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Abstract: Health care data diagnosis deals with a prediction of the course of a disease by analyzing the 
information in health care systems. Analyzing healthcare datasets is one of the major challenges of recent 
times. Associative Classification (AC) is one of the data mining techniques commonly used for disease 
diagnosis. AC integrates the concept of Association Rule Mining (ARM) and classification. Though, AC 
is an efficient classification system, it often experiences poor accuracy as it generates huge volume of 
class rules in the ‘rule generation’ phase. This paper intends to address this issue by structuring an 
associative classifier using significant PARs (Predictive Association Rules) i.e. simply class rules. In this 
work, Firefly Algorithm (FA), a nature inspired metaheuristic optimization algorithm is adopted to fit 
into the ‘rule generation’ phase of existing CPAR (Classification based on Predictive Association Rule), 
an AC algorithm. This work acquires the essential inspiration of FA and CPAR to construct an 
associative classifier with significant PARs. FA with a customized fitness function specifically designed 
for the health care data diagnosis is proposed to find a small set of significant PARs. FA based Predictive 
Association Rule (FPAR) classifier thus built using significant PARs achieves high prognostic 
accurateness and interestingness value. Performance of FPAR and CPAR algorithms are analyzed over 
the six health care datasets from UCI machine learning repository. Based on the experiments, promising 
results in terms of classifier accuracy are provided by FPAR algorithm. 

Keywords: Artificial intelligence; Optimization; Heuristics; Classifiers; Data association; Feature 
Selection; Diagnosis. 



1. INTRODUCTION 

Diagnosis of disease is significant as well as a complex task 
that needs to be completed precisely. Disease diagnosis might 
lead to false presumption due to physical examination of the 
patients based on the signs and symptoms. Data mining plays 
a vital role in discovering and analyzing the hidden 
knowledge in health care datasets. The diagnosis problem in 
medical field can be solved using data mining techniques 
such as ARM, classification and clustering. ARM and 
classification are the data analysis method used for easy 
recovery and effective usage of data. ARM is a descriptive 
data mining task commonly used to extract hidden 
knowledge in the form of association rules representing the 
frequent patterns from healthcare datasets. Classification is a 
predictive data mining task produces a model based on the 
historical data to predict unknown or future values of the 
variables of interest. AC is the supervised learning approach 
integrating ARM and classification techniques. In AC, ARM 
concentrates in generating significant rules whereas 
classification exploits the generated rules for classifying the 
test\unknown tuple. In literature, CBA, CMAR, CPAR etc., 
are the popular AC algorithms. Existing AC algorithms often 
experiences poor accuracy, as it generates too many 
insignificant rules thereby affecting the accuracy of the AC.   

FA (Yang, 2010) is a nature inspired metaheuristic 
optimization algorithm inspired by flashing behaviour of 
fireflies. Fireflies flash act as a signal system to attract other 
flies. Generally, FA is formulated based on the three 
assumptions such as all fireflies are unisexual & individual 
fireflies will be attracted to all other fireflies, less bright 
fireflies will be attracted to the brighter one, if no fireflies 
brighter than given firefly, flies move randomly and the 
brightness of the firefly is influenced and determined by the 
objective function. In this paper, a novel fitness function is 
proposed to optimize FA to generate new and significant 
PARs. The proposed fitness function is encoded and 
associated to generate PARs based on the following three 
assumptions such as individual positive (negative) PARs will 
be attracted to other positive (negative) PARs. Lower fitness 
value PARs will be attracted to the higher fitness value 
PARs. PAR generation process is halted when only one PAR 
or no PAR in the population is reached. Fitness value of each 
PAR is influenced and determined by the proposed fitness 
function. Ultimately, this paper aims in generating significant 
PARs using FA in less number of iterations to formulate an 
efficient associative classifier. To conclude, an investigation 
was carried out to analysis the performance of FPAR and 
CPAR algorithms using statistical tests. From the 
investigation, it is found that FPAR outperforms CPAR 
algorithm in terms of classifier accuracy. 



102                                                                                                                  CONTROL ENGINEERING AND APPLIED INFORMATICS 

The rest of the paper is organized as follows. Section 2 
discusses the literature survey. Section 3 discusses about 
FPAR. Section 4 describes the methodology followed in the 
proposed work. Experimental results are discussed in section 
5 and section 6 concludes the paper. 

2. BACKGROUND AND RELATED WORK 

AC is one of the recent data mining techniques builds 
competitive classifiers with respect to accuracy when 
compared to classical classifiers such as decision tree, naive 
bayes  and rule-based. It combines the concepts of 
association and classification. It is widely used for health care 
data diagnosis (Jabbar et al., 2012; Jabez, 2011; Natarajan 
and Murthy, 2011). AC algorithms often experience a 
number of notorious deficiencies as the generation of large 
quantity of class rules which makes it difficult for an end user 
to maintain and comprehend its outcome.  

2.1  Associative Classification 

There are many early versions of AC such as Classification 
Based on Association (CBA), Classification Based on 
Multiple Association Rules (CMAR), Classification based on 
Predictive Association Rule (CPAR). Classification Based on 
Association (CBA), the first AC algorithm employed Apriori 
to generate the complete set of class rules from the training 
dataset. CBA has high misclassification rate, since it uses the 
best first rule for classifying the test tuples. Classification 
Based on Multiple Association Rules (CMAR) was proposed 
to overcome the drawback of CBA. It uses FP Growth 
algorithm, a best variant of Apriori for ARM.  It picks more 
than one class rule that best matches a test tuple. Though 
CMAR outperforms CBA in terms of classifier accuracy, it 
needs to spend more time in selecting the best rules among 
the huge volume of rules generated in the ‘rule generation’ 
phase.  First Order Inductive Learner (FOIL), Predictive Rule 
Mining (PRM) (Yin and Han, 2003) and Classification based 
on Predictive Association Rule (CPAR) (Yin and Han, 2003) 
were proposed to generate significant predictive rules from 
the dataset. FOIL fails to achieve high accuracy because it 
generates only few significant rules.  Shortly, PRM was 
proposed to attain better accuracy and efficiency than FOIL. 
CPAR, an extension of PRM, is one of the well known 
associative classifier yields better accuracy than its 
predecessors CBA, CMAR, FOIL and PRM. CPAR uses 
Laplace accuracy, an error estimate measure to evaluate class 
rules. Based on the Laplace accuracy value, the best k-rules 
are selected for classifier construction.  

Construction of an AC involves two phases such as 
generation of class rules from the training tuples and the 
classification of the test tuples using class rules. In the ‘rule 
generation’ phase, voluminous rules are generated with class 
label value as consequent. In the classification phase, the 
class label of the given test\unknown tuple is predicted using 
the generated rules. In spite of the powerful mechanism, AC 
often results in poor accuracy because of generation of large 
number of insignificant class rules in the ‘rule generation’ 
phase. To overcome this drawback, evolutionary algorithms 
like GA, ACO, PSO, and FA are used in the ‘rule generation’ 

phase of AC to generate a optimal set of significant PARs 
from the dataset.  

2.2  Evolutionary Algorithm 

Most of the associative classification algorithms in the 
literature are futile for high dimensional datasets and 
stipulates optimization. An evolutionary GA (Chien  and 
Chen, 2010) based associative classifier was built to discover 
trading rules from stock trading data. ACO was proposed to 
determine the optimal set of association rules to form an 
accurate rule classifier (Shahzad and Baig, 2011). Associative 
classifier was also built using Dynamic PSO in (Mangat and 
Vig, 2014). 

Firefly Algorithm (FA) is one of the evolutionary algorithms, 
inspired by the behaviour of fireflies, attracting each other by 
flashing light. It is a metaheuristic optimization algorithm 
proposed by Yang (Yang, 2010). It had been widely applied 
and proved to be better technique for applications such as 
digital image compression (Horng and Liou, 2011), feature 
selection (Banati and Bajaj, 2011), clustering (Senthilnath  et 
al., 2011), job scheduling (Aphirak et al., 2012) etc. It was 
also used in applications (Kazemzadeh and Kazemzadeh, 
2011) which have non-linear and multimodal problems. FA 
yields better results than PSO and Genetic algorithm (GA) as 
its parameters can be changed dynamically and it provides 
optimal solution in less number of iterations.  

Marichelvam  proposed Discrete Firefly Algorithm (DFA) for 
flowshop scheduling (Marichelvam et al., 2014). Flowshop 
scheduling is a NP hard problem used to solve ‘n’ job in a 
series of ‘m’ stages. Discrete Firefly Algorithm (DFA), a 
variant of FA is proposed to solve this NP-hard problem. The 
experiments were conducted with the different parameter 
values and the results were compared with ACO, GA and 
Simulated Annealing (SA). It was found that the result of 
DFA provides better results than ACO, GA and SA. 
Metaheuristic algorithms such as FA and PSO for solving the 
noisy non-linear mathematical problems were discussed in 
(Pal et al., 2012). It was concluded that FA was able to find 
near optimum solution with reduced time. A hybrid filter-
wrapper feature selection for load forecasting was proposed 
based on FA in (Hu et al., 2015). Fire Fly Algorithm(FFA) 
and Enhanced Artificial BEE Colony Optimization (EABC) 
were employed to diagnose brain tumor and breast cancer 
through mammograms along with image processing 
techniques in (Sahoo and Chandra, 2013; Karaboga and 
Akay, 2009). It was concluded that FFA outperforms than 
EABC. FA was employed to train the radial basis function 
network for data classification and disease diagnosis(Horng 
et al., 2012). FA had obtained satisfactory results than 
Gradient Descent, GA, PSO and Artificial Bee Colony(ABC) 
optimization. Dey in 2014 (Dey et al., 2014) proposed a 
novel approach to design a robust biomedical content 
authentication system. FA was applied to generate optimal 
scaling factors for image embedding. The performance of FA 
was compared with PSO. Based on the results, it was 
concluded that FA achieves better results than PSO. Modified 
FA(MFA) was used to develop the learning rule for 
identification of three benchmark Infinite Impulse 
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Response(IIR) and nonlinear plants (Shafaati and Mojallali, 
2012). Performance of MFA’s was compared with standard 
FA, GA and PSO. Based on the results, it was proved  that 
MFA is superior in identifying dynamical systems. Younes in 
2013 combined FA and ACO for solving economic power 
dispatch problem(Younes, 2013). 

A hybrid model was proposed for heart disease diagnosis 
(Long et al., 2015). It combines rough set theory and chaos 
firefly algorithm. The proposed model used chaos FA to 
enhance the classification accuracy of the heart disease 
diagnosis with the reduced set of attributes obtained using 
rough sets.  FA was used to extract an optimum set of high 
accuracy and interpretable fuzzy classifier rules to classify 
nine benchmark datasets in UCI machine learning 
repository(Pouyan et al., 2014). (Chao and Horng, 2015) 
used FA to train the parameters of support vector machine 
(SVM) classifier for diagnosing the ultrasonic supraspinatus 
images. Combination of FA-SVM yields better results in 
terms of classifier accuracy than original LibSVM. 

3. FIREFLY BASED PREDICTIVE ASSOCIATION RULE 
(FPAR) CLASSIFIER 

The proposed FPAR is an associative classifier, in which FA 
is employed to generate significant PARs. This section gives 
the formulation of the mathematical model of associative 
classification. It discusses a mathematical model to generate 
significant PARs using Firefly algorithm. It also gives the 
stepwise procedure for FPAR classification algorithm. 

3.1 Problem definition 

Given a finite set of tuples T, it is partitioned into two disjoint 
tupleset T0 and T1, where T = T0∪T1. Each tuple ‘Ai’ has a ‘m’ 
non-class attribute values Ai = (Ai1, A i2, . . , Aim ) and a class 
label Bi where i = 1, 2, . . . , n 

 
1TiA if  1
0TiA if  0

iB







             (1)  

In general, the goal of an associative classifier is to build an 
efficient classification system using significant class rules 
(i.e. PARs). The main objective of the proposed work is to 
generate significant PARs that have maximum fitness value. 
Hence the classification system developed from those 
significant PARs is able to correctly classify unknown tuples.  

3.2 Firefly Algorithm (FA) 

FA is an evolutionary algorithm that can be applied to 
various problems which desires optimization. In this work, it 
is applied to optimize the class rule generation process 
resulting with significant PARs in less number of iterations. 
A PAR which has the maximum fitness value is considered 
as significant. This optimization problem can be formulated 
as a mathematical model in order to apply FA.  

A model M = (S, f, C) of an optimization problem consists 
of: 

 A search space S defined over a finite set of class rules 

(i.e.  PARs) 
kTBijA  , where, iAijA  ,  k = 0,1    

 An objective function is 
 

)
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            (2) 
Subject to the constraints   

1γβα  , 1α0  , 10   , 10   ,where α, β 

and  γ are user specified significance values for Cosine-
similarity, All-Confidence and Coverage measures. The 
significance values of α, β and γ depends on the type of the 
application and dataset. 

 A set C of constraints among the PARs is  

        
kTBijA  , ijA , 

kTB                                (3)  

 A feasible solution s ∈ S is a PAR that satisfies all 
constraints in C.        

 A solution s* ∈ S is called a global optimum if and only 
if f (s*) ≥  f (s)   ∀s ∈S. 

3.3 Feature Set 

A feature set F of ‘m1’ non-class attributes which satisfy the 
user specified minimum support threshold (δ). It is formed 
for each tupleset T0 and T1 separately. 

  ,11mn,
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∀Fj  δ)jSupp(F  , where m1≤ m              (5) 

3.4 Firefly Representation 

For each tupleset, from the corresponding feature set (i.e. F0 
and F1), all possible 1-attribute PARs i.e. antecedent length 
of the PAR is one are generated. Generated 1-attribute PARs 
are taken as initial population ‘Ck’ of the FA which is 
represented as 
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consisting of m1, 1-attribute PARs as initial population for 
each tupleset. In general, initial population represents a 
potential feasible solution to the problem. With respect to the 
constraints defined, obtaining the feasible solution is a 
difficult task. These feasible solutions are evaluated using 
fitness function and obtain the optimum or near optimum 
solution with the help of the attraction\ absorption operation.  

3.5 Fitness Function 

The proposed research work aims to find the significant 
PARs by taking the advantage of objective function. Each 
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PAR in a population is considered as a firefly. Hence the 
feasibility of the fireflies is determined using fitness function. 
To achieve this goal, Cosine-similarity, All-confidence and 
Coverage measures are introduced to check the feasibility of 
the fireflies.  

Fitness function )3f,2f,1f(f)
kTBjf(F   is a function of 

three variables f1, f2 and f3, where f1 is a function used to find 
the Cosine-similarity of the PAR. Cosine-similarity is a 
measure used to determine correlation between the rule 
antecedents towards class attribute (i.e. consequent). f2 is a 
function used to find the All-Confidence of the firefly. All-
Confidence is used to measure the overall affinity\association 
among attributes of the antecedent and consequent within a 
PAR. It works well in skewed support distribution. f3 is a 
function used to find the Coverage of the PAR. It is used to 
determine the comprehensiveness of a PAR.  

3.6 Elitism in Firefly 

In every generation, the fitness value of fireflies which is 
greater than equal to Local_Fitness_Threshold (LFT) is taken 
to next generation as best fireflies. Instead of selecting one 
highest fitness PAR as best PAR using attraction operator, 
FPAR selects more than one PAR as close-to-the-best PARs 
using LFT. The fitness value of PARs which are greater than 
or equal to LFT are considered as close-to-the-best PARs. 

FSR*))
kTBjMax(f(FLFT                                (7) 

Where,  FSR represents user specified 
Fitness_Similarity_Ratio, 0 ≤ FSR ≤ 1  
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3.7 Attraction / Absorption 

The purpose of attraction operator is to generate new PARs 
(fireflies) significantly different from its parents. To generate 
new fireflies (PARs), high bright fireflies (i.e. Fireflies with 
fitness value ≥ LFT) are attracted by other low bright fireflies 
among the best fireflies. In this work, this operation is 
simulated by merging high fitness ( k - 1) - attribute PAR to 
other (k - 1)-attribute PAR among best PARs to generate k-
attribute PARs. Assume R1 and R2 are two 1-attribute PARs 
with fitness greater than the LFT are selected for attraction 
operation. The antecedents of two PARs are combined to 
form 2-attribute PARs. (i.e. length of the PAR antecedent is 
2) 

3.8 Algorithm Complexity 

For each tupleset, the proposed FPAR algorithm (given in 
section 4.2) has one outer loop going through the ‘m’ non-
class attributes for creating initial population. It uses two 
inner loops and one outer loop when going through the 
population size ‘l’ for ‘k’ iteration to generate PARs. Hence 
the extreme case time complexity is O(2(m+k(l2+l)). As the 
‘l’ is small, the value of ‘k’ becomes small, i.e. because of 
attraction operation, within few iterations population size 
reaches to ≤ 1. Hence the computational cost of FPAR is 

relatively economical as its time complexity is linear in terms 
of ‘k’. In general, for all metaheuristic algorithms, the 
evaluation of fitness functions plays a key role in 
computational cost.   

4. PROPOSED METHODOLOGY 

The methodology followed in FPAR consists of three phases 
such as PAR generation, associative classifier construction 
and the classification of test tuple. Similar to CPAR, FPAR 
requires the dataset to be partitioned into positive tupleset and 
negative tupleset. In first phase, significant PARs are 
generated from each tupleset using FA independently. The 
second phase involves the construction of associative 
classifier using the generated PARs. Generated PARs are 
ordered and ranked according to the Laplace accuracy (‘La’) 
value. Laplace Accuracy is an error estimate measure used in 
CPAR to determine the significance of a PAR. In the final 
phase, the best k-PARs from each tupleset that satisfies the 
test tuple are selected according to the ‘La’ value. Average 
‘La’ value for each best k-PARs is computed. The class of 
the best k-PARs which has the highest average ‘La’ value is 
chosen as the predicted class label for the test tuple. The 
detailed work flow of proposed methodology is outlined in 
figure 1. 

4.1 Data Pre-processing 

Health care datasets consist of continuous valued attributes 
which cannot be directly taken for processing. With Weka 3.7 
the continuous valued attributes are discretized using 
Discretize filter. Discretization is performed by simple 
binning with findNumBins set as False, and number of bins 
as 10.  Each discretized value is represented in numeric 
format. Even the missing values are handled by replacing 
with the modes and means of the training data. Specialty of 
health care data lies in the fact that the attribute values can 
only be within certain ranges.  All the six health care datasets 
are separately pre-processed using Weka 3.7 according to the 
requirements of the designed system. 

4.2 Generation of PARs using FA and FPAR Classifier 
Construction 

The pre-processed dataset is taken as input for generating 
significant PARs. Six health care datasets considered in this 
research work are binary class datasets. Based on the class 
label, the tuples of the pre-processed dataset is partitioned 
into positive tupleset and negative tupleset. Since the datasets 
are discretized using 10 bins. Each attribute has at most 10 
discretized values which make PAR generation tedious and 
time consuming. To address this issue, feature set for each 
tupleset is formed. A feature set consists of attribute values 
from each tupleset which satisfy the minimum support 
threshold(δ).  Initially, feature set of the positive tupleset is 
taken for generating 1-attribute positive PARs. 1-attribute 
positive PARs are class rules which have only one attribute 
value from the feature set as antecedent and positive class 
label as consequent. All possible 1-attribute positive PARs 
generated from the positive feature set are taken as the initial 
population of FA. Fitness value for each 1-attribute positive 
PARs are calculated using the fitness function given in (2).  
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The brief procedure involved in generation of PARs using 
FA is detailed in the following algorithm. 

PAR Generation algorithm: 

// Fi[ ] - array to store  features\attributes of the tupleset Ti  
         that satisfy user specified minsupp  

// Pi,k[] - Population array consists of k-feature\attribute  
          PARs generated from tupleset Ti  

// PAR[ ]- array to store the close-to-the-best PARs (i.e.  
             PARs whose fitness value >= LFT). 

// Fitness( )- used to calculate the fitness value of a PAR 
                using equation (2) 

// Best_Fitness - parameter used to hold the highest fitness  
                      value. 

// LFT- Local Fitness Threshold. 

Input:   

 T[m]-is the binary class dataset contains ‘m’ non-class 
attributes with class attribute B 

 T0[m]- set of positive tuples contains ‘m’ non-class 
attributes with class attribute B0 

 T1[m]- set of negative tuples contains ‘m’ non-class 
attribute with class attribute B1 

 FSR- user specified Fitness Similarity Ratio 

Output: Predictive Association Rules (PARs) 

Procedure: 

(1) Initialization of  parameters  
Best_Fitness = 0; 

(2) Iteration  
(a) Generate 1-attibute PARs from the feature set 

and create initial population 

   for  i= 0 to 1 do 
(i) for  j=1 to m do 
(ii)        Calculate support(Ti[j]); 
(iii)        if  ( support(Ti [j]) >= minsupp) then  
(iv)             Include Ti[j] to  Fi[ ]; 
(v)             Add Fi[j] Bi to the Pi,1[ ];     
(vi)        end if 
(vii) end for 
(viii) k=1;  

(b) Calculate fitness for each PAR in the population 
      and include best PARs in the rule list 

             while ( Size(Pi,k[ ]) > 1 && k < Size(Fi[ ])) do 
(i) for j=1 to Size(Pi,k[ ]) do     
(ii)      Calculate Fitness for  k-attribute PARj  

             in Pi,k[ ]; 
(iii)              Identify highest fitness value obtained  
                    in that iteration; 
(iv)              Best_Fitness = highest fitness value; 
(v)              Calculate LFT=Best_Fitness * FSR; 
(vi)        if (Fitness(k-attribute PARj) >=LFT) then   
(vii)            Add  k-attribute PARj to PAR[ ]; 
(viii)            else 
(ix)            Remove k-attribute PARj from Pi,k[ ]; 
(x)       end if 

(xi)    end for 
(c) Perform attraction operation 

(i) for  x=1 to Size(Pi,k[ ]) do 
(ii)        for  y=1 to Size(Pi,k[ ]) do      
(iii)              if (Fitness(k-attribute PAR x)  >   
                         Fitness(k-attribute PAR y))  then    
(iv)                  Combine the rule antecedents of two 

                 PARs to form (k+1)-attribute PARs     
(v)                  Add (k+1)-attribute PARs to Pi,k+1[ ]; 
(vi)              end if   
(vii)         end for  
(viii) end for 
(ix) k=k+1; 

           end while 
      end for 
      return PAR[ ]; 

Based on the fitness value, PARs are ranked. Instead of 
selecting one best PAR having highest fitness value for the 
attraction\absorption, FPAR selects all the close-to-the-best 
CARs in each iteration using FSR. However, in a population 
there may be few PARs with fitness values similar or close to 
the highest fitness value. LFT is a parameter used to 
determine all possible close-to-the-best PARs in each 
iteration. LFT is calculated using (7). Fitness value of all the 
PARs which are close to the LFT (i.e. greater than or equal) 
are taken as the close-to-the-best PARs (8).  

4.3 Evaluation and Ordering of PARs  

‘La’ is one of the error estimate measure used to evaluate 
class rules in CPAR. This error estimate measure takes into 
account the coverage of each PAR in the training data set.  

After evaluation, the PARs are ordered according to their 
coverage value. The error estimation of each PAR is 
calculated using (9).  

 
 cntot

1nc
 )La'('Accuracy  Laplace




                                    (9) 

Where, ‘c’ represents the number of classes.  

'ntot'  represents the total number of test tuples satisfying 
antecedent of the PAR. 

'nc' represents the total number of test tuples satisfying both 
antecedent and consequent of the PAR. 

4.4 Classification of test tuples  

The PARs among the close-to-the-best PARs satisfying each 
test tuple are identified and grouped based on the class label. 
Among the entire set of PARs only the best k-PARs from 
each class\tupleset having the highest average ‘La’ value are 
considered to classify the test tuple thereby eliminating all the 
lower ranked PARs. The class label of the best k-PARs 
which has the maximum average ‘La’ value is taken as the 
predicted class label for the test tuple.   
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Fig. 1. Workflow of the FPAR Algorithm. 

5.  EXPERIMENTS AND RESULTS 

5.1 Dataset 

The experiments are conducted using the six health care 
datasets such as Breast Cancer, Cleve, Heart, Hepatitis and 
Pima from UCI machine learning repository. Breast Cancer 
dataset is taken as a sample for the detailed discussion. This 
dataset consist of 11 attributes where 11th attribute is the class 
attribute. The attributes of Breast Cancer dataset is shown in 
Table 1. 

Initially the given dataset is pre-processed as discussed in 
section 4.1 by categorizing the attribute values based on the 
domain. The medical dataset should not exceed the certain 
range of values so pre-processing should be done carefully. 
The final attribute of the Breast Cancer dataset determines the 
class label of the dataset, which determines the severity of the 
disease. “Class” attribute has 2 values ‘benign’ and 
‘malignant’. The remaining non class attribute values are also 
transformed as per the requirements of the algorithm. This 
pre-processed dataset is then taken as the input for the PAR 
generation process. Similar pre-processing technique is 
applied for all other medical datasets such as Cleve, Heart, 
Hepatitis, Pima and Sick. 

Table 1. Attributes of Breast Cancer dataset. 

Attribute Domain values(Integer) 
Sample Code Number Numeric value 
Clump Thickness 1-10 
Uniformity of Cell Size 1-10 
Uniformity of Cell Shape 1-10 
Marginal Adhesion 1-10 
Single Epithelial Cell Size 1-10 
Bare Nuclei 1-10 
Bland Chromatin 1-10 
Normal Nucleoli 1-10 
Mitoses 1-10 
Class (0 for benign, 1 for malignant) 

 
 

5.2 Experimental setup 

The pre-processed dataset\tupleset is split into positive and 
negative tupleset based on the class label. Existence of many 
features in each tupleset causes generation of numerous 1-
attribute PARs in the initial population. Feature selection is a 
pre-processing step commonly applied before any data 
mining task. It eliminates insignificant features by keeping 
good ones without information loss. In this work, the 
significant feature set is formed from each tupleset using 
Support. Features satisfying the user-specified minimum 
support(δ) are considered as significant features to be 
included in the feature set.  

In this work, δ, α, β and γ are set with default values 0.5, 0.5, 
0.34 and 0.16 respectively.  Using the significant features in 
the feature set, 1-attribute PARs are generated. Using 1-
attribute PARs, higher attribute PARs are generated by 
means of FA as explained in section 4.2. The PAR generation 
process is continued until no PARs can be formed or only 
one PAR is retained in a generation. After the generation of 
all possible positive PARs from positive tupleset, the same 
procedure is applied in negative tupleset to generate negative 
PARs.  

Both positive and negative PARs are taken to PAR 
evaluation and ordering.  When the test tuple is considered 
for classification, the best k-PARs from each class that 
matches the test tuple are selected. In this work, k is set as 5. 
The average ‘La’ of best 5-PARs that satisfy the test tuple 
from each class is calculated and the class with highest 
average ‘La’ is chosen as predicted class label of the test 
tuple. In this work, the performance of FPAR is compared 
with existing CPAR under 10CV (10 X fold validation) and 
50/50 (50: 50 split) test options. Experiments were performed 
over six datasets for the varying values of FSR (0.5-0.9) and 
GSR (Gain similarity Ratio) (0.5-0.9) within FPAR and 
CPAR algorithms respectively.  
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5.3 Results and Discussion 

The classifier accuracy obtained by the FPAR and CPAR 
classifiers under two test options are shown in Table 2 and 
Table 3.  From the Table 2 and 3, it is found that 50/50 test 
option yields better results than 10CV. 50/50 test option 
brings considerable improvement in the FPAR classifier 
accuracy than 10CV test option for all datasets using 
different FSR values (0.5-0.9). Results show that 0.9 and 0.8 
are the best values for FSR used within FPAR algorithm. In 
particular, FPAR under 50/50 with FSR=0.9 value has 
achieved a classification accuracy of 97.61%, 96.68%, 
96.08% and 94.1% approximately 2%,14%,11% and 14% 
higher the accuracy achieved using CPAR with GSR=0.9 for 
Breast Cancer, Cleve, Heart and Pima datasets respectively.  

From the results, it is found that FPAR has not achieved 
better accuracy for Sick and Hepatitis dataset than CPAR. As 
part of analyzing the factors, it is identified that datasets such 
as Breast Cancer, Cleve, Heart, Hepatitis, Pima and Sick after 
pre-processing has obtained 10, 13, 13,19,8 and 28 non-class 
attributes. The number of significant attributes retained in the 
feature set is high for Sick and Hepatitis compared to other 
datasets. Feature set size is large for these datasets hence 
there is no effective dimension reduction happened for these 
datasets. The number of 1-attribute PARs generated always 
depends on the feature set size. Since the feature set size of 
Sick and Hepatitis is relatively large compared to other 
datasets, FPAR generates many 1-attribute PARs from these 
datasets thereby making the initial population size large 
which affects the classifier accuracy. The accuracy of the 
FPAR and CPAR over the six health care datasets under two 
test options is represented as line graphs in figures 2 and 3. 

5.4  Statistical Validation 

Wilcoxon signed-rank test 

The Wilcoxon signed-rank test (Wilcoxon, 1945) is a non-
parametric statistical hypothesis test used to compare new 
algorithms with existing successful algorithms. It can be 
computed using (10). 

		represents the sum of positive ranks,    represents 

the sum of negative ranks. 
 
T = min (∑R+,∑R-) is used to calculate Z-statistic. 
 
Where, ‘n’ represents the number of datasets considered for 
experiments. When the sample size is less than 30, Z-
distribution can be used. 

24

1)1)(2nn(n

4

1)n(n
T

Z





              

       (10) 

If the value of  Z  is ≤ -1.96, or ≥ 1.96, null hypothesis H0: 
there is no significant difference between the proposed and 
existing algorithms is rejected. Otherwise alternative 
hypothesis Ha is accepted.  

The course of action followed in performing above described 
Wilcoxon signed rank test to validate the significant 
differences in the performances between proposed FPAR and 
existing CPAR classifier for six datasets under two test 
options (Table 2 & 3) are illustrated as follows:   
 In this work, experimental results under two test options 
show better accuracy by FPAR and CPAR algorithms only if 
the FSR and GSR values are set with 0.9 and 0.8. The 
accuracy obtained by FPAR using 0.9 and 0.8 FSR values for 
each dataset under two test options are taken for Wilcoxon 
signed rank test. As a sample, Wilcoxon ranks are computed 
for the accuracy obtained by FPAR and CPAR algorithms 
under 50/50 test option using 0.9 similarity ratio values. 
Table 4 shows the computed Wilcoxon ranks for six health 
care datasets.  Using the ranks calculated in the Table 4, the 
Z- statistic is calculated as follows: 
 
T = min(∑R+,∑R-) = min (20, 1) =1 
Since the number of datasets used for experimentation is six 
less than 30, the Z-distribution is calculated as follows: 

	

24

1)6*1)(26(6
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1

Z





 	 ൌ	 ‐1.99 ≤ -1.96, hence the null 

hypothesis is rejected thereby alternate hypothesis there is 
significant difference in the performances between FPAR and 
CPAR is accepted. 
One-way Anova Test 

Anova test (DeCoster, 2002) is commonly used statistical test 
to inspect the significant difference in the performances 
between the classifiers. The classifier accuracy obtained by 
FPAR and CPAR classifiers for the 0.9 similarity ratio values 
under 50/50 test option is taken for performing one-way 
Anova test. It is performed to assess whether FPAR is 
significantly different from CPAR at 95% confidence level. 
Table 5 shows the results of one-way ANOVA test for the 
classifier accuracy obtained by FPAR and CPAR over six 
health care datasets under 50/50 test option using 0.9 as FSR 
and GSR values respectively. The probability (p) value 
denotes the probability under the null hypothesis. From Table 
5, it is found that F=5.431516 > Fcric=4.964603 and smaller 
‘p’ value (i.e. p=0.04201< 0.05) indicates the rejection of 
null hypothesis, which means that performance of FPAR is 
significantly different from CPAR. Since the null hypothesis 
is rejected, post-hoc tests are performed to identify the 
significant difference between the classifiers.  

In this work, paired t-test is conducted for post-hoc analysis. 
Results of the paired t-test performed over FPAR and CPAR 
is shown in Table 6. From the Table 6, it is evident that one-
tailed p-value is 0.035036681, which is less than the level of 
significance (0.05), hence  the null hypothesis is rejected 
thereby alternate hypothesis is accepted, stating that FPAR 
with 0.9 FSR value produces better accuracy than CPAR 
under 50/50 test option over six health care datasets. Results 
show that FPAR with FSR=0.9 yields better accuracy than 
CPAR with GSR=0.9 under 50/50 test option at 95% 
confidence level. 
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Fig. 2. Performance of FPAR and CPAR algorithms over six health care datasets under 10CV test option. 

 

Fig. 3. Performance of FPAR and CPAR algorithms over six health care datasets under 50/50 test option. 

Table 2. Classifier Accuracy (%) obtained by FPAR for six health care datasets with varying values of FSR (0.9 to 0.5). 

 10CV 50/50 

Dataset 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 
Breast 
Cancer 

96.58±1.09 96.67±1.33 97.15±1.84 96.9± 0.94 96.91±1.19 97.61±0.95 91.27±0.27 90.76±1.13 94.42±1.03 91.17±3.68 

Cleve 96.39±1.61 96.3±1.55 96.59±0.85 96.89±0.52 96.68±0.43 96.68±1.1 97.26±0.22 96.4±0.58 98.17±0.43 97.6±0.33 

Heart 96.19 ±0.9 94.47±2.69 96.35±0.87 96.18±0.78 96.17±0.63 96.08±2.17 98.51±0.02 96.99±0.32 95.56±0.54 92.44±0.59 

Hepatitis 82.96±3.83 83.38±4.49 83.16±3.6 82.11±3.73 82.62±3.53 80.78±3.32 85.68±4.12 82.32±3.7 83.89±4.56 82.12±4.35 

Pima 93.08±2.45 93.06±2.34 88.57±3.04 88.63±3.32 88.7±4.41 94.1±3.24 90.05±0.65 92.82±1.01 86.92±1.26 88.33±1.09 

Sick 83.04±1.78 79.34±1.34 78.27±0.98 79.12±1.2 78.45±0.56 83.68±1.57 
 

80.27±1.1 79.54±0.78 78.78±1.43 78.92±1.98 

Table 3. Classifier Accuracy (%) obtained by CPAR for six health care datasets with varying values of GSR (0.9 to 0.5) 

 10CV 50/50 

Dataset 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 
Breast 
Cancer 

95.5±2.02 86.8±2.44 80±3.27 74.7±3.2 71.1±1.66 95.7±1.06 91.7±2.83 85.1±3.11 82.3±2.26 77±2.79 

Cleve 77.82±4.02 74.2±2.66 73.4±2.72 69±1.83 71.8±2.15 82.78±1.75 77.1±2.85 74.6±2.32 72±2.26 69.7±1.89 

Heart 78.89±1.58 76.3±1.57 72.6±1.43 69.1±1.85 68.3±2.58 75.6±1.51 79.7±1.25 76.5±1.43 71.7±1.7 71.4±2.37 

Hepatitis 82.5±4.08 80.5±5.58 79.4±5.07 76.3±6.16 72.3±7.57 84.24±5.55 83.6±6.07 79.9±2.29 78.5±6.65 75.3±4.95 

Pima 74.95±3.89 71.32±4.32 66.6±2.99 64.7±3.74 61.8±2.1 70.31±2.37 75.93±1.65 68.58±1.35 66.28±1.74 66.68±1.92 

Sick 83.1±1.45 80.6±1.58 78.5±1.25 80.3±0.95 79.6±1.17 84.56±1.07 81.9±1.2 81.1±0.99 79.7±1.16 79.2±1.23 
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6. CONCLUSIONS 

In this work, FPAR had been devised to develop an 
associative classifier with eminent PARs that are valuable for 
decision-making in health care diagnostic system.  From the 
Table 2 and 3, it was observed that generation of significant 
PARs using FA encourages the classifier accuracy than 
CPAR for almost all datasets except Sick. From the 
experimentation, it was inferred that Sick dataset has many 
significant attributes in the feature set which leads to the 
generation of huge volume of 1-attribute PARs. Generation 
of numerous 1-attribute PARs makes the initial population 
size large thereby affecting the classifier accuracy. 
Experimental results also signified that promising results 
could be obtained only if FSR and GSR were set with 0.9 or 
0.8 values within FPAR and CPAR algorithms respectively. 
Wilcoxon signed rank test, one-way ANOVA followed by 
post-hoc paired t-tests (Table 4- 6) were also performed to 
show that FPAR has brought the considerable significant 
difference in performance than existing CPAR.   In this 
paper, FPAR algorithm is designed to generate PARs from 
binary class datasets, further it can be enhanced to generate 
class rules from multiclass datasets. Suitable feature selection 
techniques can be explored to reduce the feature subset size. 
In addition, identifying suitable evolutionary algorithm for 
generating significant PARs leads to exploration research in 
future. 
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