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Abstract: The paper addresses the application of consensus-based methods for agreement within 
networks of embedded computing and communication devices. A thorough literature review is carried 
out from both theoretical and practical perspectives while proposing a consensus aggregation mechanism 
for effective information processing in wireless sensor networks. The aim is to reduce the communication 
and energy burden at the cluster level, while improving the quality of the aggregated information. 
Building on an extensive theoretical background, a practical approach is favored in order to realistically 
model the impact of the consensus algorithms on the sensing entities, using well-adopted tools. 
Extensions are considered towards including sensor node mobility and large scale monitoring supported 
by cooperative UAV swarms. Simulation results are discussed from a comparative standpoint. 
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1. INTRODUCTION 

Dense networks of embedded heterogeneous devices for 
system monitoring and control have emerged. These are 
represented generically by networked control systems (NCS) 
and multi-agent systems (MAS) and can be effectively 
implemented by wireless sensor and actuator networks or 
robotic swarms: ground, aerial, surface, underwater, etc. Such 
systems of systems aim at achieving the goal of distributed, 
pervasive control at a local scale, without the direct action of 
a central coordination entity. The salient advantages reside in 
local awareness of process or target state at high spatial and 
temporal resolutions and higher capability for failure 
detection and robustness. However, challenges have to be 
overcome in eliminating redundant information across the 
network while offering complete and correct updates to all 
the nodes participating in the decision process. In this 
manner, both over-communication and information starvation 
can pose problems which have to be mitigated as efficient as 
possible. 

We focus on distributed decision among networks of 
intelligent sensor nodes while accounting for their 
computing, communication and energy restrictions, e.g. the 
TelosB mote, one of the more popular WSN platforms, uses a 
16-bit MCU without floating point capability along with a 
low-power ISM band radio transceiver and limited memory 
(<8kB). The main expected impact of this work concerns 
reducing the overall communication latency, avoiding 
bottlenecks which lead to energy waste for battery operated 
devices, by exploiting locally available computing and 
adaptive algorithms. Depending on the network topology 
assumptions simulation parameters can be adjusted. For 
example, a fully connected, time-invariant network is easy to 
model and analyse in simulation but such assumptions do not 

hold true in real deployments where the spatial distribution of 
the nodes might impede communications and low-power 
radio links exhibit stochastic and asymmetric behaviour. One 
relevant tool in this case are Monte Carlo methods which 
have been generally applied to achieve complex systems 
simulation under probabilistic parameter variations for 
reliable deployments (Mahmood et al., 2015). 

The targeted problem within this paper is analysing the best 
way to achieve local agreement in dense wireless sensor 
network deployments, used both for higher level supervisory 
decision support and local control. Consensus algorithms are 
a promising class of mathematical methods which can 
provide optimal outcomes under strict convergence and 
performance bounds in such cases. The underlying challenge 
can be split in two parts. What is the “best” way to organize 
the exchange of information at a network and cluster level by 
scheduling message exchanges at a static or dynamic rate i.e. 
event-based? What is the “best” way for each individual 
node to incorporate received information from its neighbours 
along it’s own measurements which is both correct and 
contributes to overall convergence in as few iterations as 
possible? 

Consensus problems in wireless sensor networks can be 
classified according to the complexity of the in-network 
information processing schemes. These range from simple 
binary agreements i.e. jointly deciding that a local 
temperature value is out-of-bounds and alerting the sink, 
local averages to compensate for low-cost sensor calibration 
and measurement errors in improving positioning accuracy 
for mobile nodes, up to distributed least mean squares (D-
LMS) schemes which provide sound optimal estimates. 

The paper is structured as follows. Section two carries out a 
timely review of consensus algorithms applied to multi-agent 
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deployments. Both theoretical and practical/implementation 
details relevant to wireless sensor networks are surveyed. 
Section three presents the system architecture to apply 
consensus-based constrained aggregation algorithms leading 
to intelligent reduction of the communication and energy 
burden upon the sensing nodes. In Section 4 simulation 
results are presented in a comparative manner with focus on 
both convergence and iterative algorithm performance. 
Section 5 concludes the paper and outlines perspectives on 
future work. 

2. REVIEW OF CONSENSUS-BASED METHODS 

2.1 Theoretical Background 

The common approach in establishing the theoretical 
background for the distributed consensus algorithms is based 
on graph theory. This assumes the modelling of the system of 
systems as composed of multiple communicating entities, 
through a graph with vertices and edges with constant or 
time-varying topology. Thus, the directed graph ࣡ ൌ
ሺ ࣰ, ࣟሻ, with the node set ࣰ ൌ ሼ1, … , ݊ሽ and edge set 
ࣟ 	⊆ 	 ࣰ 	ൈ 	 ࣰ	is considered. For time-varying 
communication channels the time-dependant connectivity 
graph is introduced with ࣡ሺݐሻ ൌ ሺ ࣰ, ࣟሺݐሻሻ where ࣟሺݐሻ is 
the set of active edges at time t (Lin et al., 2005). 

The generic continuous consensus algorithm for updating the 
information state ݔሺݐሻ of node i, can be formulated as: 

ሻݐሶሺݔ  ൌ െ∑ ܽ

ୀଵ ሺݐሻሾݔሺݐሻ െ  ሻሿ                                 (1)ݐሺݔ

Achieving consensus implies that for all ݔሺ0ሻ and all 
݅, ݆ ൌ 1,… , ሻݐሺݔ| ,	݊ െ |ሻݐሺݔ ⟶ 0, when ݐ ⟶ ∞. ܽ are 
positive weights in the case that ሺ݅, ݆ሻ ∈ ࣟ and  ܽ ൌ 0 
otherwise which correspond to the elements of the adjacency 
matrix ܣ ∈ Թൈ of the communication graph. In matrix 
form, consensus is expressed as: 

ሻݐሶሺݔ ൌ െࣦሺݐሻݔሺݐሻ                                                              (2) 

Where is the non-symmetric Laplace matrix of the directed 
graph, with ݈ ൌ ∑ ܽ


ୀଵ,ஷ , ݈ ൌ െܽ, ݅ ് ݆. 

The discrete version, for communication at discrete time 
instants is expressed in similar manner: 

ሾ݇ݔ  1ሿ ൌ ∑ ݀ሾ݇ሿݔሾ݇ሿ

ୀଵ                                               (3) 

with the consensus condition that for all ݔሾ0ሿ și pentru toate 
݅, ݆ ൌ 1,… , ሾ݇ሿݔ| ,݊ െ |ሾ݇ሿݔ → 0, ݇ → ∞ (Wei et al., 2005). 

Main challenges concern convergence analysis and 
estimation of the equilibrium state after consensus has been 
reached. Previous results show that consensus is reached if 
the symmetric communication topology is connected. Also 
based on algebraic connectivity analysis of the underlying 
communication graph, the convergence performance can be 
estimated for various pre-conditions. The equilibrium state is 
typically a weighted average of the initial information states 
of the network nodes where not all nodes have to contribute. 

Stability has been analysed in (Moreau, 2004) where the 
approach favours the decomposition of complex systems into

networks of simple sub-systems with basic dynamic e.g. 
single integrator, leading to mild convergence conditions. 
(Moreau, 2005) extends the work towards a multi-agent 
systems paradigm in time-varying communication topologies 
and points out that excessive information exchange between 
agents can potentially disrupt the agreement mechanism. 

Concerning robust consensus for wireless sensor networks, 
weight selection for information state update with time-
variant communication is discussed by (Lin et al., 2005). It 
addresses the particular case of average consensus, i.e. all 
nodes influence the final result in equal proportion. Main 
finding is the evaluation of consensus properties in time-
varying graphs based on two types of weights on the edges: 
maximum-degree and Metropolis. The weight matrix for the 
latter case is expressed as: 

ܹሺݐሻ ൌ ൞

ଵ

ଵା୫ୟ୶	ሼௗሺ௧ሻ,ௗೕሺ௧ሻሽ
, ሼ݅, ݆ሽ߳Ԫሺݐሻ

1 െ ∑ ܹሺݐሻሼ,୩ሽ∈ఌሺ௧ሻ , ݅ ൌ ݆
0

                               (4) 

The weight of each communication link for each node is 
periodically updated using the number of transmissions and 
the out-degree value. It is shown how, by using this type of 
weight matrix, the convergence speed of the algorithm 
increases, especially for denser networks and asymmetrical 
graphs. Performance is analysed by evaluating the Mean-
square Errors (MSE) in conjunction with the optimal 
Maximum Likelihood (ML) estimation error. The scheme can 
be seen as a particular case of distributed optimization for 
sensor networks and extend the problem towards multi-
sensor fusion where each node samples several measurements 
with various time steps. 

Analysed from a signal processing perspective, consensus is 
evaluated with several probabilistic models for link noise and 
connectivity. By modelling link failures and channel noise in 
a stochastic framework (Kar et al., 2009), statistical 
properties of the convergence process are derived using 
Monte-Carlo simulation.  (Saed et al., 2010) applied the 
above-mentioned Metropolis weighting scheme to study 
convergence under several error models of the 
communication links. The number of iterations needed to 
achieve consensus is used as performance metric. (Mateos et 
al., 2009) and (Schizas et al., 2009) present work on the 
distributed Least Mean Squares (D-LMS) for consensus, in-
network adaptive estimation for sensor networks. Beyond 
MSE, the excess mean-square error (EMSE) and mean-
square deviation (MSD) are used as performance metrics for 
single-hop bidirectional communication among nodes. D-
LMS involves the computation of simple recursion functions 
at each node while the analysis covers both stationary and 
non-stationary cases and concludes that, while in the former 
the reduction of the step size yields improved steady state 
error, the time-varying model requires the computation of an 
optimal step size, with a too small value not allowing the 
algorithm to adapt to the variations. The network topology 
includes a subset of “bridge” sensors to relay information 
across the network and numerical examples are provided for 
both ideal and noise cases based on the normalized estimation 
error in relation to a reference system. Distributed LMS-type 
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adaptive algorithms for tracking yield close outcomes 
compared to the centralized approach. 

2.2 Implementation 

Several practical implementations in simulation or 
experimental are discussed next to establish a context of 
current applications. In the case of event detection 
applications, some works have discussed and implemented 
binary consensus where the information state agreement is 
either zero or one. In this case the nodes decide locally on the 
truth value of a supposition e.g. temperature over a certain 
threshold, followed by agreement among neighbouring nodes 
(Abderrazak et al., 2013). Four states are defined, reflecting 
the node’s opinion on the majority belief, as: 0 – most likely 
false, e0 – might be false, e1 – might be true and 1 – most 
likely true. Following discrete iterations by message 
exchanges, convergence is achieved when all nodes have 
either states 0, e0 or states e1 , 1 using the pre-defined rules: 

ሺ0, ݁ሻ → ሺ݁, 0ሻ ሺ0, ݁ଵሻ → ሺ݁, 0ሻ ሺ0,1ሻ → ሺ݁ଵ, ݁ሻ 

ሺ݁, ݁ଵሻ → ሺ݁ଵ, ݁ሻ ሺ݁, 1ሻ → ሺ1, ݁ଵሻ ሺ݁ଵ, 1ሻ → ሺ1, ݁ଵሻ 

ሺݏ, ሻݏ → ሺݏ, ݏ	ሻݏ ൌ 0, ݁, ݁ଵ, 1                                               (5) 

Simulation results for various network topologies, using 
JTOSSIM are presented in (Abdaoui et al., 2013). Detailed 
algorithm description and convergence time analysis is also 
carried out by (Al-Nakhala et al., 2015) in both simulation 
and test bed deployment. 

From an implementation point of local average consensus, 
(Avrachenko et al., 2011) present a neighbourhood algorithm 
for trust weight estimation and numerical simulation results 
for various graph topologies such as 2-clique graphs, Watts-
Strogatz graphs and random geometric graphs. Evaluation is 
performed based on convergence time and relative error. 
Actual implementation on a network of IRIS motes under 
TinyOS has been done by (Kenyeres et al., 2011). A very 
interesting perspective is analysing the influence of the 
limitation in the timer precision and local computation 
accuracy on the outcome of the consensus algorithm. 

Consensus has been also recently applied for building energy 
management based on occupancy and cost constraints. 
(Gupta et al., 2015) describe a consensus framework which 
carries out agreement among users of a building and the BMS 
controller. A central coordinator is employed to collect user 
preference and current state and generate the consensus 
value. This leads to establishing the zone-level temperature 
set point, converging to the minimum cost temperature vector 
for the building.  The distributed optimization stage and 
associated convergence is carried out by means of the 
proposed Alternating Direction Method of Multipliers 
(ADMM) introduced in (Boyd et al., 2011) to compute the 
optimal set-points. A positive/negative penalty mechanism is 
used to drive users towards the consensus equilibrium point. 
Control synthesis leverages a conventional heat transfer 
model for the control law design which is afterwards 
validated in a virtual test-bed. 

Another active application area suitable for consensus 
algorithms is the cooperative control of multi-vehicle robotic 

systems like UAV and USV swarms (Jaimes et al., 2010). 
Objectives can include rendezvous problems under 
uncertainty, formation maintenance, cooperative non-
overlapping area surveillance and data collection from a 
network of ground sensor nodes (Stamatescu et al., 2015). 
Such applications can be assimilated to mobile sensor 
network models with time-varying asynchronous 
communication. 

Practical environmental monitoring consensus among sensor 
nodes is described by (Contreras et al., 2014) on a network of 
Sun SPOT nodes. After network formation, the nodes reach 
consensus by calculation the trust factor matrix of the 
network topology at each discrete time step. Convergence is 
guaranteed by the fact that the dynamic of the monitored 
process e.g. temperature is slower than the convergence time 
of the algorithm. (Li et al., 2013) introduce a two-tiered, 
clustered model for a localized gossip algorithm to improve 
consensus accuracy after a pre-determined number of 
iterations. Various clustering techniques are analysed and a 
utility function is used to account for the number of iterations 
and relative error. 

(Elbhiri et al., 2009) present simulation results leveraging the 
Castalia simulator built on top of the OmNET++ framework. 
Evaluation for various power level is also carried out. (Choi 
et al., 2012) present a compressive sensing approach to model 
the degree in which the information of each node is of 
relevance to the final consensus. 

(Manfredi, 2013) presents the design of a dynamic consensus 
algorithm for multi-hop WSNs in networked control systems 
for industrial applications. Main contribution is extending the 
2-hop consensus model by (Jin et al., 2006) to an m-hop 
model as follows: 

ሶݔ

ൌ െ݇  ݓ ቌݔሺݐ െ ߬ሻ െ ݐሺݔ െ ߬ሻ																												ሺ6ሻ
∈ே

  ݐሺݔ௧൫ݓ െ ߬ሻ െ ݐ௧ሺݔ െ ߬௧ሻ൯  ⋯
௧∈ேౡ

ቇ  పሶݖ  

where ߬ is considered the time delay between one-hop 
neighbors i and k and similarly ߬௧ is the time delay between 
two-hop neighbors i and t and so on. The vector ݖపሶ ൌ
ሾݖଵ,ሶ … ሶݖ ሿ் represents the variations of the sensor inputs. 

The proposed method allows direct integration of node 
information using all the nodes at distance m from the 
aggregation centre, taking into account the network latency. 
Departing from theoretical issues and system modelling, the 
implementation uses a ZigBee network and AODV routing, 
by piggybacking the standard HELLO packets of the routing 
protocol with the state information for each node. The 
experimental results show the impact of the system gain K 
and message frequency fH on system asymptotic stability and 
performance. 

Finally, extensions to other domains include achieving 
particle swarm optimization for improving network coverage 
by means of particle speed consensus (Loscri et al., 2012). 



46                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

Performance of the method is established by using both 
global and local objective functions. Target tracking by 
means of belief functions is presented in (Savic et al., 2014) 
where five methods are comparatively analysed: standard 
belief consensus, randomized gossip, broadcast gossip, 
Metropolis belief consensus and a new algorithm based on 
belief propagation. Main findings suggest the method choice 
based on network topology and include the usage of 
Metropolis belief consensus in loopy networks while belief 
propagation is more suitable for tree networks. 

3. CONSENSUS-BASED AGGREGATION FOR LARGE 
SCALE COOPERATIVE HETEROGENEOUS 

MONITORING 

Beyond the current context, we aim at leveraging the state-of-
the-art for achieving data aggregation in hierarchical 
networks of cooperative entities based on wireless sensor 
network for large scale monitoring. Our reference application 
consists of dense heterogeneous networks for critical 
infrastructure surveillance of road and pipeline transport 
systems. The high level system architecture, previously 
introduced in assumes ground-level, UAV-supported, sensor 
data collection and relaying to a central control centre which 
supervises the monitoring system. The system architecture is 
illustrated in Figure 1. 

 

Fig. 1. Collaborative large-scale monitoring and control 
architecture based on WSN-UAV integration (Stamatescu et 
al., 2014). 

The multi-level structure described starts from simple binary 
detectors connected to the multi-hop mesh sensor network for 
ground data collection and processing. At the upper levels, 
aerial robotic platforms, acting independently or in swarms 
collect rich information regarding the target environment but 
also relay the WSN data towards the control centre gateway. 
At the top level, humans enter the loop by supervising the 
distributed system with the help of a decision support 
framework. The operational scenarios listed in the proposed 
structure range from basic single UAV monitoring, to 
collaborative UAV surveillance, up to integrated 
collaborative WSN-UAV for complex assignments. 

In this scenario, consensus is viewed as a tool for local data 
aggregation, with the final value being relayed upstream

 towards higher decision levels. Local sensor node clusters 
agree on the common value of interest and then relay it 
upstream through the cluster head. Parameterization of the 
consensus process includes among others: the communication 
model (time invariant/variant, impact of asymmetric links 
and TX/rx probabilities), the mobility model (with fixed and 
mobile nodes) and dynamic adjustment of the weight matrix 
for computing the local estimates at each node. Values of 
interest, reflected by the scalar or multi-dimensional state 
information of each node, may include: event confirmation, 
environmental parameters, vibration, other types of process 
variables (pressure, flow, etc.). 

The conventional approach for large scale interconnected 
system or systems of systems, usually holds true in the case 
of consensus-based methods as well. Each node of the 
network is dynamically modelled along with an additional 
model describing the interactions to/from his peers. In this 
case, the basic technique leverages single or double integrator 
dynamics at each node, with potential extensions aimed at 
nonlinear system modelling. For simulation of our approach 
two tools are used: MATLAB Toolbox for Interconnected 
Dynamical Systems - MTIDS (Deroo et al., 2013), integrated 
with SIMULINK and Mathgraph tool for complete modelling 
and simulation. Another implementation, of dynamic 
consensus is applied for analysing distributed least mean 
squares (D-LMS) problems for mobile sensor networks. 

Distributed information processing in this type of 
applications brings attractive properties to the monitoring and 
control systems, such as: mitigating communication 
bottlenecks, robust fail-safe operation and scalability. 
Challenges stem from global awareness across the 
aggregation entities to avoid redundancies. We see data 
aggregation as the first step towards sensor fusion, where 
multi-scale, multi-domain signals can be effectively 
combined for real-time oversight. Probabilistic 
sensor/data/information fusion has been previously applied 
for target identification and tracking, compensating for sensor 
inconsistencies and failure and leveraging long range, high-
bandwidth communication links. This represents a set of key 
methods to enable the 4C: computing, communication, 
control and cognition paradigm. 

Having described the nature and constraints of our 
application, the main contribution of this work, within the 
state-of-the-art, is the evaluation of the suitability of these 
methods in a given context for improving network 
information flow and assisting the human operator at the 
network control centre in a decision support framework. We 
used a reference twenty node, medium size, wireless sensor 
network to establish convergence and study its properties. 
Several representative use cases have been defined based on 
modelling the network graphs associated to the 
communication topologies. Our simulation results are carried 
out using MATLAB environment but other have been 
considered from generic network simulators: OmNET++, ns3 
to operating systems for resource constrained devices and 
their associated simulation tools such as TinyOS with 
TOSSIM or Contiki and COOJA which can be suitable for 
particular application requirements and constraints. 
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4.  SIMULATION RESULTS 

4.1  Modelling/Simulation for average consensus 

Two simulation scenarios have been initially defined: random 
graph with undirected links and directed links. The reference 
topology for the undirected sensor network communication 
graph is shown in Figure 3 along with the MTIDS toolkit 
user interface.  

Fig. 2. Random directed graph model and MTIDS UI. 

Table 1 list the quantitative graph parameters relevant to the 
analysis. Per theoretical previous results, we are able to 
evaluate convergence speed based on the algebraic 
connectivity indicator. In this situation the graph is well 
connected and offers good performance in a time invariant 
communication channel model. Other key indicators include 
the graph density, heterogeneity and the average path length. 

Table 1.  Case 1 – Random undirected graph 

Nodes 20 Algebraic 
connectivity 

4.7869 

Connections 93 Minimum 
degree 

6 

Independent 
graphs 

1 Average 
degree 

9.3 

Average 
clustering 
coeff. 

0.48511 Median 
degree 

9 

Graph 
density 

0.489 Maximum 
degree 

12 

Graph 
heterogeneity 

0.188 Average 
path length 

1.5105 

Figure 3 plots the statistical node degree distribution for the 
random model with the associated probabilities at the node 
level. The indicator can be used in conjunction with the 
selection of the routing algorithm to exploit high connectivity 
nodes as mesh routers inside the local cluster. By 
dynamically adjusting the corresponding the probabilities, the 
model can be extended to a time-varying one, enabling the 
analysis of random communication channels, prone to 
symmetric interference. 

Fig. 3. Degree distribution. 

The main result of case 1 is illustrated in Figure 4. It can be 
seen how from initial information states uniformly distributed 
across a given interval, the twenty nodes converge by 
information exchange and consensus. Convergence time in 
this case is around 14 seconds. As anticipated, the 
convergence rate is higher for the first iterations then pointing 
asymptotically to the equilibrium value, in this case zero. 
Convergence at each node is evaluated by thresholding the 
performance metric, e.g. the mean squared error (MSE), after 
which a stop condition is triggered.  

ܧܵܯ ൌ
∑ ሺ௫ି௫ොሻ

మ
సభ

ିଶ
                                                               (7) 

 Fig. 4. Convergence analysis for case 1. 

The first described case of random undirected graphs serves 
as support for basic convergence behaviour of the consensus 
algorithm. The system can be tuned for performance by 
increasing the sampling and communication rate along with 
the system gain to the stability limit. Also, the simulation 
environment supports large scale interconnected LTI system 
modelling with the same communication network topology 
graph. 

For the second case that we analyse, a small-world model 
random directed graph is considered. This provides some 
insight into the behaviour of sensor networks with time-
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varying unreliable and asymmetrical links at a give discrete 
time step t. The small world graph model assumes the 
distance between randomly chosen nodes L to grow 
proportionally to the logarithm of the number of nodes N. 

	ܮ  ∝  (8)                                                                            ݈ܰ݃

The graphical representation in Figure 5 has been generated 
using the coefficients: 0.1 for the probability of a random 
edge and a 0.8 for oppositeness. Most neighbours are not 
neighbours (indicator set to 2) but each one can be reached in 
a small number of hops. 

                    

Fig. 5. Small-world random directed graph model. 

Table 2 lists the key properties of the small-world random 
directed graph model. Specific properties related to directed 
graphs are included such as spanning trees, balancing and in-
out degrees for the nodes. The number of connections in this 
case is lower than for the first one and the average path 
length is higher. 

Table 2.  Case 2 – Small-world random directed graph 

Nodes 20 Has cycles Yes 
Connections 80 Rooted 

spanning 
tree 

No 

Weak 
connected 
subgraphs 

1 Minimum 
In-Degree 

2 

Strong 
connected 
subgraphs 

1 Maximum 
In-Degree 

5 

Average 
clustering 
coefficient 

0.3367 Minimum 
Out-Degree 

2 

Average 
degree 

4 Maximum 
Out-Degree 

5 

Graph is 
balanced 

Yes Average 
path length 

2.4579 

The degree distribution of the directed graph is shown in 
Figure 6. Handling the directed graph situation, one should 
account for the number of both the edges leaving a vertice 
(out-degree) and the ones pointing towards one (in-degree). 
In this case the curve is similar for both the in- and out-
degrees of the graph vertices. The curve shows a peak of 0.65 
at the average value of four. 

 Fig. 6. In-out degree distribution of the directed graph. 

Figure 7 illustrates the main results for case 2, modelling of 
the small-world random directed graph network topology. As 
anticipated, as the graph is balanced, consensus is achieved in 
a finite number of iterations. It can be seen more clear how 
the convergence rates toward consensus vary among 
individual nodes, based on their place and graph connectivity. 
Also, the convergence time is considerably higher at 35 
seconds, compared to the first case. 

Such models can be enhanced by dynamically updating the 
adjacency and Laplace matrices to account for time-variant 
topologies. In such situations consensus can be delayed or 
even fail given reduced connectivity or even partitioning of 
the network graph on longer spans of discrete time intervals. 

 Fig. 7. Convergence analysis for case 2. 

4.2  D-LMS consensus with mobility models 

The focus is on extending the consensus analysis by the D-
LMS algorithm as described by (Mateos et al., 2009) and 
(Schizas et al., 2009). Based on initial assumptions regarding 
node location, mobility model and radio channel dynamic 
performance, consensus is evaluated for both convergence 
and performance. The algorithm is described by the following 
recursion for all sensors and bridges: 
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ݒ
ሺݐሻ ൌ ݒ

ሺݐ െ 1ሻ  ܿ ൬ݏሺݐሻ െ ቀ̅ݏሺݐሻ  ߟ
ሺݐሻቁ൰ 

ݐሺݏ  1ሻ
ൌ ሻݐሺݏ  ሾ2ߤ ݄ሺݐ  1ሻ ݁ሺݐ  1ሻ

െ ሺݒ
ሺݐሻ  ܿሺݏሺݐሻ െ ቀ̅ݏሺݐሻ െ ߟ

ሺݐሻቁሻሻሿ
∈ࣜೕ

 

ݐሺݏ̅  1ሻ

ൌ 
ܿିଵݒ

ሺݐሻ  ݐሺݏ  1ሻ  ߟ̅
ሺݐ  1ሻ

| ࣨ|
																												ሺ9ሻ

∈್ࣨ

 

where ߤ  0 is a constant step-size and ܿ  0 is a penalty 
coefficient. At each time instant, each sensor receives noise 
affected consensus variables ̅ݏሺݐሻ  ߟ

ሺݐሻ from the bridge 
neighbors. It updates its Lagrange multipliers ݒ

ሺݐሻ	and 
computes its local consensus value ݏሺݐ  1ሻ, transmitting 
ܿିଵݒ

ሺݐሻ  ݐሺݏ  1ሻ towards all visible bridges. The 
iterations is complete when, by acquiring and computing the 
average of the vectors ܿିଵݒ

ሺݐሻ  ݐሺݏ  1ሻ  ߟ̅
ሺݐ  1ሻ, the 

bridges yield ̅ݏሺݐ  1ሻ. 

A fourteen node network is similarly defined where four of 
the nodes play the role of bridges – cluster heads. Initial 
parameters are considered to be the number and positions of 
all the nodes and the dimension of the deployment area. The 
model of the communication channel is a logistic function of 
the distance between neighbours. 

ܵሺ݀ሻ ൌ
1

1  ݁ି௧
																																																																									ሺ10ሻ 

Figure 8 illustrates the main simulation result in the form of 
the consensus outcome by plotting the average MSE value 
across all iterations. In this case the stop condition for the 
iterations can be set by thresholding the MSE below a certain 
value, dependant on application requirements. 

 

Fig. 8. D-LMS consensus outcome. 

5. CONCLUSIONS 

The paper discussed the state-of-the-art in consensus 
algorithms applied for data aggregation in large scale 
monitoring with wireless sensor networks. By modelling the 
communication topology using dedicated tools, we have 
carried out convergence analysis for two types of graphs: 
random undirected graphs and small world random directed 

graphs. Results have shown the current performance of local 
average consensus algorithms for medium sized networks. 
Convergence was defined based on thresholding the global 
MSE. 

The simulation results were enhanced by D-LMS evaluation 
with mobility for a reference clustered sensor network with 
nodes and bridges in an optimal manner. This allowed more 
detailed insight for complex models of mobility and 
communication, for optimal consensus. 

Current and future work includes the evaluation of the 
consensus-mechanisms on a laboratory test-bed aimed at 
industrial networked control through wireless sensor and 
actuator networks. An alternative path consists of designing 
the bi-directional interface between the sensor network and 
UAV, communication and data representation, for reliable 
cooperative operation.  
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