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AbstractNewton-Raphson (NR) methods have been implemented to find the solution of the
Direct Kinematics (DK) problem of Parallel Mechanism (PM) for a long time. However, all the
objective functions presented so far are topology-dependent and can not be used for every PM.
In this work this topic is addressed by introducing a generic constraint function that can be
adapted effortlessly to other PMs.
In order to demonstrate this capability the formulation is implemented for the most known PMs:
the planar 3-RRR, the spherical 3-RRR, the Delta robot, and the Stewart-Gough manipulator.
The rate of convergence, the accuracy and the velocity of the numerical method are analysed.
Results show that the implementation of this generic constraint function within the NR
algorithm provides a robust and accurate solution for the DK for suitable initial estimation.
It is also shown that the simplicity of this constraint function may lead to a generic formulation
for the DK of PMs.
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1. INTRODUCTION

To find the solution of the Direct Kinematic (DK) problem
of a Parallel Mechanism (PM) is rather complex princi-
pally due to the highly non-linear and coupled relations
between its elements. There are two main approaches im-
plemented to tackle this problem and they can be classified
into analytical solutions and based on numerical methods.

An analytical solution defines the geometric expressions
that establish the relation between the end-effector coor-
dinates with the joint coordinates. In general, these expres-
sions are complex polynomial equations that rarely provide
an unique solution (see Tsai (1999) and Merlet (2006)).
For instance, the solution of the DK of a planar mechanism
may have up to 6 different poses as stated in Merlet (1996)
and Pennock and Kassner (1993). The spherical 3RRR has
four different assembly modes (Bonev et al. (2006)), and
the special offset-3UPU translational PM presented in Ji
and Wu (2003) has 16 possible solutions. If the PM has
more degrees of freedom (DoF) the problem is even worse:
the decahedral PM described in Jin and Hai-rong (1995)
has at least 48 different solutions, the 5-RPUR PM (5
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DoFs) has 208 real solutions (Masouleh et al. (2011)), and
Stewart-Gough-type platforms (6 DoFs) has 40 possible
solutions as discussed in Raghavan (1993) and Dietmaier
(1998), that under certain geometrical conditions they can
be reduced to 16 different poses (see Nanua et al. (1990)
and Mutlu et al. (2005)).

The number of possible solutions can be reduced by col-
lecting additional information from the state of passive
joints and location of specific links, which leads to the
implementation of additional sensors (see Bonev and Ryu
(1999), and Baron and Angeles (2000)). Although this
alternative may reduce the unknown variables other is-
sues arise, such as establishing the optimal location and
quantity of sensors that must be used.

Numerical methods appear like a strong alternative to
find the solution of the DK. In general, these methods
rely on a search algorithm governed by an optimization
criterion. Many authors use neural network (see Boudreau
et al. (1998), Li et al. (2007), Parikh and Lam (2008));
genetic algorithm (as presented in Chandra and Rolland
(2011), Wang et al. (2008), Boudreau and Turkkan (1996)
and Omran et al. (2009)); Newton-Raphson (NR) (Dunlop
(1997), Song and Kwon (2002)); Taylor series (Sadjadian
and Taghirad (2006)); fuzzy logic (Jamwal et al. (2010))
or interval analysis (Merlet (2004)) among others.
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In particular, the NR method is widely implemented for
finding the solution of the DK problem of a PM. Even
though there are several variants of its implementation
(some of these variants are described in Merlet (2006)),
they basically consist on the search of the solution of
a given set of constraint functions of the mechanism
by successive approximations governed by the Jacobian
matrix derived from the set of constraint functions.

As the literature reveals, there exists several alternatives
to formulate this constraint function. In Almonacid et al.
(2003) the DK of a 6UPS PM is solved implementing a
function vector with 49 elements that includes the holo-
nomic constraints imposed by all the joints, the displace-
ment of each actuator and the normalization of the Euler
parameters. Even though this formulation presents a com-
plete description of the kinematics of the PM, operating
with the resulting Jacobian matrix is time-consuming.
Another example is the scalar function derived from the
vector loop-closure equation for each leg implemented in
Hopkins and II (2002) for a 6PSU PM. In Der-Ming (1999),
the DK of an octahedral Stewart-Gough type platform
is obtained with the NR method and the definition of
a kinematically equivalent 3-legged mechanism. Another
alternative is presented in Zubizarreta et al. (2012), where
the position problem of a planar 3RRR, is based on a
constraint vector that depends on which joint is sensorized
and whether extra sensors are used.

All these functions are specifically formulated for the
mechanism under analysis.

The main contribution of this article is the definition of a
constraint function that could be extended to other PMs
regardless of their topology. This requirement forces that
the constraint function does not depend on the kinematic
formulation of the PM.

In order to evaluate the convenience of the generic function
proposed, it is implemented on the most popular paral-
lel robots and its performance is analyzed in terms of
accuracy, velocity and robustness to initial estimations.
For this purpose a performance evaluation methodology is
introduced and a set of performance indexes are defined.
The latter are independent of the hardware where the
simulations are executed.

This paper is organized as follows: Section 2 describes the
implementation of the constraint function within the NR
method. In Section 3, it is presented the customized DK
model for each PM. In Section 4, the procedure used for
the evaluation of its performance is described. The results
of the evaluations are presented in Section 5. Finally,
conclusions and discussions are stated in Section 6.

2. DEFINITION AND IMPLEMENTATION OF THE
CONSTRAINT FUNCTION

2.1 Direct Kinematics Approach

A mechanism with n holonomic kinematic constraints can
be expressed as Haugh (1989):

Φ(q) =

φ1(q)
...

φn(q)

 = 0, (1)

where q is the generalized coordinate vector of the mech-
anism.

It is important to remark that the definition of the
kinematic constraints φi(q) that compose the constraint
vector Φ(q) are not unique and they will define the size
of the Jacobian matrix. In this work a generic distance
constraint function is used for each leg of the PM.

The NR method with the constraint function proposed
proceeds as follows (see Fig. 1):

(1) The constraint vector of the mechanism is calculated.
(2) If the constraint vector satisfies the error condition

(i.e. ‖Φ(qk)‖ < ε), then the configuration of the
mechanism is given by qk. If not, the method proceeds
with the iterative calculation. It must be recalled that
the definition of ε is associated with the dimensions
of the mechanism. In this work it is assumed that
ε = 10−6mm for all PMs.

(3) The Jacobian matrix Φq(qk) is calculated.
(4) A new estimation for the configuration of the mecha-

nism qk+1 is approximated implementing the Newton-
Raphson method with the Jacobian matrix Φq(qk).

(5) The new estimation is employed to calculate the
constraint vector in the following iteration.

In order to avoid infinite loops, a forced exit is generated
if the NR method finds no solution after 100 iterations.

It must be noticed that after each iteration it is forced that
‖p‖ = 1 by performing p = p/‖p‖ accordingly with the
quaternion representation for rotation.
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Figure 1. Direct Kinematics Algorithm.

2.2 Constraint vector definition

Taking into consideration a generic PM of with n legs
composed by two links as presented in Fig. 2. The location
and orientation of the moving frame Puvw (attached to
the moving platform) referred to the fixed frame Oxyz
can be given by the generalized coordinate vector: q =
[r, p], where r = [x, y, z ]T defines its position and
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p = [ e0, e1, e2, e3]T defines its orientation in terms of
the Euler parameters (i.e. quaternion representation for
rotation). Euler parameters are used in this approach
since they not only provide a compact and non-singular
representation for orientation, but also they provide useful
properties and identities for the manipulation of rotations.

Independently of the topology of the PM, the following
vectorial equation must be met for the n legs of the
mechanism:

−−→
OAi +

−−−→
AiBi +

−−−→
BiCi =

−−→
OiPi +

−−→
PiCi. (2)

Without loosing generality, it is assumed that the length

of
−−−→
BiCi remains invariant for all the configurations of

the mechanism, i.e. ‖−−−→BiCi‖ = l0i. Therefore, for all the
postures of the mechanism (i.e. ∀ q) a distance constraint
function for the ith leg can be defined as follows:

φi(q) = ‖li(q)‖ − l0i = 0, (3)

where li(q) =
−−→
OAi +

−−−→
AiBi −

−−→
OiPi −

−−→
PiCi. The latter one,

can be expressed as:

li(q) = Oai + bi −
(
Or + ORP (p) Pci

)
, (4)

where ORP (p) is the orientation of the end effector ex-
pressed as a rotation matrix (hereafter ORP for simplifi-
cation).

O
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Oai
bi
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Ci

Pci

Or

q = [r, p]

Figure 2. Schematic diagram of a two-links leg of a generic
PM.

Considering the constraint distance function given by (3)
for the n legs and arranging them into a single vector, the
constraint vector (1) for a generic PM can be stated as,

Φ(q) =

‖l1(q)‖ − l01
...

‖ln(q)‖ − l0n

 = 0. (5)

2.3 Jacobian matrix of the constraint vector

Let us remember that the generalized coordinate vector of
the end effector was defined as q = [r, p]. Therefore, the
Jacobian matrix Φq(q) of the constraint vector Φ(q) can
be found as follows,

Φq(r, p) =


∂

∂r
[φ1(r,p)]

∂

∂p
[φ1(r,p)]

...
...

∂

∂r
[φn(r,p)]

∂

∂p
[φn(r,p)]

 . (6)

In order to simplify the notation, it is defined ui as follows:

ui = Oai + bi −
(
Or + ORP

Pci
)
. (7)

The derivative of the constraint function with respect to
the position of the end effector is given by:

∂

∂r
[φi(r, p)] =

∂

∂r

[
‖li(r, p)‖ − l0i

]
=
∂

∂r

[√
uTi ui − l0i

]
=

1

2
√
uTi ui

2ui︸ ︷︷ ︸
ûi

∂

∂r
[ui]︸ ︷︷ ︸

I3x3

= ûi. (8)

In the same way, the derivative of the constraint function
with respect to the orientation of the end effector is
obtained according to the following operations,

∂

∂p
[φi(r, p)] =

∂

∂p

[
‖li(r, p)‖ − l0i

]
=
∂

∂p

[√
uTi ui − l0i

]
=

1

2
√
uTi ui

2ui︸ ︷︷ ︸
ûi

∂

∂p
[ui]

= ûi

(
− ∂

∂p

[
ORP

Pci
])

= ûi
(
− 2ORP

Pc̃iG
)
, (9)

where Pc̃i is the skew antisymmetric matrix of Pci =

[cix, ciy, ciz]
T

, given by:

Pc̃i =

[
0 −ciz ciy
ciz 0 −cix
−ciy cix 0

]
, (10)

G = [e,−ẽ + e0I], e = [e1, e2, e3] and ẽ is the skew
antisymmetric matrix of e (see Appendix A).

Then, the Jacobian matrix of the constraint vector for a
generic PM can be stated as the following n× 7 matrix:

Φq(q) =

û
T
1 −2 ûT1

ORP
Pc̃1G

...
...

ûTn −2 ûTn
ORP

Pc̃nG

 . (11)

As it was mentioned above, the method is governed by the
inverse of the Jacobian matrix (Φq). However, since Φq
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is not square, its inverse can not be directly calculated
and the Moore-Penrose pseudo-inverse is implemented
instead.

3. PARALLEL MANIPULATORS DESCRIPTION

In the following paragraphs a brief description of the
PMs under evaluation is presented. It is also introduced
their constraint vector and their Jacobian matrices. Even
though some expressions are quite similar, they are explic-
itly written to highlight the adaptability of the constraint
function.

3.1 3-RRR planar PM

The 3-RRR planar PM is composed by three identical
kinematic chains, each one has two links and three ro-
tational joints with all their axes parallel Tsai (1999).

For the purposes presented in this work, it is considered a
symmetric PM whose attachment of the legs in the mobile
and the fixed platform describes equilateral triangles (see
Fig. 3). Therefore, the PM can be fully described by the
following four parameters: the radius (Rb and Rm) of the
circles that circumscribes the equilateral triangle of the
base and moving platform, and the length of the first and
second links (l1 and l2, respectively).

By simple observation of Fig. 3, it can be found that the
constraint distance function is given by:

φi(q) = ‖Oai +Rθibi − (Or + ORp
Pci)‖ − l2, (12)

where Rθibi defines the location of the distal extreme of
link L1i (Bi) referred to Ai according to the state of the
ith-joint (θi) of the PM.

The Jacobian matrix for the constraint vector of the PM
is given by:

Φq(q) =

ûT1 −2 ûT1
ORp

Pc̃1G

ûT2 −2 ûT2
ORp

Pc̃2G

ûT3 −2 ûT3
ORp

Pc̃3G

 , (13)

where ûi is the unitary vector of ui = Oai+Rθibi− (Or+
ORp

Pci).
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Figure 3. Schematic diagram of the Planar-3RRR PM.

3.2 Spherical 3-RRR PM

The Spherical 3-RRR PM (SPM) is composed by three
identical legs with three rotational joints, with the par-
ticularity that all the axes of the rotational joints are
intersected at an invariant common point P (see Fig.
4) which corresponds with the center of rotation of the
spherical movement Gosselin and Hamel (1994), Bonev
et al. (2006). The geometry of the PM can be described
by the following parameters: the distance R = ‖AiP‖; the
elevation β of the axis of the first joints, and the angles α1

and α2 defined by the relative elevation of the second and
third axes of the rotational joints.

Considering Fig. 4 and customizing (5) for this PM, the
constraint distance function is given by (14),

φi(q) = ‖Oai +Rθi bi − (Or + ORp
Pci)‖ − l2, (14)

and its Jacobian matrix is given by,

Φq(q) =

0 −2 ûT1
ORp b̃1G

0 −2 ûT2
ORp b̃2G

0 −2 ûT3
ORp b̃3G

 , (15)

where ui = Oai +Rθi bi − (Or + ORp
Pci). It is important

to remark that the first three columns of Φq(q) in (15) are
null since the PM presents an spherical motion pattern.
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Figure 4. Schematic diagram of the Spheric-3RRR PM.

3.3 Delta PM

This PM presents a pure translational movement pattern,
i.e. the relative orientation between the platforms is in-
variant. Each leg is composed by a four-bar parallelogram
in series with a second link (see Fig.5) Clavel (1991) and
Tsai and Stamper (1996).

Considering a symmetric PM, the geometry of the Delta
robot can be described by: Rb, Rm, l1 and l2 . The
constraint distance function is given by:

φi(q) = ‖Oai +Rθibi − (Or + ORp
Pci)‖ − l2, (16)

and the Jacobian matrix is given by:
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Φq(q) =

ûT1 0

ûT2 0

ûT3 0

 , (17)

where ui = Oai+Rθibi−(Or+ORp
Pci). It must be noticed

in (17) that the terms related to the orientation of the
mechanism are null. This assumption is taken since the
Delta PM is a pure translation PM.
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Figure 5. Schematic diagram of the Delta PM.

3.4 Stewart-Gough o 6-UPS

The Stewart-Gough PM is perhaps the most known PM
Stewart (1965), Gough and Whitehall (1962). This 6
DoF mechanism posses six legs, each of them presents a
universal - prismatic - spherical joint topology, being the
prismatic the actuated joint.

Considering a symmetric PM, its geometry can be de-
scribed by the following parameters: Rb, Rm, l1, l2, ηli,
ηui and ηO (see Fig. 6), and the constraint function is
given by:

φi(q) = ‖Or + ORp
Pci − Oai‖ − (l2i + l1). (18)

It must be noticed in (18), that l2i is the state of the ith-
prismatic actuator.

The Jacobian matrix for (18) is given by:

Φq(q) =

û
T
1 −2 ûT1

ORp
Pc̃1G

...
...

ûT6 −2 ûT6
ORp

Pc̃6G

 , (19)

where ûi is the unitary vector of ui = Or+ORp
Pci−Oai.

4. PERFORMANCE EVALUATION

The performance of the methodology is quantified in terms
of the following key performance indexes (KPI):

(1) Convergence: it measures the ratio of convergence
independently of the result, and it is defined as:

C% =
NC
NWS

× 100, (20)

where NWS is the number of nodes of the workspace
evaluated, and NC is the number of nodes of the
workspace where the method finds a solution in less
than 100 iteration.
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Figure 6. Schematic diagram of the 6UPS PM (Stewart-
Gough).

(2) Accuracy: it evaluates the overall error of the
method. It is defined as the ratio of the solutions
that satisfy a predefined error tolerance (δi) and the
number of nodes where it converges (NC), in other
words:

Acci% =
Nδi
NC
× 100, (21)

where Nδi is the number of nodes of the workspace
where the method converges and satisfies one of the
following error tolerance criterion:

δ1 : δP < 1× 10−6mm, δO < 0.01◦, (22)

δ2 : δP < 1× 10−3mm, δO < 0.1◦, (23)

where δP and δO are the errors in position and orien-
tation respectively (the orientation error is defined in
the next paragraphs). During the evaluation, it is also
obtained the maximum (δOM and δPM ), the mean
(δO and δP ) and the standard deviation (σδO and σδP )
of the error in position and orientation, respectively.

(3) Velocity: the number of iterations needed until the
method finds a solution is considered as a measure of
velocity. This measure eliminates the dependability
on the hardware where the simulation are carried
on. The maximum (iM ), average (i) and standard
deviation (σi) of the number of iterations are taken
as performance indexes.

The constraint function proposed for the DK is evaluated
for all the configurations of the workspace of each PM
under analysis, following the procedure depicted in Fig. 7
and detailed in the following paragraphs:

(1) For a given configuration q = [r, p] of the PM
that belongs to its workspace, the joint states Q is
obtained by means of the calculation of the inverse
kinematics (IK) of the PM.

(2) An initial estimation q0 = [r0, p0] for the end effector
is randomly generated (detailed bellow).

(3) The state of the end effector qD = [rD, pD] is
obtained using the numerical method presented in
section 2, considering the initial estimation generated
q0 and the joint states Q.

(4) If the method converges (i.e. ∃ qD), the error of the
solution found is calculated as follows:
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‖ r − rD ‖ < δP , (24)

‖ [φ, θ, ψ]− [φD, θD, ψD] ‖ < δO, (25)

where the coordinate vector [φ, θ, ψ] is the orienta-
tion in Roll-Pitch-Yaw representation.

Workspace PM

Q = IK(q)

Q

q = [r,p]

qD = DK(qo,Q)

qD = [rD,pD]

Y

N
converges?

‖qD − q‖ = errac

1

3

4

2q0 = q ± Err0

Figure 7. Evaluation Procedure (2 and 4 are symbolic
expression).

The initial estimation q0 = [r0, p0] is generated by con-
sidering initial distances of LErr0 = 1, 10, 25, 50 mm and
orientation of θerr0 = 1o, 10o, 25o, 50o, of the real value
randomly placed. This approach of considering different
distances from the real value should reveal the sensibility
of the method towards the existence of local minimum,
which is one of the main drawbacks of NR method. Despite
this fact, as it was mentioned in the introductory section,
NR methods are widely used because of its simplicity.

Thus, the initial estimation for the position r = [rx, ry, rz]
is defined as follows:

r0 = [rx ± Lerr0 , ry ± Lerr0 , rz ± Lerr0 ] , (26)

where the sign ± is randomly selected.

The generation of the initial estimation for the orientation
is more complex. The real orientation p is expressed in the
angle-axis representation (θ, v), where v is a unit vector
associated with the Euler axis of rotation and θ is the
magnitude of rotation. These elements are modified with
a θerr0 distance as follows:

θ0 = θ ± θerr0o, (27)

v0 = RErr0xRErr0y v, (28)

where RErr0x and RErr0y are pure rotations of ±θerr0o
along the x, y axes, respectively. The sign ± is randomly
selected. Then, the new orientation (θ0, v0) is expressed
again as a quaternion (i.e: (θ0, v0)→ p0).

Since the home posture qH is always a reference configura-
tion of any manipulator, it is also considered as an initial
estimation (see Table 1 for the home posture considered
for each PM).

The dimensions of the PMs analysed and the exploration
of their workspace are summed up in Table 1. The explo-

ration is defined by discretized intervals for each coordi-
nate that describes the state of the end effector (i.e., X,
Y, Z, ψ, ei), and their corresponding increment (i.e., ∆X,
∆Y , ∆Z, ∆ψ, ∆ei).

In order to discern whether a given configuration q belongs
to the workspace of the PM it is only verified the range
of work of their active joints (ρi). It must be stressed
that it is not the objective of this work to generate
an accurate workspace of the mechanism, and that the
workspace is only needed to provide configurations where
to test the formulation proposed to solve the DK problem.
Based on this consideration and in order to reduce the
simulation time (during the verification of the workspace),
the collisions between the element of the PM and the
constraints of the passive joints are not checked since they
are not needed for the purpose of this work. In order to
see how it is found the complete workspace of a mechanism
see Puglisi et al. (2012) and Serraćın et al. (2012).

Table 1. Parameters of the PM evaluated

PM Parameters Considerations

(3RRR)p Rm = 100 X ∈ [−300, 300],∆X = 5

Rb = 400 Y ∈ [−300, 300],∆Y = 5

l1 = 250 ψ ∈ [−180◦, 180◦],∆ψ = 1◦

l2 = 250 −π ≤ ρi ≤ π, i = 1, 2, 3

qH [ 0, 0, 0, 1, 0, 0, 0 ]

(3RRR)s R = 100 ei ∈ [−1, 1]

ηui = ηli = 120 ∆ei = 0.01,

β1 = β2 = 54.73 i = 1, 2, 3

α1 = 90 −π/2 ≤ ρi ≤ π/2
α2 = 90

qH [ 0, 0, 0, 1, 0, 0, 0 ]

Delta l1 = 250 X ∈ [−300, 300],∆X = 2

l2 = 250 Y ∈ [−300, 300],∆Y = 2

Rm = 150 Z ∈ [−500, 0],∆Z = 2

Rb = 300 −π ≤ ρi ≤ π, i = 1, 2, 3.

qH [ 0, 0, −490, 1, 0, 0, 0 ]

6UPS Rm = 100 X ∈ [−200, 200],∆X = 5

Rb = 100 Y ∈ [−200, 200],∆Y = 5

l0 = 600 Z ∈ [600, 800],∆Z = 5

l2 = 250 ei ∈ [−0.3, 0.3], ∆ei = 0.1, i =

1, 2, 3

0.3l0 ≤ ρi ≤ 1.3l0, i = 1, 2, · · · , 6.
qH [ 0, 0, 600, 1, 0, 0, 0 ]

Note: lengths are in mm.

5. SIMULATION RESULTS

The results obtained during simulations are summed up
in Table 2. The columns labeled as q∗ presents the results
for each initial estimation.

As it can be seen in Table 2, the worst rate of convergence
(C%) found is 84.45%, which corresponds with a consid-
erably poor initial estimation (i.e. q50 for the 6UPS PM).
However, for better initial estimations (i.e. q1, q10, q25),
the rate of convergence is above the 98% for all the PMs.

It can be observed from the maximum errors found (i.e.
δOM and δPM ) that the outcome of the calculation may
provide an erroneous solution. However, by examining the
mean value and the standard deviation of the errors, it
can be seen that it does not occur frequently, and they
are highly dependent on the initial estimation (a typical
characteristic of numerical methods). This is clearly shown
in the results obtained for the initial estimations q1 and
q10, where the indexAcc1 reveals that the method provides
an accuracy of 1×10−6mm and 1◦×10−2 above the 90% of
all the simulation for all the PM (see Fig.8(a) for clarity).
Even more, if the performance index Acc2 is considered,
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it can be seen that 97% of convergences guarantee an
accuracy of 1× 10−3mm and 0.1◦.

From Table 2 it is also observed that in a worst case
scenario a solution is found in 100 iterations (iM =
100). However, the average of the iterations and their
standard deviations demonstrate that this is an unlikely
case. Indeed, it can be seen that the method can provide
a solution in less than 10 iterations (see columns q1 and
q10 for index i and Fig. 8(b)).

(a)

(b)

Figure 8. Performance evaluation results. (a): percentage
of convergence for an accuracy given by Acc1.(b): av-
erage of iteration needed to find an accurate solution.

6. CONCLUSIONS AND DISCUSSIONS

The constraint functions used so far within the NR method
to solve the DK problem of PM are mainly derived from
kinematics constraints which make them specific for each
PM and almost impossible to adapt to other PMs.

In this work, it was defined a generic distance constraint
function that can be easily adapted to different PM since
it is independent of the topology of the mechanism.

The methodology proposed was implemented in four PM
with different topologies and different workspaces. The
small differences between the distance function and the
Jacobian matrices for each PM remark its adaptability.
This characteristic is highly desired providing a step fur-
ther into the definition of a generic method.

Results demonstrate the highly dependence of the method
with the initial estimation, which is typical in all numerical
methods. It has been proved that the distance constraint
vector proposed within the NR method provides a fast,
robust and accurate solution for the DK of PM if suitable
initial estimation are used. In practice this is the most
common scenario, since in a real control application the
DK is calculated in every control loop, where the initial
estimation is the result of the calculation in the previous
control loop. Given the results found (in particular the av-
erage number of iteration needed to find the solution) and
its simplicity, the formulation is ideal to be implemented
in embedded system with reduced capabilities.

As a future work, the convergence of the method will
be analysed implementing Kantorovitch’s theorem and
the performance of the methodology proposed will be
compared with other approaches commonly used to solve
the DK problem of PMs such as the Interval Analysis and
neural networks, in order to provide a global view of the
method.

Appendix A. VIRTUAL ROTATIONS AND EULER
PARAMETERS

Let us suppose a point S attached to a moving frame
O′x′y′z′ whose origin is coincident with the origin of a fixed
frame Oxyz. The orientation of the moving frame expressed
in the fixed frame is given by the rotation matrix R. The
location of point S expressed in the moving frame is given
by the vector s′, and it can be expressed on the fixed frame
as follows:

s = Rs′ (A.1)

Let us now consider that O′x′y′z′ is slightly perturbed,
which traduces into a change in the location of point S
as follows:

δs = δRs′, (A.2)

the operator δ, called infinitesimals, may be interpreted as
a partial differentials operator, which allows to define the
following identities Haugh (1989).

From the orthogonal properties of a rotation matrix
RRT = I, it is derived the definition of the virtual
rotation of the O′x′y′z′ frame relative to the Oxyz with
component in the latter frame as follows:

δ̃π = δRRT . (A.3)

After some algebraic manipulation, it can be shown that:

δR = R δ̃π′, (A.4)

where δπ′ is the virtual rotation expressed in O′x′y′z′ .

Therefore the changes on the generalized coordinates (i.e.
δs) can be expressed in terms of the virtual displacements
as follows:

δs = R δ̃π′ s′, (A.5)

by properties of skew matrices:

δs = −R s̃′ δπ′, (A.6)

On the other hand, it can be proved that R = EGT and
δR = 2E δGT , where E = [e, ẽ + e0I] and G = [e,−ẽ +
e0I], are identities matrices, where e = [e1, e2, e3].
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Table 2. Performance evaluation of the method.

PM index qH q1 q10 q25 q50

3RRR(p) C% 86.74 99.99 99.78 98.59 91.72

(819569*) iM 100 93 100 100 100

i± σi 11.5± 6.8 4.6± 0.8 6.8± 2.6 9.2± 5.0 12.8± 7.7

δOM 180 4.5 57.9 142.8 179.8

δO ± σδO 16.7± 35 (1± 15)10−2 0.5± 2.4 2.9± 9 10.6± 22

δPM 341.6 7.3 79.8 330.8 329.7

δP ± σδP 14.2± 38 (1.1± 18)10−2 0.5± 3 3.2± 11 11.2± 27

Acc1% 61.18 97.64 94.18 85.36 67.63

Acc2% 61.18 99.40 94.22 85.36 67.63

3RRR(s) C% 100 100 100 100 100

(1351169*) iM 21 5 17 17 32

i± σi 6.2± 1.2 3.7± 0.4 4.7± 0.6 4.7± 0.6 6.4± 1.4

δOM 313.6 9.2 10−6 293.28 324.5 332.5

δO ± σδO 15.5± 53 (1± 2.8)10−7 1.5± 18 20.4± 60 67.2± 89

Acc1% 90.85 100 99.13 87.86 61.29

Acc2% 90.85 100 99.13 87.86 61.29

DELTA C% 100 100 100 100 100

(9696131*) iM 13 16 17 17 17

i± σi 2.0± 1.2 3.5± 0.6 4.3± 0.9 5.3± 1 5.8± 1.2

δPM 3.98 6.61 36.96 88.2 17

δP ± σδP 0.01± 0.1 0.03± 0.3 0.35± 2.4 1.6± 8.1 1.2± 5.8

Acc1% 89.52 90.29 91.48 91.14 85.94

Acc2% 98.74 98.70 97.41 94.83 90.14

6UPS C% 100 99.98 99.93 98.89 84.45

(5838767*) iM 8 32 40 100 100

i± σi 6.2± 0.4 5.4± 0.7 5.7± 0.7 6.2± 0.8 7.2± 2.7

δOM 1.1 10−6 130.7 137.7 276.5 283.4

δO ± σδO (2.0± 5)10−8 0.006± 0.8 0.01± 1.2 0.23± 5 6.6± 29

δPM 6.55 10−6 125 1390 1444 1520

δP ± σδP (6.2± 15)10−7 0.006± 1.2 0.01± 3.1 0.8± 28 15.8± 116

Acc1% 99.62 99.20 99.92 98.44 79.58

Acc2% 100 99.97 99.67 98.66 79.76

* Nodes of the workspace evaluated.

Therefore,

δ̃π′ =RT δR, (A.7)

=EGT 2E δGT , (A.8)

=2EET G δGT , (A.9)

=2G δGT . (A.10)

Considering the definition of G and p it can also be

demonstrated that G δGT = G̃ δp, and thus δπ′ = 2G δp.

Taking this last result into (A.6), the relation between the
changes of the generalize coordinate of vector s due to
small perturbations of the euler parameters can be stated
as follows:

δs = −2R s̃′G δp. (A.11)
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