallelism level at least orders of
magnitude higher than a multi-threaded C program. For
example, an Erlang program can easily have tens of
thousands to hundreds of thousands of parallel processes,
while C has difficulty coping with thousand of threads. The
copy-on-write semantics is at the foundation of its parallelism
concept and implementation. It is also its greatest weakness,
because of the highly inefficient data structures it forces upon
Erlang programs. Copy-on-write is the most common
implementation of Value-Types (VT) semantics, also used in
other pure functional languages, such as Haskell. It is the
very reason why functional programming languages are
considered slow and are not used in performance critical
software. For example, it is common for serial Erlang code to
execute 20 times slower than the equivalent C++ code. We
argue that while Value-Types semantics is critical, we can
enforce it using compile-time analysis without resorting to
Copy-on-write implementations.

Another weakness of Erlang is the lack of symmetry between
internal function parallelism and process-level parallelism.
This bad smell points to an insufficient generalization. We
propose a hypergraph program structure which is auto-similar
at all magnification levels.

3.2.2 Rust

Rust (Rust, 2013) is an experimental programming language
developed by the Mozilla Foundation which is conceptually
similar to our approach, more than any other language. Same
as in Flux, the parallelism properties of the data structures are
verified at compile-time, and have no runtime performance
hit (Dobrescu-Balaur et al., 2015).

The Rust language is very complex, even more complex than
C++, but there are two main issues relevant to parallelism:
pointer ownership and local storage versus heap (boxed)
storage. Both are present as attributes in the type system and
have their own operators. We argue that these are the wrong
concepts to use, as they derive from the Value-
type/Reference-Type paradigm, and not the other way
around.

The complicated type-system of Rust must be manually
controlled and involves a lot of work with very ugly code. In
Flux explicit typing is optional; similar type checks exist, but
the attributes involved are automatically inferred. The result
is code which is much more readable than Rust's.

In Rust parallelism is manually coded by the programmer as
explicitly defined heavy-weight threads. In Flux parallelism
is implicit in the logical description of the computations to be
made; logical threads are very lightweight and are batched
together on the working queue of a physical processor; the
allocation of threads to physical resources is optional and is
done using optimization hints.

The nearest comparison of what we are trying to achieve
would be a combination of Rust, but with most of the
dreadful type specifiers automatized and made invisible and
Flow Based Programming (StreamIt).

3.3 Call Stack Considered Harmful

A programming language construct common to both
programming paradigms is the call stack. This behind-the-
scenes primitive construct has a pervasive influence on the
structure of source code, as it forces synchronous message
passing with strict Request-Reply semantics. That is, the
return value of a function (Reply) is passed to the same
location the parameters originated from (Request). The stack
itself is designed to thread the call tree and cannot function
with message passing structures resembling direct acyclic or
cyclic graphs (eg coroutines). The limitations this rigid
structure forces upon the minds of millions of programmers
cannot be overestimated.

From a parallelization perspective, the synchronous nature of
call stacks blocks pipelined execution. This essential parallel
construct is unused in modern programming languages.

Finally the stack requires permanent management, at every
call and every return the stack must be pushed or pop, even
when the value on the stack will be required at a subsequent
function call. With the generous amounts of memory and
cache available today, the management of the call stack can
be replaced with allocation of static buffers for input

110 CONTROL ENGINEERING AND APPLIED INFORMATICS

parameters and return values, with the lifetime synchronous
with that of the containing process.

3.3.1 Garbage Collection

Garbage collection (GC) is an expensive operation, whose
cost is commonly underestimated: poor performance
scalability of GCs on massive parallel systems; memory
inefficiency of GC; complexity of GC logic and the non-
locality of GC forces a high-load on the caching and VM
subsystems.

The lifetime of all VT objects within a process can be
decided statically, and thus reduce the number of instances
which must be tracked by GC. Furthermore, using escape-
analysis all the references which do not escape the scope of a
process can be destroyed when the process terminates. Heap
can be partitioned in separate heaps for each thread context.

3.3.2 PI-Calculus

Flux's control of naming aliasing is directly related to Pi-
Calculus (Milner et al., 1992) and its results can and should
be used to verify the correctness properties of Flux programs.
However Pi-Calculus says nothing of the efficiency of the
resulting computations, nor about the human effort required
to describe code structures. Our primary concerns are to
deliver a language which is easy for programmers to write
with and efficient by default for idiomatic code, and then add
as much correctness verifications as possible.

The flaws identified by our analysis of the paradigms of
imperative and functional languages also apply to OpenCL
and Cuda (which are slightly adapted implementations of C),
PQL (an extension of Java), Parallel Haskel and others. In
particular, OpenCL exhibits bad traits of compiler design,
such as minimal type safety checks and manual coding of
basic operations which should have been in the scope of the
compiler such as scheduling of command queues and SIMD,
synchronization and data movement.

3.4 Hardware Evolution Blocked By Lack of Parallel
Languages

The instruction sets of modern CPUs are using a von
Neumann model. In this model the CPU is equivalent to
processing a single node at a time in the Program
Dependency Graph (PDG). Modern pipelined superscalar
processors, are attempting at run-time to find and execute
neighboring nodes in the PDG. This approach is severly
limited in scope, generic superscalar CPUs are unable to fill
more than 4-8 ALUs.

There is a wealth of hardware architectures which exhibit
high levels of parallelism, but are currently only used in
specialized applications, because there is no generic
programming language able to scale from the very fine
granularity of logic gates to the very coarse granularity of
server clusters:

 FPGAs

 Transport Triggered Architectures

 GPU programming

 ultra-wide superscalar processors

 computer clusters

A more worrying trend is the huge decrease in transistor
utilization efficiency:

Table 2. Transistor utilization

CPU Transistors MHz Instructions
/Hz

MIPS Transist./
Instr. /
Clock

8086 29K 10 0.075 0.75 386K
i7-

3930
2270M 3200 24 76800 94.5M

We can notice that the transistor budget has increased 245
times for a unit of work. This overhead can be lowered by
simplified hardware architectures, which move more of the
work to compilation.

4. FLUX - A DATA-FLOW PARALLEL PROGRAMMING
LANGUAGE

4.1 The Data Flow Paradigm

The benefits of the dataflow paradigm have been know for
the last 40 years, but a combination of factors delayed its rise.
Only in the last 5 years the growth from the hardware side
made the current approach non-economical. It is just too hard
to use a GPU at its full potential using current compiler
technologies.

As (Kosinski, 1973) and (Johnston et al., 2004) showed, a
totally asynchronous model with value-type message
semantics has remarkable properties, such simplicity,
automatic, maximal parallelism with implicit-locking,
excellent modularization properties, safety, force VTS on a
case by case basis. All visual programming environments use
a dataflow model - visual programming can open up
computing to a larger audience.

However, the implementation of such a system presents
significant problems, such as inefficiency of transporting
large value type messages using copying, inefficiency of
asynchronous message-passing using small-granularity
threading, unavailability of hardware implementations with
enough execution resources to run large programs.

Our proposal addresses each such problem, resulting in a
programming language which unifies the current best
solutions from the imperative and functional paradigms into a
whole, with a focus on performance and safety.

CONTROL ENGINEERING AND APPLIED INFORMATICS 111

4.2 Message Passing

In the deterministic Data Flow model, each message be a VT
because a message sent to multiple destinations must be
received verbatim by all the receivers.

That is, it must not be modified on-the-flight by instructions
executing in another branch. This requirement insures that
graph nodes can be connected in a defined manner, by using
the names of their dependencies, even if the connection list is
not itself ordered.

That does not mean messages objects should be immutable (=
cannot receive messages on non-const ports), just that a VT
message should have a single version existing at all times. If
there are multiple branches and at least one of them modifies
the message, explicit Copy (%) operations must be inserted
to restore single object version per name property (and thus
split aliasing entanglement).

As opposed to Erlang, a node (process) can have multiple
named inbox queues.

4.3 Reference Passing with Value-Type Semantics

Naive copying of message value is prohibitively expensive,
which is the main reason functional languages are so much
slower than imperative languages. Java implements VT
semantics for object references by disabling set() operators
on common object types such a String. A purely functional
language, Haskell implements VT semantics by forcing every
update operation to return a new copy of the full object. Flux
will use in-place update of VTs, while still enforcing VT
semantics, by verifying at compile-time that when an object
reference receives a write message, that is the only branch
with read or write access to that that object reference. In other
words, the name of a VT object would expire after the first
message sent to it. Since no other node following in the
program graph will be able to connect to it unless a new
name is assigned total ordering will be preserved. It becomes
the responsibility of the programmer to insert explicit copy
operations (%) on necessary branches, instead of automatic
copying the object on every write operation as all pure
functional languages do.

This compile-time analysis neatly solves the problem of
passing copies of large value objects, because they are always
passed by reference, and VT or RT semantics is determined
based on code context, on a case by case basis instead of
object interfaces.

4.4 Locks Removal

In a Maximally Parallel Programming Language we start
with the assumption that every statement and every object is
executed in a parallel context. In this case RT objects may
receive simultaneously messages from different threads of
execution, for which the receiving queue must be locked.
Locking is an expensive operation and it is unrealistic to lock
a large majority of the objects in the application. Hence,

every effort must be made to remove locks while preserving
the meaning of the program.

When total ordering can be guaranteed for an object, locks
can be removed because the scheduler guarantees ordering
when the receiving object is a VT or the messages are
delivered within the same execution thread.

4.5 Data Structures as Processes

In Flux every data structure is a process itself, which
communicates with other processes by receiving and sending
messages to other processes ports. Each process has its own
internal memory, exclusively controlled, which can be
accessed only through the defined input and output ports, that
is, there is no shared state. The execution of a process is
controlled by its execution context, i.e. processes are run
sequentially within a thread mapped to a hardware resource.

4.6 Ports

For a process, ports are the only access points to and from the
outside environment. Ports can be either for input or output,
but not both at the same time. A compound port with multiple
'wires' must have all its components activated (available)
before the port itself will become activated.

4.7 Synchronous versus Asynchronous Channels

Object ports are linked to each other using communication
channels. For synchronous channels (i.e. Zero Capacity
Channels) a trick that can eliminate the runtime cost of
channel synchronization is compile-time scheduling using
topological sorting. This way both synchronous and
asynchronous channels have the same coding interface and
orthogonality of logic and implementation is preserved.

4.8 Pipelining

Even so called "sequential code", that is, a chain of
operations each dependent on the previous one can be
parallelized in the case of a stream of input messages. While
this technique is common in CPU microarchitectures, there is
no general purpose language implementation which can do
pipelining using static scheduling. The potential of pipelining
parallelism is larger than the classic parallelism, as it is NOT
limited by the classic Amdahl's law (but a complementary
law, limited by the speed of the slowest step and the dynamic
program behaviour).

4.9 Mapping of the Logical Data-Flow Structure to
Execution Resources

The pure dataflow model assumes dedicated hardware for
each operation node. As the hardware architecture is in most
cases a given von Neumann machine, which can process only
a single operation node at a time (per ALU, per thread, per
core), the available operations must be mapped onto available
execution resources. This process should be done in a post-

112 CONTROL ENGINEERING AND APPLIED INFORMATICS

compile but pre-runtime step (like installation), so that the
local resources can be fully exploited. A thread scope
attribute can be placed around a set of nodes so that all the
messaging and operations within the scope are matched to a
thread.

4.10 HyperGraph Syntax

A dataflow program is most naturally expressed as a
hypergraph, that is, a directed attributed graph in which each
node and each edge can be a graph itself. A generic graph
notation can thus be used, greatly simplifying the syntactic
structure through conceptual unification and elimination of
exceptions and special cases. Like LISP, Flux is homoiconic,
although this was not a design goal but a result of the generic
syntax structure.

It is the authors' opinion that, while general, lists are too low
level to preserve the initial structure of the data (similarly to
how strings are capable of containing any kind of data, yet
their meaning cannot be extracted unless sophisticated
parsers are used). By using a more general data structure, the
information contained in the data can be extracted with less
effort.

A hypergraph has the amazing property that all common
compound data structures, such as pairs, records, arrays, lists,
maps, sets, etc can be found as parts of some hypergraph. So,
the approach is inverse to LISP where all complex structures
are constructed out of lists (the strings of symbolic
programming), rather the other way around, all the basic
structures are incomplete views of a single universal
structure.

The language syntax is designed to:

 allow description of complex directed attribute
graphs to be expressed in the language, with a
minimal number of coding syntactic-sugar.

 be minimalistic, i.e. everything which can be
defined as library functions (IF, FOR, WHILE,
SWITCH, etc) should not be defined in the compiler
BNF

 be concise, input and output ports binding must not
repeat the node; anonymous ports and nodes must be
possible; use operator associativity instead of
markup

 preserve intent;

As opposed to Erlang, where processes are relatively
heavyweight and are stacked on-top functions and lists, in
Flux the process abstraction is present at the very lowest
levels of language design, each object and each function is a
process. The proof that this highly abstracted approach can
work for VTs is given by the existence of VHDL, a language
used in hardware design, as such placed at the lowest levels
of abstraction, where processes are the primary organization
unit and only VTs exist. The mapping of processes to threads
is orthogonal on the code logical structure, unlike Erlang

where calling a function is syntactically different from
sending a message to a process.

5. SYNTAX DEFINITION

5.1 Context Binding

It is impractical for a human programmer to fully describe the
code graph, which is enormously complicated even for
relative small instances. That is why the compiler must
automate as much connecting as possible. For example, all
the input ports of nodes within a block must be automatically
connected to the output ports of its ancestors of the same
name. This automated binding of "variables" in anonymous
code blocks, similar to the mechanism in D, can be used to
define custom control structures.

5.2 Automatic Resource Collection

Garbage collection is an expensive operation, whose cost is
commonly underestimated. The lifetime of all VT objects
within a process can be decided statically, and thus reduce the
number of instances which must be tracked by GC.
Furthermore, using escape-analysis all the references which
do not escape the scope of a process can be destroyed when
the process terminates. Heap can be partitioned in separate
heaps for each thread context.

5.3 Minimal Language

While more complex than LISP, the Flux programming
language uses a small number of concepts, even lower than
JavaScript (Table 3, Table 4). For example:

 functions, methods, classes and inner classes are all
replaced by "process nodes"

 control statements (IF, FOR, WHILE) are defined in
the language library from even lower-level
constructs (automatic binding, boolean choice and
flow merge)

 no explicit thread locks

 no explicit constructor (replaced by copy operator)

Table 3. Flux Keywords

Logic and Arithmetic
Operators

Syntax

Greater than gt

Less lt

Modulo mod

Not not

And and

Or or

Xor (bitwise and logical) xor

division Div

multiply Mul

CONTROL ENGINEERING AND APPLIED INFORMATICS 113

Table 4. Flux Operators & Syntax

Semantic Syntax Description

Graph Operators

Triplet syntax SrcNode Relation DestNode Default syntax

Directed relation

>Relation or Relation>
(source)Relation Target

<Relation or Relation<
Target Relation(source)

Directed relations; all relations (arrows) are marked with special
markers

Undirected
Relation

=Relation (outPort1 : inPort1 ... outPortN : inPortN otherAttr1, otherAttr2,
...)

Common Source
Triplet

source (>relation target;
 >relation2 target)
rt(source) { >r1 t1; >r2
target2 }

Common Relation

(sources) >relation (targets)

st(relation){ s1 > t1; s2 >
t2}

Common Target
(source >relation; source
>relation) target
sr(target){ s1 >r1 }

List or tuple () Sequenced list of items or list of attributes specifier
List delimiter Space Lowest priority delimiter
2nd order list
delimiter

Comma Medium priority delimiter

3nd order list
delimiter

; Highest priority delimiter; acts as end-of-list marker for lower
priority lists

Naming operator
name <= value // rtl
name => value // ltr

Code Operators

Code markup { code } Node containing a non-ordered (parallel) list of processes. In/out
ports do not need to be declared. Eager evaluation proceeds

Type instancing
operator

Type.var // variable cell
Type.val // const cell

Array index
Array(Type) //type
array.(index)
(index):array

Parenthesis is necessary to not discriminate port "i" by array
index, and force eval of index

Maps (aka Arrows, Functions)

Map Declare

// map of one rule
x -> +(x 1)
// general map
{

 Symbol1 > Result1;
 x -> x + 1; // bounded
rule
}

Identity function
(assignment)

> Copy constructor

Map Eval, arrow
notation

param >f output // ltr
output f< param // rtl

Map Eval, classic f(g(x)) //like ((x) >g) >f
Member/inline ltr x:g:f Shortcut for f(g(x))

Special Form
Relation

#specialFormName(parameters)
{content}

114 CONTROL ENGINEERING AND APPLIED INFORMATICS

Basic Control

If

condition >if{
 then > {stmt1}
 else > {stmt2}
}

IF is a node which has two output ports, which are connected to
 then code block and else code block

While
while(condition {statements}
);

For
for(i collection
{statements})

Repeat
({statements} condition
)repeat

Switch

caseVar > {
 case1 > result1;
 case2 > result2;
}

Object System

Class

StringBuilder class<
{
 // fields
 x > var(Int)
 // methods
 append > {}
 remove > {}
 toString > {}
}

A class is a map from property name to method node
var() works like a functional "new", ie is idempotent

Default
constructor

Class.var({param1 > value1;
param2 > value2 }) Applies a name-to-position map before the function

6. APPLICATION TO NEURAL-NETWORKS

The increasing technological demands of our days have
required new solutions to the highly demanding control
problems. Neural networks by their massive parallelism and
learning capabilities have proved to be an efficient approach
to a wide range of applications that involve accuracy of
classification (Balti et al., 2013) or control architectures, such
as the model reference adaptive control, the model predictive
control (Hagan et al., 2002), or the learning controller
(Dragoicea et al., 2001).

The field of neural networks covers a broad area. We will
concentrate on the most popular network architecture, the
multilayer feed-forward neural networks, currently used in
control systems. Our focus is the implementation in Flux of
the backpropagation algorithm - the principal procedure for
training multilayer feed-forward neural networks.

The multilayer feed-forward neural network is built up of
simple components. Starting with a single-input neuron, we
can extend to multiple inputs, then stack the neurons together
to produce layers, and finally cascade the layers to form the
network. The strengths of the connections are denoted by
parameters called weights, that might be adjusted to improve
performance. Each output unit takes, as input, the weighted
sum of the outputs from the units in the previous layer, and
applies a nonlinear function to the weighted input. Given
enough layers, the multilayer networks can closely
approximate any function, which recommends them as

valuable function approximators for different control
architectures.

The backpropagation algorithm (Han et al., 2012) learns by
iteratively processing a dataset of training tuples, comparing
the network's predictions for each tuple with the actual
known target value. For each training tuple, the weights are
modified so as to minimize the mean squared error between
the network prediction and the actual target value. Although
it is not guaranteed, in general the weights will eventually
converge, and the learning process stops. The Flux
implementation of the algorithm follows (Source 1):

Source 1.

// neuron implementation
Neuron class<
{

 inWeights > Array(Real).var
 outWeights > Array(Real).var
 bias > Real.var
 output > Real.var
 error > Real.var

 init >
 {
 inputs ->
 (
 inputs.0 > output; //output of an unit in the
input layer is its actual input value
 })
 }

 // compute the output for an unit in the hidden
and output layers

CONTROL ENGINEERING AND APPLIED INFORMATICS 115

 signal >
 {
 inputs >
 (
 sum(i inputs.indexes
 {
 i > mul(inWeights.(i) inputs.(i))
 }) bias >+ >sigmoid > output
)
 }

 // compute the error for an unit in the output
layer
 initialError >
 {
 target ->
 (
 error < mul(output -(1 output) -(target
output))
)
 }

// compute the error for an unit in the hidden
layer
 hiddenError >
 {
 previousError outWeights ->
 (
 error < mul(output -(1 output) sum(k
outWeights.indexes mul(previousError.(k)
outWeights.(k)))
)
 }
 sigmoid > { x > div(1 +(1 exp(-(x))) }
}

// layer implementation
NeuronLayer class<
{
 neurons > Array(Neuron).var()

 mapInputs >
 {
 (what inputs) ->
 for(neuron neurons
 neuron.(what) < inputs)
 }

 mapErrors >
 {
 (what errors) ->
 for(neuron neurons
 neuron.(what) < errors)
 }

}

// network, a multilayer feed-forward network
Network class<
{
 layers > Array(NeuronLayer).var
 learnRate > 0.2

 trainTuple >
 {
 (initials targets) ->
 (
 // compute the net output of current layer
with respect to the previous layer
 initials > previousLayer

 for(layer layers
 {
 layer.mapInputs(signal previousLayer)
 })

 // backpropagate the errors
 previousLayer < layers.last

 for(layer layers.reverse
 {
 deltaWeight > Array(Real).var

 for(neuronIdx layer.neurons.indexes
 neuron < layer.neurons.(neuronIdx)
 eq(layer layers.last) >if
 {
 // only for last layer
 then > (neuron.initialError <
targets.(neuronIdx));
 else >
 (
 // compute the error with respect
to the higher layer
 neuron.hiddenError <
previousLayer.errors.(neuronIdx)

 // recalculate weights
 for(outNeuronIdx
previousLayers.neurons.indexes
 {

 // weight increment
 deltaWeight.(outNeuronIdx) < mul(
learnRate neuron.output outNeuron.error)

 // weight update
 neuron.outWeight(outNeuronIdx)
=> ow + deltaWeight > ow;
 outNeuron.inWeight(neuronIdx)
=> iw + deltaWeight > iw ;
 })
);
 }

 neuron.bias => b + mul(learnRate
neuron.error) > b //bias increment + update
)

 previousLayer < layer
 })

)
 }
}

//Input: TrainingSet, a data set consisting of the
training tuples and their associated values
// learnRate, the learning rate
// Initialize all weights and biases in network;

trainAll >

 for(epoch range(1 maxEpochs)
 {
 for(trainingTuple TrainingSet
 {
 trainTuple< trainingTuple.initials
trainingTuple.targets
 }
 })
} // end Network class

The program is structured in three classes describing the
structure and functionalities of neurons, layers and network.
The implementation reflects quite accurately the algorithm
presented in (Han et al., 2012). The idea of the algorithm is to
repeatedly process training tuples until some terminating
condition is satisfied. Each training tuple is processed in two
steps. Firstly, the inputs are propagated forward: the input
layer passes the inputs unchanged; the output values for the

116 CONTROL ENGINEERING AND APPLIED INFORMATICS

hidden and output layers are computed, which gives the
network's prediction. Secondly, the errors are propagated
backward by updating the weights and biases to reflect the
error of the network's prediction. We considered that the
whole process is repeated until a specified number of epochs
is reached. The comments in the Flux program detail each
step.

The Flux implementation of the algorithm benefits from the
parallel capabilities of the language. Moreover, Flux has a
natural formal representation for all kinds of Petri Nets. For
example the network in (Vasiliu et al., 2009) figure 1, can be
represented as simple as:

 closedLoopPetriNet >
 (
 p1 >t1 p2; p2 p7 >t2 p3 >t3 (p1 p8); p4 >
 t4 p5; p5 p7 >t5 p6 >t6 (p4 p8); p8 >
 t7 p7;
)

7. CONCLUSIONS

It looks possible to create a programming language faster
than idiomatic C, the current champion. This paper proposes
an approach intended to provide a new workhorse for the
parallel age. Research on programming languages
disregarded the efficiency of idiomatic programs in favour of
other attributes important to the academic world, such as
conceptual elegance, formal analysis-ability and ideological.
Flux is designed for practical engineering reasons, like run-
time and programmer efficiency, for example even the whole
infrastructure supporting the VT/RT dichotomy appears as a
result of the need to tackle parallel computation.

It is worth mentioning some contributions beyond state-of-
the-art of the approach: (a) implement Value-Type Semantics
by using compile-time verification of references instead of
Copy-on-write; (b) achieve automatic parallelization of
computations using Value-Type Semantics; (c) the first
general-purpose programming language enabling static
scheduling of Pipeline Parallelism; even so called "sequential
code", that is, a chain of operations each dependent on the
previous one can be parallelized in the case of a stream of
input messages; while this technique is common in CPU
microarchitectures, there is no general purpose language
implementation which can do pipelining using static
scheduling; the potential of pipelining parallelism is larger
than the classic parallelism, as it is NOT limited by the
classic Amdahl's law (but a complementary law, limited by
the latency of processing steps and the dynamic program
behaviour); (d) remove the need for explicit threading locks:
the compiler will insert them for Reference-Types, where
messages go over thread scopes; (e) preserve the appearance
of asynchronous parallel programming for very small-
granularity processes like variables and primitive data
structures by using Zero Capacity Channels (static
scheduling), which preserves the execution efficiency; (f)
introduce a unified syntax based on hyper-graphs (similarly
to how LISP is based on lists); (g) replace the Call Stack with
an appropriate parallel data structure; (h) replace the global

heap with a heap separate to each process groups and
minimization of the needs for Garbage Collection; (i)
massive simplification of program structure by replacement
of variables, methods, members, objects and classes with
generic nodes; (j) achieve similarity of program structure at
block, function, object and module level; (k) implement the
first compiler using high-level inference rules instead of
hard-coded Abstract Syntax Tree traversals.

Data-Flow technology research has stalled today. The last
significant book about Data-Flow (Sharp, 1992) has been
released in 1992. We argue that a software focused research
able to work on current CPUs and GPUs can avoid the
pitfalls associated with low-volume esoteric hardware.

REFERENCES

Balti, A., Sayadi, M., Fnaiech, F. (2013). Fingerprint
Verification Based on Back Propagation Neural
Network. Journal of Control Engineering and Applied
Informatics, Vol.15, No.3, pp. 53-60.

Dobrescu-Balaur, M., and Negreanu, L. (2015). Enhancing
RUSTDOC to allow search by types. Studies in
Informatics and Control, Vol. 24, Issue 2, pp. 221-228.

Dragoicea, M., Dumitrache, I., and Constantin N. (2001). On
Some Aspects Of Neural Networks Control For
Autonomous Mobile Robots. Journal of Control
Engineering and Applied Informatics, Vol 3, No 3.

Erlang (2003).
http://www.erlang.org/doc/reference_manual/users_guid
e.html

Hagan, M.T., Demuth, H.B., and De Jesus, O. (2002). An
Introduction to the Use of Neural Networks in Control
Systems. International Journal of Robust and Nonlinear
Control 12(11), pp. 959 - 985. DOI: 10.1002/rnc.727

Han, J., Kamber, M., and Pei, J. (2012). Data Mining
Concepts and Techniques, chapter 9, pp. 398-408.
Morgan Kaufmann Publishers, San Francisco.

Johnston, W.M., Paul Hanna, J.R., and Millar, R.J. (2004).
Advances in dataflow programming languages. ACM
Comput. Surv. 36, 1 1–34. DOI:
http://dx.doi.org/10.1145/1013208.1013209

Kosinski, P.R. (1973). A data flow language for operating
systems programming. Proceeding of ACM SIGPLAN -
SIGOPS interface meeting on Programming languages -
operating systems. ACM, New York, NY, USA, 89–94.
DOI: http://dx.doi.org/10.1145/800021.808289

Milner, R., Parrow, J., and Walker, D. (1992). A Calculus of
Mobile Processes, Information and Computation 100(1)
pp. 1-40.

Rust (2013). http://www.rust-lang.org/
Sharp, J. (1992). Data Flow Computing: Theory and

Practice, Ablex Publishing Corporation, ISBN-10:
0893916544.

Vasiliu, A.I., Dideban, A., and Alla, H. (2009). Control
Synthesis for Manufacturing Systems. Journal of
Control Engineering and Applied Informatics, Vol.11,
No.2, pp. 43-50.

