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Abstract: This paper solves data-driven simultaneous fault detection and control (SFDC)
problem for a multi-variable laboratory process named quadruple tank process which has
an adjustable zero that can be located in both left and right half-plane. The knowledge of
mathematical model of the process is not needed and only input/output time domain data (I/O)
are used for solving a data-based H∞ optimization problem. Solving this problem yields a data-
driven H∞ controller/detector unit of modest complexity that is able to achieve some control
and fault detection objectives. The tradeoff between these objectives is established by tuning a
scalar parameter and some weighting matrices. The effectiveness of the proposed methodology
is demonstrated for both minimum phase and non-minimum phase plants in the presence of
both incipient and abrupt faults.
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1. INTRODUCTION

Occurring faults in control systems can yield performance
degradation or even instability. Therefore, in order to
satisfy the needs for safety, reliability, and performance
of industrial processes, the controller is not sufficient and
fault detection unit is necessary. It is highly desirable to
investigate the fault detection and control problems simul-
taneously. Motivation behind that is drawn from the fact
that in simultaneous fault detection and control(SFDC)
problem, the controller and detector units coalesce into one
unit which results in less overall complexity in comparison
with designing two separate units and it is a reasonable
approach since there is a fundamental trade-offs governing
the design of controller and detector units, thus the design
of each unit should take the other into consideration. The
solution to SFDC problem leads to a controller/detector
unit that produces two signals, one of them for fault
detection and the other for satisfying some pre-defined
control objectives.

Historically, model-based techniques have been used for
solving the SFDC problem, for example, see Nett et al.
(1988), Tyler & Morari (1994), Khosrowjerdi et al. (2004),
Davoodi et al. (2013) and Weijie et al. (2014). In this way,
see Ding (2009) for an extensive bibliography and review
of the literature for motivations and the model-based ap-
proaches to the SFDC problem. In the recent years, data-
driven methods have also provided an alternative solution
for control and fault detection problems using process
available data, see Hou & Wang (2013) and Ding (2014)
for an extensive bibliography and review of literature. By
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this method, the modeling step can be omitted, therefore
it can be useful when the mathematical model is difficult
to establish or unavailable or when it is inaccurate and
involves uncertainties. In data-driven methods, the system
identification becomes a part of the controller/detector
design procedure and the computations for identification a
mathematical model are omitted. These reasons motivate
us to introduce a novel data-driven approach to SFDC
problem.

Here is some of the data-driven approaches for fault detec-
tion and control methods in the review of literature. Palan-
thandalam et al. (2009) have developed a subspace iden-
tification algorithm for input reconstruction from output
measurements and known inputs. The proposed method
can be applied for fault estimation. Wang et al. (2015)
have designed a parity space-based fault detection and
isolation system. In Ding et al. (2011) input/output data
are used to identify a parity space based primary residual
generator. The primary residual generator is implemented
as a closed-loop diagnostic observer with just few ad-
ditional steps. Yin et al. (2014) have proposed a data-
driven fault detection scheme with robust residual gen-
erators directly constructed from available process data.
Based on the method proposed by Ding et al. (2009), the
parity space is first identified directly from the measured
data. Then, the optimal parity vectors under a given
performance index is selected as well as an optimization
criterion. Dong et al. (2012) have introduced a data-
driven system-inversion-based fault estimation filter for
both linear time invariant(LTI) and linear time-varying
(LTV) systems. Ding (2014) has reviewed the different
data-driven subspace-based fault detection methods. The
data-driven control has been first introduced by Favoreel
et al. (1999) where a subspace method applied for linear
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quadratic Gaussian (LQG) controller design. Data-driven
control has been also applied to design subspace-based
model predictive control, for example, see Azizi-Mardi
(2010), Huang & Kadali (2008), Dong et al. (2008)).
There are some attempts to design the controller/detector
unit using input/output data, see for example, Ding et al.
(2012), Yin et al. (2014) and Zhang et al. (2014)), but
these design methods cannot be considered as solutions to
the data-driven SFDC problem.

In this paper, we have proposed a developed approach
presented in Woodley et al. (2001). A novel data-driven
H∞ approach is proposed for SFDC problem in the pres-
ence of disturbances and faults, which leads to a con-
troller/detector unit of less overall complexity. A multi-
variable laboratory process named quadruple tank process
which has an adjustable zero has selected to test the pro-
posed method. For designing the controller/detector unit
only the input/output data is necessary and the knowl-
edge of the mathematical model is not needed. The H∞

controller/detector unit produces two signals for satisfying
some control and fault detection objectives. The control
objectives are tracking references and rejecting distur-
bances and the fault detection objective is estimating the
filtered version of unknown faults. The tradeoff between
these objectives is established by tuning a scalar parameter
and some weighting matrices. An easily implementable
design algorithm summarizes the methodology presented
in the paper. The effectiveness of the proposed method-
ology is demonstrated for both minimum phase and non-
minimum phase plants in the presence of both incipient
and abrupt faults. The results show the effectiveness of
our proposed method in all cases.

This paper is organized as follows. In Section 2, a brief
review about the quadruple tank process which is selected
to test the proposed method is presented. In Section 3, the
data-driven SFDC problem is formulated as a time domain
data-driven H∞ optimization problem. In Section 4, a brief
review of subspace predictor design which is essential for
solving the data-driven SFDC problem defined in Section
3 is presented. In Section 5, an easily implementable design
algorithm summarizes the proposed methodology for data-
driven H∞ controller/detector. In Section 6, this algorithm
is applied to a linearized model of quadruple tank process
and simulation results are presented. Concluding remarks
are given in Section 7.

The notations used in this paper are fairly standard. For a
given matrix A, AT denotes its transpose. I denotes unity
matrix with appropriate dimension. If A = AT then A is
a symmetric matrix. If A and B are symmetric matrices,
A ≥ B (respectively, A > B) denotes A−B positive semi
definite (respectively, positive definite). The space of real
rational, stable and proper transfer matrices is denoted by
RH∞.

2. THE QUADRUPLE TANK PROCESS

The quadruple tank process consists of four interconnected
water tanks and two pumps. The voltages to the pumps
are inputs, see Johnsson, K. H. (2000) for more details.
Figure 1 shows the schematic of four-tank process.

Fig. 1. Schematic of the four-tank process.

The nonlinear equations of the quadruple tank process are
described as follows
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where, Ai is the cross-section of tank i, ai is cross-section
of the outlet hole of tank i, ki is the gain of pump i, vi
is the voltage of pump i, hi is water level of tank i. The
parameters α1, α2 ∈ (0, 1) are determined from how the
valves are set prior to an experiment.

The linearized model of this process is described as follows
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where xi := hi − hi
0, ui := vi − vi

0, and hi
0, vi

0 are the
values of hi, vi in the operating points, respectively. kc is

the sensor gain, and Ti = Ai

ai

√

2hi
0

g
is the time constant,

f is the actuator fault associated with pumps 1 and 2
and d is the disturbance representing flow out of Tanks
3 and 4. The process has an adjustable zero that can
be located in both left and right half-plane by changing
the values of α1, α2. It follows that the system is non-
minimum phase for 0 < α1 + α2 < 1 and minimum phase
for 1 < α1 + α2 < 2. Usually this process is studied in
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Fig. 2. Data-driven controller and detector design

two operating points: one of them for minimum phase and
the other for non-minimum phase characteristics. Table 1
shows the values for these two operating points.

Table 1. parameters associated with minimum
phase and non-minimum phase plants

parameters[unit] minimum phase plant non-minimum phase

T1[s] 62 63
T2[s] 90 91
T3[s] 23 39
T4[s] 30 56

k1[
cm

3

V s
] 3.33 3.14

k2[
cm

3

V s
] 3.35 3.29

α1[−] 0.7 0.43
α2[−] 0.6 0.34

A1[cm2] 28 28
A2[cm2] 32 32
A3[cm2] 28 28
A4[cm2] 32 32

kc[
V

cm
] 0.5 0.5

kd1 [
cm

3

V s
] 1 1

kd2 [
cm

3

V s
] 1 1

In recent years the quadruple tank process has been
used as a benchmark multi-variable system for studying
performance of fault detection and control design, for
example, Khosrowjerdi et al. (2005) have proposed a
model-based approach to actuator fault detection problem
for the quadruple tank process in a mixed H2/H∞ setting,
Li et al. (2003) have developed the subspace algorithms in
the continuous-time domain to identify the residual models
from sampled data without separate identification of the
system matrices for fault detection and isolation in the
quadruple tank process. Kirubakarana et al. (2014) have
applied model predictive control for reference tracking and
disturbance rejection of a quadruple tank process. Biswas
et al. (2009) have designed an sliding mode control for set
point tracking of a quadruple tank process.

In this paper a new algorithm has developed that uses only
the input/output data (I/O) for solving SFDC problem for
the quadruple tank process. The traditional data-driven

Fig. 3. Data-driven SFDC design

approach to design controller and detector is based on a
separation principle as shown in Figure 2. In contrast of
this approach, in this paper the controller and detector
blocks, as shown in Figure 3, are unified that leads to
less overall complexity that is able to achieve some control
and fault detection objectives. The tradeoff between these
objectives is established by tuning a scalar parameter and
some weighting matrices. The control objective is to reg-
ulate the level of tanks 1, 2 to a pre-defined setting point.
The fault detection objective is to detect the actuator
faults and isolate them. The mathematical model of the
process is assumed to be unknown. The mathematical
model is only used to collect I/O data. Both incipient and
abrupt faults are considered for minimum-phase and non-
minimum phase cases. To the best of authors’ knowledge,
data-driven SFDC problem for quadruple tank process has
not been solved in the literature. In this paper, an easily
and constructive implementable algorithm is proposed for
solving this problem that leads to a data-driven H∞ con-
troller/detector.

3. PROBLEM FORMULATION

Consider the plant G in Figure 3 whose dynamic can be
described by linear system time-invariant (LTI) system

G :

{

xk+1 = Axk + B uk + Bd dk + Bf fk + ek,
yk = C xk + Duk + Dd dk + Df fk + νk

(6)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rland dk ∈ Rkd are
the state, the known input, the measured output and the
disturbance, respectively. The unknown input f ∈ Rkf

models a possible actuator, sensor, and/or component
fault. With fk set to zero, system (6) describes the fault-
free system. Also, ek ∈ Rn and νk ∈ Rl denote process
and measurement noise sequences that are normally dis-
tributed, white and statistically independent of the control
input uk and the initial condition x0. A, B, Bd, Bf , C, D,
Dd and Df are assumed to be unknown constant matri-
ces of appropriate dimensions. The controller/detector in
Figure 3 must internally stabilize G in (6) and achieve
specified control and fault detection objectives. In order
to solve the SFDC problem some weighting matrices are

defined, i.e. Wj , j = f, d, r, u, f̂ . The weights are defined
below. To achieve control objectives such as minimizing
tracking error with reasonable control effort, a typical
control performance measure zc can be defined by
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zc =

(

zr
zu

)

=

(

Wr(r − y)
Wuu

)

(7)

where Wr and Wu are appropriate proper stable weighting
matrices. In this paper the control objective is regulation,
however the zr is defined in general form, then in simula-
tion the reference signal r set to zero. To achieve specified
detection objectives, the controller/detector unit in Figure

3 must generate a signal f̂ ∈ Rkf for reconstructing a
filtered version of the fault f which can give us some
indication about the fault itself. This objective can be
described in terms of a detection performance measure zd
is given by

zd = Wf1(Wf2f − f̂) = W

(

f

f̂

)

(8)

where W = (Wf1Wf2 −Wf1 ) is an appropriate weight-
ing transfer matrix in RH∞ used for fault detection ob-
jectives (see Khosrowjerdi et al. (2004)). Without loss of
generality, we assume that Wf1 is an identity matrix. The
fault detection objective can then be defined as follows

zd = Wff − f̂ , (9)

where Wf is a appropriate proper stable weighting matrix.
The weight Wf describes the relative importance and/or
the expected or known frequency content of the fault fk
and is normally set as diagonal used for fault estimation
purposes, for more details see Patton & Chen (1999). We
can now define a combined control/detection performance
measure z as follows

z =

(

zc
zd

)

. (10)

Define

w =

(

r
d
f

)

, v =

(

u
f̂

)

(11)

Here w ∈ Rl+kd+kf and v ∈ Rm+kf are the exogenous
input and the combined control input, where r ∈ Rl and

f̂ ∈ Rkf are the reference input and the fault estimate,
respectively. In order to express the signals in Figure 3 in
terms of w and v, the following matrices are defined

r = K1w, K1 =
(

Il 0l×(kd+kf )

)

(12)

d = K2w, K2 = ( 0kd×l Ikd
0kd×kf ) (13)

f = K3w, K3 =
(

0kf×(kd+l) Ikf

)

(14)

u = K4v, K4 =
(

Im 0m×(m+kf )

)

(15)

f̂ = K5v, K5 = ( 0kf×m Ikf ) (16)

Suppose the I/O data from a disturbance-free healthy
system, i.e. the system (6) when f = 0 and d = 0 are
now available. Given the experimental I/O data from a
healthy system, the data-driven H∞ controller/detector
design problem is to choose v such that the finite horizon
H∞ gain from w to z has at most magnitude γ. The control

signal u and the fault estimation signal f̂ can be then
derived directly from v.

The SFDC problem can be formulated as the min-max
data-driven H∞ optimization problem: given the I/O
data of the system (6) and γ > 0, determine the con-
troller/detector unit in Figure 3 which generates v such
that

min
v

sup
w

J(γ) ≤ 0, (17)

where J is a cost function which defined by

J(γ) =

i−1
∑

t=0

(zt
T zt − γ2wt

Twt) (18)

The length of the horizon (i) can be chosen arbitrarily. In
the next section, a solution is proposed to the minimax
optimization problem (17) that yields a data-driven H∞

controller/detector.

4. SUBSPACE PREDICTOR ALGORITHM

In order to describe our solution to the problem (17), we
briefly review the subspace predictor design methodology;
for more details see Overschee & Moor (1999) and Wood-
ley (2001). The formation of subspace predictor serves two
purposes: i) it simultaneously reduces the effect of noise in
the measured data, and ii) it establishes a method of ex-
trapolating future plant input-output behavior from past
I/O data. Suppose that the input/output data of length
n from a disturbance-free healthy system is available with
m inputs (uk ∈ Rm), l outputs (yk ∈ Rl ).

(









u0

u1
...

uN−1









,









y0
y1
...

yN−1









) (19)

1. Choose the prediction horizon i which should be
larger than the expected order of plant and set j =
N − 2i + 1.

2. Define the following Hankel matrices

Up =









u0 u1 · · · uj−1

u1 u2 · · · uj

...
... · · ·

...
ui−1 ui · · · ui+j−2









∈ Rim×j

Yp =









y0 y1 · · · yj−1

y1 y2 · · · yj
...

... · · ·
...

yi−1 yi · · · yi+j−2









∈ Ril×j

Uf =









ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j

...
... · · ·

...
u2i−1 u2i · · · u2i+j−2









∈ Rim×j

Yf =









yi yi+1 · · · yi+j−1

yi+1 yi+2 · · · yi+j

...
... · · ·

...
y2i−1 y2i · · · y2i+j−2









∈ Ril×j ,

where the subscript p and f represent past and future
time, respectively.
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3. Define Wp =

(

Up

Yp

)

, Wp represent the past data.

4. Solve the following Frobenius norm optimization
problem.

min ‖Yf − (Lw Lu )

(

Wp

Uf

)

‖F

2

(20)

The solution can be found by implementing QR
decomposition as following
(

Wp

Uf

Yf

)

= RTQT =

(

R11 0 0
R21 R22 0
R31 R32 R33

)(

Q1

Q2

Q3

)

(21)

L = (Lw Lu ) = (R31 R32 )

(

R11 0
R21 R22

)†

(22)

Lw and Lu can be used to form an estimate of
outputs, namely

(

ŷk
· · ·

ŷk+i−1

)

= Lw(wp)
k

+ Lu

(

ûk

· · ·
ûk+i−1

)

(23)

where (wp)
k

is a vector made up past plant inputs
and outputs

(wp)
k

=



















uk−i

...
uk−1

yk−i

...
yk−i



















(24)

It is worth mentioning that the subspace predictor algo-
rithm introduced in this reference, uses I/O data which
is collected from a healthy disturbance free system, i.e.
system 6 when f = 0 and d = 0, while in this paper
the I/O data is gathered from a healthy system and the
limiting assumption d = 0 is not considered. Therefore the
future output’s estimation can be presented as following
equation:

Ŷf = Lw Wp + LuUf + LdDfd (25)

where Dfd is the Hankel matrix formed from disturbance
signal as following

Dfd =









d0 d1 · · · dj−1

d1 d2 · · · dj
...

... · · ·
...

di−1 di · · · di+j−2









∈ Rikd×j (26)

The nature of Ld is not important and it can be estimated
by tuning the weighting matrix Wd which is explained in
the next section.

5. A DATA-DRIVEN H∞

CONTROLLER/DETECTOR

Motivated by the development in Overschee & Moor
(1999) and Woodley et al. (2001), a solution is proposed
to the problem (17) that leads a data-driven H∞ con-
troller/detector unit. Figure 4 shows a setup for data-
driven H∞ controller/detector design. A subspace predic-
tor as proposed in Overschee & Moor (1999) is applied for

Fig. 4. A setup for data-driven H∞ controller/detector
design

the estimation of future plant output ŷ; see Section 4 for
a review of subspace predictor. The subspace predictor is
coupled to the weighting matrices Wr and Wu to represent
the control objectives. Wr is usually chosen to be large
at low frequency, and small at high frequency, while Wu

is often chosen to be small at low frequency and large
at high frequency. The weight Wd describes the relative
importance and/or the expected or known frequency con-
tent of the disturbance. It is chosen to reduce the effect of
disturbances on the fault estimation and on the output . As
mentioned before, Wf is a proper stable weighting transfer
matrix which is selected in this setup for reconstructing
the filtered version of the fault f as given by f̄ = Wff .

Since the signal f̂ is a virtual control signal, its amplitude
should be limited. The matrix W

f̂
is chosen to limit the

amplitude of signal f̂ .
Assume the weighting transfer matrices Wr, Wd, Wf , Wu

and W
f̂

have the following minimal state space realizations

Wr :

{

(xwr
)k+1 = Awr

(xwr
)k + Bwr

(rk − yk)
(zr)k = Cwr

(xwr
)k + Dwr

(rk − yk)
(27)

Wd :

{

(xwd
)k+1 = Awd

(xwd
)k + Bwd

dk
d′k = Cwd

(xwd
)k + Dwd

dk
(28)

Wf :







(xwf
)k+1 = Awf

(xwf
)k + Bwf

(yk − d′k − (ŷh)k)
f̄k = Cwf

(xwf
)k + Dwf

(yk − d′k − (ŷh)k)

(zd)k = f̄k − f̂k

(29)

Wu :

{

(xwu
)k+1 = Awu

(xwu
)k + Bwu

uk

(zu)k = Cwu
(xwu

)k + Dwu
uk

(30)

W
f̂

:

{

(xw
f̂
)k+1 = Aw

f̂
(xw

f̂
)k + Bw

f̂
f̂k

(z
f̂
)
k

= Cw
f̂

(xw
f̂
)k + Dw

f̂
f̂k

(31)

Define

w =









wk

wk+1

...
wk+i−1









, v =









vk
vk+1

...
vk+i−1









, u =









uk

uk+1

...
uk+i−1









,
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y =









yk
yk+1

...
yk+i−1









, d′ =









d′k
d′k+1

...
d′k+i−1









, ŷh =









(ŷh)k
(ŷh)k+1

...
(ŷh)k+i−1









zr =









(zr)k
(zr)k+1

...
(zr)k+i−1









, zu =









(zu)k
(zu)k+1

...
(zu)k+i−1









,

zd =









(zd)k
(zd)k+1

...
(zd)k+i−1









, z
f̂

=













(z
f̂
)
k

(z
f̂
)
k+1

...
(z

f̂
)
k+i−1













.

where k is the current time instant. By collecting data
from (27)- (31), the following results are obtained

zr = Γr(xwr
)k + HrKref w −Hr y (32)

d′ = Γd (xwd
)k + Hdw (33)

zd = Γf (xwf
)k + Hf (y − d′ − ŷh), (34)

zu = Γu(xwu
)k + Huv (35)

z
f̂

= Γ
f̂

(xw
f̂
)
k

+ H
f̂
v (36)

where

Kref =













k1 0 0 · · · 0
0 k1 0 · · · 0
0 0 k1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k1













(37)

(38)

Γj ’s are the extended observability matrices formed from
the impulse response of the weighting transfer matrices

Wj ’s for j = r, d, u, f, f̂ and given by

Γj =







Cwj

Cwj
Awj

· · ·
Cwj

Awj

i−1






, j = r, d, · · · , f̂ . (39)

Here Hr, Hd, Hu, Hf and H
f̂

are lower triangular toeplitz

matrices formed from impulse response of the weighting

transfer matrices Wj for j = r, d, f, u, f̂ and given by

Hr =













ar 0 0 · · · 0
br ar 0 · · · 0
cr br ar · · · 0
...

...
...

. . .
...

dr er · · · br ar













(40)

where ar = Dwr
,br = Cwr

Bwr
, cr = Cwr

Awr
Bwr

,
dr = Cwr

Awr

i−2 Bwr
, er = Cwr

Awr

i−3 Bwr
, and

Hd =













ad 0 0 · · · 0
bd ad 0 · · · 0
cd bd ad · · · 0
...

...
...

. . .
...

dd ed · · · bd ad













(41)

where

ad = Dwd
K2, bd = Cwd

Bwd
K2, cd = Cwd

Awd
Bwd

K2,

dd = Cwd
Awd

i−2Bwd
K2, ed = Cwd

Awd

i−3Bwd
K2, and

Hf =













af 0 0 · · · 0
bf af 0 · · · 0
cf bf af · · · 0
...

...
...

. . .
...

df ef · · · bf af













(42)

where af = Dwf
, bf = Cwf

Bwf
, cf = Cwf

Awf
Bwf

,

df = Cwf
Awf

i−2Bwf
, ef = Cwf

Awf

i−3Bwf
, and

Hu =













ah 0 0 · · · 0
bh ah 0 · · · 0
ch bh ah · · · 0
...

...
...

. . .
...

dh eh · · · bh ah













(43)

ah = Dwu
K4, bh = Cwu

Bwu
k4, ch = Cwu

Awu
Bwu

K4,
dh = Cwu

Awu

i−2Bwu
K4, eh = Cwu

Awu

i−3Bwu
K4, and

H
f̂

=















a
f̂

0 0 · · · 0

b
f̂

a
f̂

0 · · · 0

c
f̂

b
f̂

a
f̂

· · · 0

...
...

...
. . .

...
d
f̂

e
f̂

· · · b
f̂

a
f̂















(44)

where a
f̂

= Dw
f̂
K5, b

f̂
= Cw

f̂
Bw

f̂
K5, cf̂ = Cw

f̂
Aw

f̂
Bw

f̂
K5,

d
f̂

= Cw
f̂
Aw

f̂

i−2Bw
f̂
K5, e

f̂
= Cw

f̂
Aw

f̂

i−3Bw
f̂
K5.

We now present the following theorem which its proof can
be found in Appendix A.

Theorem 1. If the measurements of plant input u, plant
output y, and references r are available for times k −
i, · · · , k − 2, k − 1, then the strictly causal, finite hori-
zon, model free subspace based level-γ, H∞ based con-
troller/detector for times k, · · · , k + i− 1 is

vopt = (Qu + KT
v Kv + Q

f̂
−AHT

d Qf Hf − γ2I)
−1

×




















−AKT
ref Qr + HT

d Qf + KT
v Hf

AHT
d Qf Lw −KT

v Hf Lw

−AHT
r Γr

−HT
u Γu

−AHT
d HT

f Γf + KT
v Γf

AHT
d Qf Γd −KT

v Hf Γd

−HT

f̂
Γ
f̂







































y
wp

xwr

xwu

xwf

xwd

xw
f̂



















k

, (45)

where

A = KT
v Hf Hd(KT

refQr Kref + HT
d Qf Hd − γ2I)

−1

Kv = Hf LuKu + K
f̂

K
f̂

=













k5 0 0 · · · 0
0 k5 0 · · · 0
0 0 k5 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k5












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Ku =













k4 0 0 · · · 0
0 k4 0 · · · 0
0 0 k4 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k4













Qj = Hj
THj , j = r, f, u, f̂

Provided that

KT
ref Qr Kref + HT

d Qf Hd −HT
d HT

f Kv

×(Qu + KT
v Kv + Q

f̂
)
−1

× KT
v Hf Hd < γ2I (46)

vopt is the vector of optimal future plant inputs and

estimated fault (f̂) at times k, · · · , k + i − 1. In fact, the
first mi rows of vopt is uopt and the last kf i rows of vopt is

f̂ where

uopt =





uk

...
uk+i−1



 , f̂ =







f̂k
...

f̂k+i−1






(47)

The following algorithm summarizes the proposed proce-
dure for data-driven H∞ controller/detector design. Data-
driven H∞ Controller/Detector Design

(1) Collect the I/O data.
(2) Form Hankel matrices Up, Yp, Uf , Yf , and Wp using

(20).
(3) Calculate Lw and Lu according to (21).

(4) Choose Wj for j = r, d, u, f, f̂ .

(5) Initialize (xwj
)k for j = r, d, u, f, f̂ .

(6) Calculate the γmin according to (46) and choose
γ > γmin.

(7) Form (Wp)k according to (24).
(8) Calculate vopt for current time instant k.

(9) Calculate f̂k, uk from (vopt)k.
(10) Take measurement yk(from the real system) and rk.

(11) Up to date (xwj
)k for j = r, d, u, f, f̂ .

(12) k = k + 1, go to Step 7.

Do steps (7-12) i times, where i is the prediction horizon.
This algorithm is constructive and can be implemented
using standard scientific softwares such as Matlab.

6. SIMULATION

To illustrate the application of the results obtained in the
paper, we apply the Data-driven H∞ Controller/Detector
Design algorithm which is described in the previous section
to the linearized model of a quadruple tank process.

In this paper both incipient and abrupt faults are ap-
plied for minimum-phase and non-minimum phase plant.
Incipient faults with maximum amplitude 1 occur between
samples 600-1000 and samples 550-800, respectively for
the first and second actuators. Abrupt faults are pulses
with the amplitude 1, 1.3 and occur between 600-800,
550-800, respectively for the first and second actuators.
Disturbances are pulses with the amplitude 1, 1.3 and
occur between samples 750-830, 700-780, respectively for
the first and second states. The reference input r is set to
zero. Weighting transfer matrices are chosen in continuous-
time domain and then discretized during performing the

Fig. 5. weighting matrices and parameters associated with
minimum phase plant

Fig. 6. weighting matrices and parameters associated with
non-minimum phase plant

Data-driven H∞ Controller/Detector Design algorithm.
The weighting transfer matrices are selected according to
explanation in Section 5 and are tuned in order to establish
the trades-off between control and fault detection objec-
tives, i.e. to have reasonable control effort, good tracking
and good fault estimation, simultaneously. The mentioned
algorithm is then applied to the system (5).

Different weighting matrices and other parameters asso-
ciated for minimum phase and non-minimum phase plant
are mentioned in Figure 5 and 6.
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Fig. 7. The abrupt fault estimation for minimum phase
plant, a:actuator 1, b: actuator2

Fig. 8. The output y for minimum phase plant (abrupt
fault case)

Fig. 9. The control input u for minimum phase
plant(abrupt fault case)

Fig. 10. The incipient fault estimation for minimum phase
plant, a:actuator 1, b: actuator2

Figure 13-18 show the simulation results for the best value
of γ for each case. As shown in these figures in all cases
good fault estimation and good tracking are achieved,
further more in all cases control efforts are reasonable.
These simulations shows the advantages and efficiency of
our proposed methodology.

Fig. 11. The output y for minimum phase plant (incipient
fault case)

Fig. 12. The control input u for minimum phase plant
(incipient fault case)

Fig. 13. The abrupt fault estimation for non-minimum
phase plant, a:actuator 1, b: actuator2

Fig. 14. The output y for non-minimum phase plant
(abrupt fault case)

7. CONCLUSION

In this paper, motivated by recent development in data-
driven control, a novel solution to SFDC problem for the
multi-variable quadruple tank process with an adjustable
zero has been developed. This problem is formulated as
a data-based H∞ optimization problem and its solution
yields a data-driven H∞ controller/detector unit of modest
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Fig. 15. The control input u for non-minimum phase plant
(abrupt fault case)

Fig. 16. The incipient fault estimation for non-minimum
phase plant, a:actuator 1, b: actuator2

Fig. 17. The output y for non-minimum phase plant
(incipient fault case)

Fig. 18. The control input u for non-minimum phase plant
(incipient fault case)

complexity. The design procedure is independent of the
mathematical model and only I/O data is used for design-
ing. Using this solution to SFDC problem, some control
and fault detection objectives can be satisfied. Control
objectives are regulation with minimizing the control effort
and disturbance attenuation. The fault detection objective
is also fault estimation. Using a scalar parameter and
some appropriate weighting transfer matrices, the trade-
off between control and fault detection objectives can
be effectively established. The methodology presented in

this paper is constructive and can be easily implemented
using standard software tools. The simulation results show
the advantages and efficiency of our algorithm. Further
research work includes two aspects. The first one is as-
suming adaptive weights for designing the data driven con-
troller/detector. The second one is that the proposed data-
driven SFDC problem could be extended to a large class of
uncertain nonlinear systems in the presence actuator and
sensor faults.

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor and
the anonymous reviewers for their valuable comments and
constructive suggestions. They were very helpful for this
study. The support of the Advanced Control Research Lab-
oratory (ACRL) of the Sahand University of Technology
(SUT) is also greatly acknowledged.

REFERENCES

Khosrowjerdi, M.J, Nikoukhah,R., & Safari-Shad,N.
(2004). A Mixed H2/H∞ Approach to Simultaneous
Fault Detection and Control, Automatica, volume 40,
pp. 261–267.

Nett, C.N., Jacobson, C.A., & Miller, A.T.(1988). An
Integrated Approach to Controls and Diagnostics Pro-
ceeding of ACC, pp. 824–835.

Tyler, M.L., Morari, M.(1994). Optimal and robust design
of integrated control and diagnostic modules In Proceed-
ings of ACC, Baltimore MD, pp. 2060–2064.

Davoodi, M.R., Golabi, A., & Talebi, H.A., & Momeni,
H.R.(2013). Simultaneous Fault Detection and Control
Design for Switched Linear System Based on Dynamic
Observer Optimal Control Application and Methods,
volume 34, pp. 35–52.

Weijie, L., Ying, C., & Maolin, N. (2014). An Linear
Matrix Inequality Approach to Simultaneous Fault De-
tection and Control Design for LTI Systems Proceedings
of the 33 Chinese Control Conference, China.

Ding, S. X. (2009). Integrated design of feedback controllers
and fault detectors Annual Reviews in Control pp. 124–
135.

Hou, Z. S., Wang, Zh. (2013). From Model-Based to Data-
Driven Control: Survey, Classification and Perspective
Data-based Control Decision, Scheduling and Fault
Diagnostics, volume 235, pp. 3–35.

Ding, S. X., Wang, Y., & Yin, S., & Zhang, P., & Yang,
Y., & Ding, E. L. (2012). Data-Driven Design of Fault-
Tolerant Control Systems 8th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical
Processes, volume 8.

Yin, S., Luo, H., & Ding, S. X.(2014). Real-Time Imple-
mentation of Fault-Tolerant Control Systems with Per-
formance Optimization IEEE Transactions of Industrial
Electronics, volume 61, No.5.

Zhang, Y., Yang, Y., & Ding, S. X., & Li, L.(2014). Data-
Driven Design and Optimization of Feedback Control
Systems for Industrial Applications IEEE Transactions
of Industrial Electronics, volume 61, No. 11.

Woodley, B. R., How, J.P., & Kosut, R.L.(2001). Subspace
based direct adaptive H∞ control International Journal
of Adaptive Control and Signal Processing, volume 915,
pp. 535–561.



12 Control Engineering and Applied Informatics

Van Overschee, P., &Moor, B.D.(1999). Subspace Iden-
tification for Linear Systems: Theory Implementation
Application Kluwer academic publishers

Woodley, B.R.(2001). Model Free Subspace Based H∞

control Ph.D. Thesis.
Palanthandalam, M.H.J., Brenstain, D.S. (2009). A Sub-
space Algorithm for Simultaneous Identification and In-
put Reconstruction International Journal of Control and
Signal Processing, volume 23, pp. 1053-1069.

Wang, Y., Bingzhao, G.,& Chen, H. (2015). Data-Driven
Design of Parity Space-Based FDI System for AMT
Vehicles IEEE/ASME Transactions on Mechatronics,
volume 20, No. 1.

Ding, S.X., Zhang, P., Naik, A., Ding, E., Huang, B.
(2009). Subspace method aided data-driven design of
fault detection and isolation systems Journal of process
control, volume 19, pp. 496-510.

Yin, S., Wang, G., Karimi, H.R. (2014). Data-driven
design of robust fault detection system for wind turbines
Original Research Article Mechatronics, volume 24, pp.
298–306.

Ding, S.X. (2014). Data-driven design of monitoring
and diagnosis systems for dynamic processes: A review
of subspace technique based schemes and some recent
results Journal of Process Control, volume 24, pp. 431–
449.

Haung, B., Kadali, R.(2008). Dynamic Modeling, Pre-
dictive Control and Performance Monitoring A Data-
driven Subspace Approach Springer-Verlag London Lim-
ited

Azizi-Mardi, N.(2010). Data-driven Subspace-based Model
Predictive Control Ph.D Thesis, RMIT University

Dong,J., Verhaegen, M., & Holweg, E. (2008). Closed-loop
Subspace Predictive Control for Fault Tolerant MPC
Design Proceedings of the 17th World C0ongress, The
International Federation of Automatic Control, Seoul,
Korea, July 6-11.

Dong, J., Verhaegen, M.(2012). Identificatiion of Fault
Estimation Filter From I/O Data for Systems With
Stable inversion IEEE Transactions on Automatic
Control, volume 57, No. 6.

Favoreel, W., Moor, B.D., Van Overschee, P.,& Gevers,
M. (1999). Model-free subspace-based LQG-design
Proceedings of the American Control Conference.

Ding, S.X., Yin, S., & Wang, Y., &Yang, Y., & Ni,
B. (2011). Data-driven design of observers and its
applications Proceedings of the 18th IFAC World
Congress, Italy.

Vachtsevanos, G., Farinwata, S.S., & Kang, H. (1992). A
systematic design method for fuzzy logic control with ap-
plication to automotive idle speed control in Proceedings
of the 31th IEEE Conference on Decision and Control,
pp. 2547–2548.

Johnsson, K.H. (2000). The quadruple-tank process: a
multi variable laboratory process with an adjustable zero
IEEE transactions on control systems technology, vol-
ume 8, No. 3, pp. 456-465.

Khosrowjerdi, M.J., Nikoukhah, R., & Safari-Shad,
N.(2005). Fault Detection in a Mixed H2/H∞ Setting
IEEE transactions on automatic control, volume 50,
NO. 7.

Li, W., Raghavan, H., Shah,S.(2003). Subspace identi-
fication of Continuous time models for Process Fault

Detection and Isolation Journal of process Control,pp.
407–421.

Kirubakarana, V., Radhakrishnana, T.K., Sivakumaranb,
N. (2014). Distributed multi parametric model predictive
control design for a quadruple tank process Measure-
ment, volume .47, pp. 841–854, 2014.

Biswas, P.P., Srivastava, R., & Ray, S., Samanta, A.N.
(2009). Sliding mode control of quadruple tank process
Mechatronics, volume 19, Issue 4, pp. 548–561.

Patton, R. J., Chen, J.(1999) Robust Model-based Fault
Diagnosis for Dynamic Systems. Kluwer academic pub-
lishers.

Appendix A. THE PROOF OF THEOREM 1

The following results are used in the proof of Theorem 1.

Lemma 2. (Schur Decomposition): If M is a symmetric
matrix, then it can be expressed as

M =

(

A1 A2

AT
2 A3

)

= (A.1)

(

I A2A
−1
3

0 I

)(

A1 −A2A
−1
3 AT

2 0
0 A3

)(

I A2A
−1
3

0 I

)T

Lemma 3. ( Ding (2009)): If A−1
1 , A−1

3 , and

(

A1 A2

AT
2 A3

)−1

exist, then

(

A1 A2

AT
2 A3

)−1

=

(

Ā1 Ā2

Ā3 Ā4

)

(A.2)

where

Ā1 = (A1 −A2A
−1
3 AT

2 )−1

Ā2 = −(A1 −A2A
−1
3 AT

2 )−1A2A
−1
3

Ā3 = −(A3 −AT
2 A

−1
1 A2)−1AT

2 A
−1
1

Ā4 = (A3 −AT
2 A

−1
1 A2)−1 .

Suppose that the input/output data is collected from
the unknown linear healthy system (the system (6) when
f = 0). Calculate ŷ according to Section 4. Substituting
(33) and (23) into (34) yields

z =

(

zr
zu
zd

)

=

(

Γr(xwr
)k + HrKrefw −Hry

Γu(xwu
)k + Huv
a

)

(A.3)

where

a = Γf (xwf
)k + Hfy −HfΓd(xwd

)k −HfHdw

−HfLwWp −Kvv,

and

Kref =













k1 0 0 · · · 0
0 k1 0 · · · 0
0 0 k1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k1













(A.4)

Kv = Hf Lu Ku + K
f̂

(A.5)
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K
f̂

=













k5 0 0 · · · 0
0 k5 0 · · · 0
0 0 k5 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k5













(A.6)

Ku =













k4 0 0 · · · 0
0 k4 0 · · · 0
0 0 k4 · · · 0
...

...
...

. . .
...

0 0 · · · 0 k4













(A.7)

Substituting (A.3) into (18) results in

J = XT (M1 M2 )X (A.8)

where

X =



























w
v
y

(wp)k
(xwr

)k
(xwu

)k
(xwf

)k
(xwd

)k
(xw

f̂
)k



























and

M1 =

























m11 m12 m13 m14 m15

m21 m22 m23 m24 0
m31 m32 m33 m34 m35

m41 m42 m43 m44 0
m51 0 m53 0 m55

0 m62 0 0 0
m71 m72 m73 m74 0
m81 m82 m83 m84 0

0 m92 0 0 0

























(A.9)

M2 =

























0 m̄12 m̄13 0
m̄21 m̄22 m̄23 m̄24

0 m̄32 m̄33 0
0 m̄42 m̄43 0
0 0 0 0

m̄61 0 0 0
0 m̄72 m̄73 0
0 m̄82 m̄83 0
0 0 0 m̄94

























(A.10)

Qj = Hj
THj , j = r, f, u, f̂ , (A.11)

where

m11 = KT
ref Qr Kref + HT

d Qf Hd − γ2I,

m12 = HT
d HT

f Kv,m13 = −KT
ref Qr −HT

d Qf ,

m14 = HT
d Qf Lw,m15 = KT

ref H
T
r Γr,

m21 = KT
v Hf Hd,m22 = Qu + KT

v Kv + Q
f̂

m23 = −KT
v Hf ,m24 = KT

v Hf Lw,

m31 = −Qr Kref −Qf Hd,m32 = −HT
f Kv,

m33 = Qr + Qf ,m34 = −Qf Lw,m35 = −HT
r Γr,

m41 = LT
w Qf Hd,m42 = LT

w HT
f Kv,

m43 = −LT
w Qf ,m44 = LT

w Qf ,  Lw,

m51 = ΓT
r Hr Kref ,m53 = −ΓT

r Hr,

m55 = ΓT
r Γr,m62 = ΓT

u Hu,

m71 = −ΓT
f Hf Hd ,m72 = −ΓT

f Kv,

m73 = ΓT
f Hf ,m74 = −ΓT

f Hf Lw,

m81 = ΓT
d Qf Hd,m82 = ΓT

d HT
f Kv,

m83 = −ΓT
d Qf ,m84 = ΓT

d Qf Lw,

m92 = ΓT

f̂
H

f̂

and

m̄12 = −HT
d HT

f Γf , m̄13 = HT
d Qf Γd,

m̄21 = HT
u Γu, m̄22 = −KT

v Γf ,

m̄23 = KT
v Hf Γd, m̄24 = HT

f̂
Γ
f̂
,

m̄32 = HT
f Γf , m̄33 = −Qf Γd,

m̄42 = −LT
w HT

f Γf , m̄43 = LT
w Qf Γd,

m̄61 = ΓT
u Γu, m̄72 = ΓT

f Γf ,

m̄73 = −ΓT
f Hf Γd, m̄82 = −ΓT

dH
T
f Γf ,

m̄83 = ΓT
d Qf Γd, m̄94 = ΓT

f̂
Γ
f̂
.

then the problem (17) can be written as

min
v

sup
w

XT (M1 M2 )X ≤ 0 (A.12)

Thus, the optimal solution for v and the worst case w in
the problem (17) can be derived by solving the following
equation

∂J

∂

(

w
v

) = 0 (A.13)

which yields

(

w
vopt

)

=

(

m11 m12

m21 m22

)−1

× (A.14)

(

−m13 −m14 −m15 0 −m̄12 −m̄13 0
−m23 −m24 0 −m̄21 −m̄22 −m̄23 −m̄24

)

X

Using (A.2) in Lemma 3 the second row of (A.14) can

be written as (1). It is obvious that u and f̂ can be
calculated directly by vopt. The sufficient condition for
optimization is satisfied when the Hessian of the left hand
side of (A.12) has (kf + kd + l)i positive and (kf + m)i
negative eigenvalues.

Hess =
∂2J

∂2

(

w
v

) =

(

m11 m12

m21 m22

)

, (A.15)

It can be easily seen that
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Hess =

(

m11 m12

m21 m22

)

=

(

A1 A2

AT
2 A3

)

(A.16)

It is worth mentioning that left multiplying (A.2) in
Lemma 3 by ( 0 I ) produces the relation

( 0 I )

(

A1 A2

AT
2 A3

)−1

= (A3 −AT
2 A

−1
1 A2)−1

(

−AT
2 A

−1
1 I

)

Using Schur decomposition in Lemma 2, the Hessian can
be written as follows

Hess = ΓT

(

A1 −A2A3
−1A2

T 0
0 A3

)

Γ, (A.17)

where

Γ =

(

I 0
A3

−1A2
T I

)

.

In the Γ coordinates, the eigenvalues of the following
matrix can be investigated

(

A1 −A2A3
−1A2

T 0
0 A3

)

(A.18)

Since A3 > 0 then the sufficient condition is satisfied when
A1 −A2A3

−1A2
T < 0. This yields to

KT
ref Qr Kref + HT

d Qf Hd −HT
d HT

f Kv (A.19)

×(Qu + KT
v Kv + Q

f̂
)
−1

× KT
v Hf Hd < γ2I

This completes the proof.


