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Abstract: In this paper, an active control method based on Lyapunov function is used to study hybrid 
complex projective synchronization (HCPS). In the complex space, the response system is asymptotically 
synchronized up to the drive system by the state transformation by using a complex scale matrix. An 
extension of projective synchronization from the field of real numbers to the field of complex numbers 
has been done in this paper; i.e., the scaling factors are complex. The unpredictability of the scaling 
factors in the proposed synchronization scheme can additionally increase the security of communication. 
This synchronization method is studied between two non-identical complex chaotic nonlinear 3-
dimensional systems. We take Lorenz system as the driving system and Chen system as the response 
system. In order to demonstrate the asymptotic convergence of the error states, dead-zone nonlinearity 
input is imposed to the control input. The closed loop stability conditions based on Lyapunov function 
are derived. Finally, numerical simulations are presented to verify the results of the proposed scheme. 

Keywords: Complex chaotic system; Hybrid complex projective synchronization; Active control; Dead-
zone nonlinearity input; Lyapunov function

1. INTRODUCTION 

Chaos is a very complex nonlinear phenomenon that shows 
some specific features such as crucially dependence to initial 
conditions, broad Fourier transform spectra, strange attractors 
and fractal properties of the motion in phase space. A tiny 
change in the initial conditions and the system parameters 
leads to an enormous difference in the long-term behaviour of 
the system; this is the main special feature of chaotic systems 
(Setoudeh, 2014). 

Complex systems appear in many important fields of physics 
and engineering, for example, in the secure communication, 
complex variables (doubling the number of variables) can 
carry more transmitted information and additionally increase 
security of information (Mahmoud et al., 2007; Mahmoud et 
al., 2008; Moghtadaei et al; 2012). Research property of the 
chaotic complex system is difficult in the field of complex 
numbers; however, by separating the imaginary part and real 
part of chaotic complex system, this system can be converted 
to corresponding real number chaotic system. Many physical 
phenomena could be described by chaotic or complex chaotic 
systems, for example, the detuned laser systems and the 
amplitudes of electromagnetic fields. Several complex 
chaotic nonlinear systems such as complex chaotic Lorenz 
system (Mahmoud et al., 2007a), complex chaotic Chen and 
Lu systems (Mahmoud et al., 2007b) and complex chaotic 
coupled system (Wu et al., 2012) have been proposed in 
literature. The numerical simulations of the chaotic systems 
are very sensitive with respect to the numerical integration 
method and the numerical computing errors (Yao, 2010). 

In 1990, Pecora and Carroll (Pecora and Carroll, 1990) 
introduced a method to synchronize two identical chaotic 
systems and showed that it was possible for some other 
chaotic systems to be completely synchronized (Faieghi and 

Delavari, 2012a; Faieghi et al., 2012b; Shutang and 
Fangfang, 2014). In the synchronization of chaotic systems, 
the output of the response system tracks the output of the 
drive system. If the synchronization occurs, the 
synchronization errors will tend to zero asymptotically. 
Control and synchronization of nonlinear dynamical systems 
like chaotic systems have attracted increasing attention in 
different fields, such as secure communication, optimization 
of nonlinear system performance, ecological systems, 
modeling brain activity, system identification and pattern 
recognition (Li et al., 2011; Florin et al., 2011; Feki, 2003; 
Bai et al., 2005). Moreover, in (Liu et al., 2010) the global 
convergence and the superlinear convergence of the new 
modified BFGS method for unconstrained optimization or 
complexity systems is introduced. 

A wide variety of impressive approaches have been 
suggested in the literature for the stabilization and 
synchronization of the nonlinear systems such as the linear 
and nonlinear feedback method (Huang, 2004), time delay 
feedback method (Park and Kwon, 2005), back-stepping 
design (Wu and Lü, 2003), sliding mode control method 
(Djari, 2014; Mohadeszadeh and Delavari, 2017a), fuzzy 
sliding mode control method (Mohadeszadeh and Delavari, 
2017b; Faieghi et al., 2012) and active control method (Das 
et al., 2013). 

Various kinds of synchronization have been proposed such as 
complete synchronization (Zhu et al., 2009), anti-
synchronization (Srivastava et al., 2014), modified 
generalized synchronization (Wu et al., 2012), phase 
synchronization (Breve et al., 2009), lag synchronization 
(Luo and Wang, 2013), projective synchronization (Peng et 
al., 2008), modified function projective synchronization (Sun 
et al., 2012), hybrid projective synchronization (Hu et al., 
2008) and HCPS (Wei et al., 2013).  
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The transformation matrix in this type of synchronization 
(HCPS) is a square matrix, and its elements are complex. The 
transformation matrix makes an appropriate waging on the 
states of drive system. The scaling factors in transformation 
matrix play an important role in such a cases like chaotic 
secure communication where the states of the drive system 
are manipulated with the scaling factors to transmit to the 
communication channel as well as to improve the security of 
the useful information signal.This type of synchronization is 
considered as a generalization of several kinds of 
synchronization that have been appeared in the recent 
literatures. Although for HCPS of complex chaotic systems, 
different components of the complex system synchronized to 
different scale complex numbers (Wei et al., 2013), but for 
the other mentioned synchronizations of complex chaotic 
systems like projective synchronization, the scaling factors 
can be complex. For example, ߱ ൌ  ߟ where ߱ and ,ߟ௝ఘ݁	ߤ
denote the complex states of drive and response systems, 
respectively, ߤ ൐ 0 denotes the zoom rate and ߩ ∈ ሾ0,  ሻߨ2
denotes the rotate angle. 

In the recent years, synchronization of dynamical systems 
subjected to nonlinearity control input has received a lot of 
attentions. In fact, the control inputs of practical systems are 
usually subjected to nonlinearity as a consequence of 
physical limitations. The presence of nonlinearity in control 
input was indicated to cause a serious degradation of the 
system performance and induce a decreasing rate of the 
system response (Yau and Yan, 2008a; Kebriaei and 
Yazdanpanah, 2010; Li et al., 2012; Márton, 2009; Roopaei 
et al., 2010). In (Roopaei et al., 2010), synchronization of 
gyroscope system using adaptive fuzzy sliding mode control 
technique is investigated when dead-zone nonlinearity is 
imposed to the control input. In (Márton, 2009), the backlash 
nonlinearity is designed to impose to the control input of the 
motion control systems in order to analyze the control 
performance.  

Input nonlinearities are inevitable in real applications, it can 
severely degrade closed-loop performance due to integrator 
windup and other effects. There is a little information among 
all of the referenced papers. Here in this paper we study the 
effect of nonlinearity via active control method for complex 
chaotic systems which is not investigated until now. In order 
to show the stability of the closed loop system we proposed 
some new theoretical results. But here, in this paper, we study 
the HCPS between two non-identical complex chaotic 
systems using the active control method in the presence dead-
zone nonlinearity. 

In our contribution, we pursue four main research aims. First, 
the states of the error converge to the origin asymptotically 
and stability of the proposed method are analytically proved. 
Second, the proposed novel scheme is achieved for complex 
chaotic systems; to the best of our knowledge there has been 
very little information about this. Third, our proposed method 
can be applied for a wide class of complex chaotic systems, 
such as fractional-order counterpart. Fourth, the sufficient 
criterion for the error states to converge to the origin in 
accordance to the nonlinearity in the control input are 
designed using active control technique.  

The rest of the paper is organized as follows: section 2 briefly 
describes the chaotic complex nonlinear systems. In section 
3, a general scheme of HCPS is reviewed. The proposed 
scheme will be achieved between two non-identical complex 
chaotic Lorenz as drive system and Chen as response system, 
in section 4. Finally, a concluding remark is given in section 
5. 

2. COMPONENT SYSTEMS 

To study the hybrid complex projective synchronization 
(HCPS), we take Lorenz system as the driving system and 
Chen system as the response system. Hence, consider the 
complex chaotic nonlinear Lorenz system as follows (Lorenz, 
1963): 

ቐ

ሶଵݔ ൌ ܽଵሺݕଵ െ 																																																											ଵሻݔ
ሶଵݕ ൌ ܽଶݔଵ െ ଵݕ െ 																																																	ଵݖଵݔ

ሶଵݖ ൌ 1
2ൗ ሺݔଵതതതݕଵ ൅ ଵതതതሻݕଵݔ െ ܽଷݖଵ																																	

           (1) 

where ܺ ൌ ሺݔଵ, ,ଵݕ ܺ ,ଵሻ் is the complex state vectorݖ ൌ
ܺ௥ ൅ ݆ܺ௜, ݔଵ ൌ ଵ௥ݔ ൅ ଵݕ ,ଵ௜ݔ݆ ൌ ଵ௥ݕ ൅ ଵݖ ,ଵ௜ݕ݆ ൌ  ,ଵ௥ݖ
	݆ ൌ √െ1 . Dots represent derivatives with respect to time, an 
overbar denotes complex conjugate variables, superscripts ݎ 
and ݅ stand for the real and imaginary parts of the complex 
state vector ܺ. By separating real and imaginary parts of (1), 
a 5-dimensional continuous real autonomous system will 
obtain as follows: 

ە
ۖ
۔

ۖ
ۓ
ሶଵݔ

௥ ൌ ܽଵሺݕଵ௥ െ 																																																					ଵ௥ሻݔ

ሶଵݔ
௜ ൌ ܽଵሺݕଵ௜ െ 																																																							ଵ௜ሻݔ

ሶଵݕ
௥ ൌ ܽଶݔଵ௥ െ ଵ௥ݕ െ 																																								ଵ௥ݖଵ௥ݔ

ሶଵݕ
௜ ൌ ܽଶݔଵ௜ െ ଵ௜ݕ െ 																																										ଵ௥ݖଵ௜ݔ

ሶଵݖ
௥ ൌ ሺݔଵ௥ݕଵ௥ ൅ ଵ௜ሻݕଵ௜ݔ െ ܽଷݖଵ௥																															

          (2)  

where ܽଵ, ܽଶ and ܽଷ are positive parameters. System (2) 
exhibits a chaotic behaviour, when ሺܽଵ, ܽଶ, ܽଷሻ் ൌ

൫10, 28, ሺ8/3ሻ൯
்
. The chaotic attractors of (1) with initial 

conditions of ሺ1 ൅ ݆2, 3 ൅ ݆0.5, 4ሻ் are depicted in Figure 1. 

Now, let us consider the complex chaotic Chen system as 
follows (Chen et al., 1999): 

ቐ

ሶଶݔ ൌ ܾଵሺݕଶ െ 																																																							ଶሻݔ
ሶଶݕ ൌ ሺܾଶ െ ܾଵሻݔଶ െ ଶݖଶݔ ൅ ܾଶݕଶ																											

ሶଶݖ ൌ 1
2ൗ ሺݔଶതതതݕଶ ൅ ଶതതതሻݕଶݔ െ ܾଷݖଶ																													

        (3)          

where ܻ ൌ ሺݔଶ, ,ଶݕ ܻ ,ଶሻ் is the complex state vectorݖ ൌ
ܻ௥ ൅ ݆ܻ௜, ݔଶ ൌ ଶ௥ݔ ൅ ଶݕ ,ଶ௜ݔ݆ ൌ ଶ௥ݕ ൅ ଶݖ ,ଶ௜ݕ݆ ൌ  ଶ௥. Byݖ
separating real and imaginary parts of (3), a 5-dimensional 
continuous real autonomous system will obtain as follows: 

ە
ۖ
۔

ۖ
ۓ
ሶଶݔ

௥ ൌ ܾଵሺݕଶ௥ െ 																																																										ଶ௥ሻݔ

ሶଶݔ
௜ ൌ ܾଵሺݕଶ௜ െ 																																																												ଶ௜ሻݔ

ሶଶݕ
௥ ൌ ሺܾଶ െ ܾଵሻݔଶ௥ െ ଶ௥ݖଶ௥ݔ ൅ ܾଶݕଶ௥																											

ሶଶݕ
௜ ൌ ሺܾଶ െ ܾଵሻݔଶ௜ െ ଶ௥ݖଶ௜ݔ ൅ ܾଶݕଶ௜																												

ሶଶݖ
௥ ൌ ሺݔଶ௥ݕଶ௥ ൅ ଶ௜ሻݕଶ௜ݔ െ ܾଷݖଶ௥																																			

     (4) 

where ܾଵ, ܾଶ and ܾଷ are positive parameters. 
When		ሺܾଵ, ܾଶ, ܾଷሻ் ൌ ሺ28, 22, 1ሻ், system (4) exhibits a 
chaotic behaviour. The chaotic attractors of (3) with initial 
conditions of ሺ4.7 ൅ ݆6, 0.2 ൅ ݆7.5, 1ሻ் are depicted in Figure 
2. 
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3. A SCHEME TO ACHIEVE HCPS 

3.1 HCPS of complex chaotic systems with active control 

Consider two non-identical complex chaotic nonlinear 
systems. The drive system like system (1) is as follows: 

ሶܺ ൌ ݂ሺܺሺݐሻሻ                                                          (5)  

where ܺ ∈ :݂ ,௡ is a complex state vectorܥ ௡ܥ →  ௡ is aܥ
vector of nonlinear complex functions. Now, consider the 
controlled response system like (3) in the following form: 

ሶܻ ൌ ݃ሺܻሺݐሻሻ ൅ ܷ                                                     (6)  

where ܻ ∈ :݃ ,௡ is a complex state vectorܥ ௡ܥ →  ௡ is aܥ
vector of nonlinear complex functions, ܷ ∈  ௡ is a complexܥ

control function which will design in Section 3,  ܷ ൌ ܷ௥ ൅
݆ܷ௜, ܷ௥ ൌ ሺݑଵ௥, ,ଶ௥ݑ … , ܷ௜	௡௥ሻ்,ݑ ൌ ሺݑଵ௜, ,ଶ௜ݑ … ,    .௡௜ሻ்ݑ

In HCPS, the synchronization error between the drive system 
(5) and the controlled response system (6) is as follows: 

ܧ ൌ ܻ െ   (7)                          ܺ	߉

where		ܧ ൌ ௥ܧ ൅ ௥ܧ ,௜ܧ݆ ൌ ሺ݁ଵ௥, ݁ଶ௥, … , ݁௡௥ሻ், 	ܧ௜ ൌ
ሺ݁ଵ௜, ݁ଶ௜, … , ݁௡௜ሻ், and ߉ ൌ ݀݅ܽ݃ሺߣଵ, ,ଶߣ … ,  ௡ሻ is aߣ
complexscaling matrix. 

Definition 1. For the drive system (5) and the controlled 
response system (6), it is said that HCPS can be achieved, if 
there exist a control function ܷ ൌ ܷ௥ ൅ ݆ܷ௜ such that:  

݈݅݉௧→ஶ‖ܧ‖ ൌ ݈݅݉௧→ஶ‖ܻ െ ‖ܺ	߉ ൌ 0                       (8)        

In (8), ‖	. ‖ is the Euclidean norm of a vector. Then by 
separating real and imaginary parts of (8), we have 

 

 

 

 

Fig. 1. 2D and 3D projections of chaotic attractors of complex
chaotic Lorenz system. 
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Fig. 2. 2D and 3D projections of chaotic attractors of
complex chaotic Chen system. 

-5

0

5

0

20

40

60
-4

-2

0

2

4

x
2
rz

2

y 2r

0
20

40
60

-50

0

50
-40

-20

0

20

40

z2x
2
i

y 2i

-20 -10 0 10 20 30
0

10

20

30

40

50

x
2
i

z 2

-20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

x
2
i

y 2i



70                                                                                                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 

ቊ
݈݅݉௧→ஶ‖ܧ௥‖ ൌ ݈݅݉௧→ஶฮܻ௥ െ ܺ௥	௥߉ ൅ ܺ௜ฮ	௜߉ ൌ 0

݈݅݉௧→ஶฮܧ௜ฮ ൌ ݈݅݉௧→ஶฮܻ௜ െ ܺ௜	௥߉ െ ܺ௥ฮ	௜߉ ൌ 0
         (9) 

In this case, ߉ ൌ ௥߉ ൅ ௜߉݆ ൌ ݀݅ܽ݃ሺߣଵ
௥, ଶߣ

௥, … , ௡ߣ
௥ሻ ൅

݆݀݅ܽ݃൫ߣଵ
௜, ଶߣ

௜, … , ௡ߣ
௜൯, ߣ௞

௥ ∈ ܴ	, ௞ߣ
௜ ∈ ܴ	, ݇ ൌ 1,2, … , ݊. 

3.2 HCPS of complex chaotic systems with active control 
input affected by dead-zone nonlinearity 

Let us consider the following two drive and controlled 
response complex chaotic systems. In this case, the drive 
system and the response system denoted by vectors ܺ ൌ
ሺݔଵ, ,ଵݕ ܻ ଵሻ் andݖ ൌ ሺݔଶ, ,ଶݕ  ଶሻ், respectively. Also, theݖ
response system affected by dead-zone nonlinearity input.  

Consider system (1) as drive system and the following 
system as non-autonomous response system 

ቐ

ሶଶݔ ൌ ܾଵሺݕଶ െ ଶሻݔ ൅ ߶ଵሺݑଵሻ																																									
ሶଶݕ ൌ ሺܾଶ െ ܾଵሻݔଶ െ ଶݖଶݔ ൅ ܾଶݕଶ ൅ ߶ଶሺݑଶሻ														

ሶଶݖ ൌ 1
2ൗ ሺݔଶതതതݕଶ ൅ ଶതതതሻݕଶݔ െ ܾଷݖଶ ൅ ߶ଷሺݑଷሻ																

       (10)                  

The behaviour of the tracking system is investigated with 
dead-zone nonlinear functions ߶௞ሺ	. ሻ, ݇ ൌ 1,2,3 which are 
imposed to the control inputs ݑ௞, ݇ ൌ 1,2,3. These nonlinear 
control inputs which are applied to the chaotic complex 
system (10) are as follow: 

߶ଵሺݑ௢ሻ ൌ ߶ଶሺݑ௢ሻ ൌ ߶ሺݑ௢௥ሻ ൅ ݆߶ሺݑ௢௜ሻ, ߶ଷ ൌ ߶ሺݑ௢௥ሻ  

where 

߶ሺݑ௢ሻ ൌ ቐ
ሺݑ௢ ൅ ܾିሻ;	ݑ௢ ൏ െܾି		,					
0; 						െܾି ൑ ௢ݑ ൑ ܾା,

ሺݑ௢ െ ܾାሻ;	ݑ௢ ൐ ܾା												
        (11) 

where ܾା and ܾି are positive constants. The dead-zone 
nonlinearity input function is depicted in Figure 3. 

According to the section 3, we have the error variables as 
follows: 

൝
݁ଵ ൌ ଶݔ െ ଵݔଵߣ
݁ଶ ൌ ଶݕ െ ଵݕଶߣ
݁ଷ ൌ ଶݖ െ ଵݖଷߣ

              (12) 

where ߣଵ ൌ ଵߣ
௥ ൅ ଵߣ݆

௜, ߣଶ ൌ ଶߣ
௥ ൅ ଶߣ݆

௜ and ߣଷ ൌ ଷߣ
௥; 

௞ߣ
௥ሺ݇ ൌ 1,2,3ሻ ∈ ܴ, ௞ߣ

௜ሺ݇ ൌ 1,2ሻ ∈ ܴ. 

 

Fig. 3. A dead-zone nonlinearity input function ߶൫ݑ௞ሺݐሻ൯ ൌ

߶൫ݑ௞௥ሺݐሻ൯ ൅ ݆	߶ ቀݑ௞௜ሺݐሻቁ. 

Therefore, the tracking errors can be rewritten in the 
following form: 

ە
ۖ
۔

ۖ
ଵ݁ۓ

௥ ൌ ଶ௥ݔ െ ଵߣ
௥ݔଵ௥ ൅ ଵߣ

௜ݔଵ௜,

݁ଵ௜ ൌ ଶ௜ݔ െ ଵߣ
௥ݔଵ௜ െ ଵߣ

௜ݔଵ௥,

݁ଶ௥ ൌ ଶ௥ݕ െ ଶߣ
௥ݕଵ௥ ൅ ଶߣ

௜ݕଵ௜,

݁ଶ௜ ൌ ଶ௜ݕ െ ଶߣ
௥ݕଵ௜ െ ଶߣ

௜ݕଵ௥,
݁ଷ௥ ൌ ଶ௥ݖ െ ଷߣ

௥ݖଵ௥																		

        (13)  

The goal of this paper is that for any given chaotic complex 
system, such as (1) and (10), an active nonlinear controller is 
designed in spite of the dead-zone nonlinear inputs ߶௞ሺݑ௞ሻ,
݇ ൌ 1,2,3, such that the asymptotic stability of the resulting 
tracking errors (12) can be achieved in the sense of (8). 

The design procedure of the active nonlinear control input 
has two main steps. The first part is to eliminate the 
nonlinearity and the second step is to make the error states 
asymptotically stable. In fact, one of the shortcomings of 
active control is that an accurate knowledge of mathematical 
model of the system is needed, but in practical application 
there are always unknown factors which affect the control 
systems. The block diagram for the considered 
synchronization system is depicted in Figure 4. 

Composite internal variables of the controller can be defined 
as follows: 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
૚ࣆۓ

࢘ ൌ ܾଵሺ݁ଶ௥ െ ݁ଵ௥ሻ ൅ ܾଵߣଶ
௥ݕଵ௥ െ ܾଵߣଶ

௜ݕଵ௜						

െܾଵߣଵ
௥ݔଵ௥ ൅ ܾଵߣଵ

௜ݔଵ௜ െ ܽଵߣଵ
௥ݕଵ௥

൅ܽଵߣଵ
௥ݔଵ௥ ൅ ܽଵߣଵ

௜ݕଵ௜ െ ܽଵߣଵ
௜ݔଵ௜

																			

࢏૚ࣆ ൌ ܾଵሺ݁ଶ௜ െ ݁ଵ௜ሻ ൅ ܾଵߣଶ
௥ݕଵ௜ ൅ ܾଵߣଶ

௜ݕଵ௥							

െܾଵߣଵ
௥ݔଵ௜ െ ܾଵߣଵ

௜ݔଵ௥ െ ܽଵߣଵ
௥ݕଵ௜

൅ܽଵߣଵ
௥ݔଵ௜ െ ܽଵߣଵ

௜ݕଵ௥ ൅ ܽଵߣଵ
௜ݔଵ௥,

																				

࢘૛ࣆ ൌ ሺܾଶ െ ܾଵሻ݁ଵ௥ ൅ ܾଶ݁ଶ௥ ൅ ሺܾଶ െ ܾଵሻߣଵ
௥ݔଵ௥																			

െሺܾଶ െ ܾଵሻߣଵ
௜ݔଵ௜ 	െ ݁ଵ௥݁ଷ௥ െ ݁ଵ௥ߣଷ

௥ݖଵ௥																				

െߣଵ
௥ݔଵ௥݁ଷ௥െߣଵ

௥ݔଵ௥ߣଷ
௥ݖଵ௥ ൅ ଵߣ

௜ݔଵ௜݁ଷ௥

൅ߣଵ
௜ݔଵ௜ߣଷ

௥ݖଵ௥ ൅ ܾଶߣଶ
௥ݕଵ௥ െ ܾଶߣଶ

௜ݕଵ௜

െߣଶ
௥ܽଶݔଵ௥ ൅ ଶߣ

௥ݕଵ௥ ൅ ଶߣ
௥ݔଵ௥ݖଵ௥ ൅ ଶߣ

௜ܽଶݔଵ௜

െߣଶ
௜ݕଵ௜ െ ଶߣ

௜ݔଵ௜ݖଵ௥,
࢏૛ࣆ ൌ ሺܾଶ െ ܾଵሻ݁ଵ௜ ൅ ܾଶ݁ଶ௜ ൅ ሺܾଶ െ ܾଵሻߣଵ

௥ݔଵ௜	

൅ሺܾଶ െ ܾଵሻߣଵ
௜ݔଵ௥ െ ݁ଵ௜݁ଷ௥ െ ݁ଵ௜ߣଷ

௥ݖଵ௥			

െߣଵ
௥ݔଵ௜݁ଷ௥െߣଵ

௥ݔଵ௜ߣଷ
௥ݖଵ௥ െ ଵߣ

௜ݔଵ௥݁ଷ௥

െߣଵ
௜ݔଵ௥ߣଷ

௥ݖଵ௥ ൅ ܾଶߣଶ
௥ݕଵ௜ ൅ ܾଶߣଶ

௜ݕଵ௥

െߣଶ
௥ܽଶݔଵ௜ ൅ ଶߣ

௥ݕଵ௜ ൅ ଶߣ
௥ݔଵ௜ݖଵ௥ െ ଶߣ

௜ܽଶݔଵ௥

൅ߣଶ
௜ݕଵ௥ ൅ ଶߣ

௜ݔଵ௥ݖଵ௥,

																				

࢘૜ࣆ ൌ െܾଷ݁ଷ௥ ൅ ݁ଵ௥݁ଶ௥ ൅ ݁ଵ௥ߣଶ
௥ݕଵ௥																																							

െ݁ଵ௥ߣଶ
௜ݕଵ௜ ൅ ଵߣ

௥ݔଵ௥݁ଶ௥ ൅ ଵߣ
௥ݔଵ௥ߣଶ

௥ݕଵ௥																													

െߣଵ
௥ݔଵ௥ߣଶ

௜ݕଵ௜ െ ଵߣ
௜ݔଵ௜݁ଶ௥ െ ଵߣ

௜ݔଵ௜ߣଶ
௥ݕଵ௥

൅ߣଵ
௜ݔଵ௜ߣଶ

௜ݕଵ௜ ൅ ݁ଵ௜݁ଶ௜ ൅ ݁ଵ௜ߣଶ
௥ݕଵ௜

൅݁ଵ௜ߣଶ
௜ݕଵ௥ ൅ ଵߣ

௥ݔଵ௜݁ଶ௜ ൅ ଵߣ
௥ݔଵ௜ߣଶ

௥ݕଵ௜

൅ߣଵ
௥ݔଵ௜ߣଶ

௜ݕଵ௥ ൅ ଵߣ
௜ݔଵ௥݁ଶ௜ ൅ ଵߣ

௜ݔଵ௥ߣଶ
௥ݕଵ௜

൅ߣଵ
௜ݔଵ௥ߣଶ

௜ݕଵ௥ െ ܾଷߣଷ
௥ݖଵ௥ െ ଷߣ

௥ݔଵ௥ݕଵ௥

െߣଷ
௥ݔଵ௜ݕଵ௜ ൅ ܽଷߣଷ

௥ݖଵ௥

        

            (14)   
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The next step is to design an active nonlinear controller, 
when the control input function contains dead-zone 
nonlinearity. The adaptive control laws ݑ௞ ൌ ௞௥ݑ ൅ ,௞௜ݑ݆
݇	 ൌ 	1,2,3 are as follow: 

ە
ۖۖ

۔

ۖۖ

ۓ
௞௥ݑ ൌ ቐ

െߤ|ߚ௞௥| െ ܾି;		݁௞௥ ൐ 0	
0;																								݁௞௥ ൌ 0
|௞௥ߤ|ߚ ൅ ܾା;				݁௞௥ ൏ 0

,			݇ ൌ 1,2,3

௞௜ݑ ൌ ൞
െߚหߤ௞௜ห െ ܾି;		݁௞௜ ൐ 0	

0;																							݁௞௜ ൌ 0
௞௜หߤหߚ ൅ ܾା;				݁௞௜ ൏ 0

,			݇ ൌ 1,2					

        (15) 

where parameter  ߚ ൐ 0.               

From (11) and (15), we have 

ە
ۖۖ

۔

ۖۖ

ۓ
߶ሺݑ௞௥ሻ ൌ ቐ

െߤ|ߚ௞௥|;		݁௞௥ ൐ 0	
0;															݁௞௥ ൌ 0
݁௞௥				௞௥|;ߤ|ߚ ൏ 0

,			݇ ൌ 1,2,3

߶ሺݑ௞௜ሻ ൌ ൞
െߚหߤ௞௜ห;		݁௞௜ ൐ 0	

0;													݁௞௜ ൌ 0
݁௞௜				௞௜ห;ߤหߚ ൏ 0

,			݇ ൌ 1,2					

        (16) 

where |. | denotes the absolute value. 

 

Fig. 4. The block diagram for the designed synchronization 
system. 

From (12) and (14), one can derive the error dynamics as 

 

ە
ۖ
۔

ۖ
ۓ
ሶ݁ଵ
௥ ൌ ଵ௥ߤ ൅ ߶ଵሺݑଵ௥ሻ

ሶ݁ଵ
௜ ൌ ଵ௜ߤ ൅ ߶ଵሺݑଵ௜ሻ

ሶ݁ଶ
௥ ൌ ଶ௥ߤ ൅ ߶ଶሺݑଶ௥ሻ

ሶ݁ଶ
௜ ൌ ଶ௜ߤ ൅ ߶ଶሺݑଶ௜ሻ

ሶ݁ଷ
௥ ൌ ଷ௥ߤ ൅ ߶ଷሺݑଷ௥ሻ

          (17) 

By taking into account (16), then (17) becomes as 

ە
ۖۖ

۔

ۖۖ

ۓ
ሶ݁௞
௥ ൌ ቐ

௞௥ߤ െ ݁௞௥		௞௥|;ߤ|ߚ ൐ 0	
݁௞௥																								௞௥;ߤ ൌ 0
௞௥ߤ ൅ ݁௞௥				௞௥|;ߤ|ߚ ൏ 0

,			݇ ൌ 1,2,3

ሶ݁௞
௜ ൌ ൞

௞௜ߤ െ ݁௞௜		௞௜ห;ߤหߚ ൐ 0	

݁௞௜																							௞௜;ߤ ൌ 0
௞௜ߤ ൅ ݁௞௜				௞௜ห;ߤหߚ ൏ 0

,			݇ ൌ 1,2					

        (18) 

If ߚ ൐ ݔ ,1 െ |ݔ|ߚ ൑ 0 and if ݔ ൅ |ݔ|ߚ ൒ ݔ ,0 ∈ ܴ; 
Consequently, we have 

ቊ
݁௞௥ ሶ݁௞

௥ ൑ 0, ݇ ൌ 1,2,3

݁௞௜ ሶ݁௞
௜
൑ 0, ݇ ൌ 1,2

          (19) 

Then, we choose a Lyapunov function candidate according to 
error states (12) as follows: 

ܸሺݐሻ ൌ 1
2ൗ ሺ∑ ሺ݁௞௥ሻଶ

ଷ
௞ୀଵ ൅ ∑ ሺ݁௞௜ሻଶ

ଶ
௞ୀଵ ሻ                           (20) 

Taking the time derivative from (20), yields 

ሶܸ ሺݐሻ ൌ ∑ ݁௞௥ ሶ݁௞
௥ଷ

௞ୀଵ ൅ ∑ ݁௞௜ ሶ݁௞
௜ଶ

௞ୀଵ               (21)  

Thus from (19) and (21), the stability of system is 
guaranteed.  

4.  NUMERICAL EXAMPLE 

In this section, to verify the effectiveness and feasibility of 
the proposed synchronization scheme, the HCPS between 
two non-identical complex chaotic Lorenz system as drive 
system and complex chaotic Chen system as response system 
is accomplished, in which control input is subjected to dead-
zone nonlinearity. The control inputs become active at	ݐ ൌ
 For the case of HCPS, fourth-order Runge-Kutta method .ݏ	5

with initial conditions ቀxଵ୰ሺ0ሻ ൅ jxଵ୧ሺ0ሻ, yଵ୰ሺ0ሻ ൅

jy1i0,	z1r0Tൌ1൅j2,	3൅j0.5,	4T,   x2r0൅jx2i0,	y2r0൅jy2i0,	
z2r0Tൌ4.7൅j6,	0.2൅j7.5,	1T and time step size of 0.001 are 
used. 

The scaling matrix is ߉ ൌ ݀݅ܽ݃ሼ1 ൅ ݆0.5, 1 െ ݆, 1.5ሽ and 
ܾି ൌ ܾା ൌ 1.  

Figure 5 displays the synchronized states of the complex 
chaotic Lorenz and Chen systems, where the control inputs 
are subjected to dead-zone nonlinearity.  It is clear that the 
synchronization errors converge to zero quickly, which 
implies that the chaos synchronization between the complex 
chaotic Lorenz and Chen systems is realized, as shown in 
Figure 6. 

Moreover, using the fourth-order Runge-Kutta method with 
the time step size of 0.1 the simulation is done and the 
simulation is depicted in Figure 7. Also, the simulation result, 
when the ODE 113 (Adams) method as the integral method is 
used with the time step size of 0.001 is depicted in Figure 8. 
The time history of control inputs affected by dead zone 
nonlinearity input is depicted in Figure 9. 
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Fig. 6. Synchronization errors between the Lorenz and Chen 
systems. 

 

Fig. 7. Synchronization errors between the Lorenz and Chen 
systems. 

 

Fig. 8. Synchronization errors between the Lorenz and Chen 
systems. 

 

Fig. 9. The time history of control inputs affected by dead 
zone nonlinearity input 
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Fig. 5. State trajectories of complex chaotic Lorenz and 
Chen systems.
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Figure 7 shows that to obtain a better evaluation of the 
proposed synchronization method, the size of the integration 
time step used in the simulations should be chosen very 
small. So in accordance of Figure 6, it is better to decrease 
the time step size to have the minimum error in the 
synchronization. According to Figures 6 and 8, it is obvious 
that for the different integral methods in the numerical 
simulation, the synchronization errors not changed, 
significantly. In Figure 9, the smoothness of the control input 
is obvious. 

5. CONCLUSIONS 

In this paper, an active nonlinear controller subject to input 
nonlinearity has been addressed. In the many applications, an 
active control technique is not robust against nonlinearity; but 
under some conditions, this control scheme can eliminate 
some perturbations like nonlinearities. Because the complex 
chaotic systems are not widely considered in the previous 
literatures, we investigate the effect of nonlinearity for these 
systems. Techniques for achieving hybrid complex projective 
synchronization between two different complex chaotic 
systems demonstrated. At First step, an active control scheme 
is suggested to tackle the existence of the general 
nonlinearities in control inputs. Based on the Lyapunov 
stability theorem, sufficient conditions to guarantee stable 
synchronization are given and the components of the error 
states tend to zero as time becomes large. Moreover, the 
complex behavior and high dependence of the proposed 
chaotic system to the initial condition in this paper is 
illustrated. 
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