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Abstract: This paper presents a new strategy of the optimal fractional order sliding mode
controller (OFSMC) of fractional order non-linear SIMO (Single Input Multiple output) systems
based on a division of the global proposed fractional order sliding surface into fractional order
sliding sub-surfaces. The optimality of the proposed approach is ensured by the use of PSO
algorithm to calculate the parameters λi in sliding sub-surfaces, weighting parameters µi in
global sliding surface and gain k of sign function in the Attractant control (discontinuous
control). Simulation results demonstrated the effectiveness of OFSMC by comparing it with
the optimal conventional sliding mode control OSMC (optimal integer order SMC) applied on
fractional order model of inverted pendulum where OFSMC gives excellent results of robustness.
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1. INTRODUCTION

Fractional calculus is a topic being more than 300 years
old but its application to physics and engineering has
recently attracted lots of attention (Oldham and Spanier,
1974; Delavari et al., 2010a). The idea of fractional cal-
culus has been known since the regular calculus, with
the first reference probably being associated with Leibniz
and L’Hospital in 1695 where half-order derivative was
mentioned (Petras, 2011). Fractional calculus can be de-
fined as the generalization of classical calculus to orders
of integration and differentiation not necessarily integer.
Fractional-order control is the use of fractional calculus
in the aforementioned topics, the system being modeled
in a classical way or as a fractional one. During the past
decades, fractional calculus has gained great interest in
several applications (Petras, 2011; Podlubny, 1999; Kilbas
et al., 2006; Aghababa, 2013). For instance, fractional
derivatives can improve the performances and robustness
properties in control design of systems (Oustaloup et
al., 1995; Oustaloup et al., 1998; Oustaloup et al., 1999;
Hosseinia et al., 2012; Hosseinia et al., 2014 ; Calderón
et al., 2006). Due to the fact that the fractional order
calculus plays an important role in control design, a PDα

sliding surface is proposed in (Vinagre and Calderon, 2006;
Delavari et al., 2010b; Zhang and Luo, 2012) for fractional
sliding mode controller, and a novel fractional integral
terminal sliding mode concepts for the output tracking
problem of relative-degree-one systems with uncertainty
and disturbance is presented in (Chiu, 2012). Also, authors

in (Aghababa, 2012) have proposed a novel fractional-
order integral type sliding surface for robust stabiliza-
tion/synchronization problem of a class of fractional order
chaotic systems in the presence of model uncertainties and
external disturbances. In the present paper, a proposed
fractional order sliding mode approach is designed for
fractional-order non-linear SIMO systems. A key point
of the proposed approach is the selection of a fractional
order sliding surface divided into fractional order sliding
sub-surfaces, which gives rise to a continuous control in-
put thereby removing the chattering effect. This paper is
organized as follows. The next section 2 briefly reviews
some preliminaries on fractional calculus. The overview of
sliding manifold design procedure of SMC and FOSMC
controllers is presented in section 3. Section 4 introduces
the particle swarm optimization (PSO) algorithm which’s
used to design OSMC and OFSMC controllers. The simu-
lation results are highlighted in section 5. The final section
6 draws some concluding remarks.

2. FRACTIONAL ORDER CALCULUS

Several definitions of fractional operators appear in lit-
erature. In the current paper the so called Riemann-
Liouville approach is adopted. We will present in the
following paragraphs, definitions and some properties
of Riemann-Liouville fractional differentiation (Podlubny,
1999; Balochian et al., 2011).
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2.1 The Gamma function

The Gamma function, denoted Γ(z), is a generalization of
the factorial function n!, (Γ(n) = (n− 1)! for n ∈ N). For
complex arguments z with positive real part, it is defined
as:

Γ(z) =

∞∫
0

t(z−1)e−tdt, Re(z) > 0 (1)

Propriety 01: The important propriety of Gamma func-
tion which will be used in the rest of this paper is (Kilbas
et al., 2006): If −m < Re(z) ≤ −m + 1 where m is a
positive integer, then:

Γ(z) = lim
n→∞

nzn!

z(z + 1)...(z + n)
(2)

with (z ̸= 0; z ̸= −1; . . . z ̸= −n)

2.2 Definition of Riemann-Liouville

Suppose that α ∈ R+∗, t ∈ R+∗, n ∈ N and f(t)
being a causal function, the Riemann-Liouville fractional
derivative of order α is defined as (Petras, 2011):

Dαf(t) =


1

Γ(n− α)
.
dn

dtn

t∫
0

f(τ)

(t− τ)α+1−n
dτ

if α ∈]n− 1, n]
dn

dtn
f(t) if α = n

(3)

For 0 < α < 1, the Riemann-Liouville fractional integra-
tion of order is defined as:

Iαf(t) =
1

Γ(α)

t∫
0

f(τ)

(t− τ)1−α
dτ (4)

we note that Iα = D−α and Dαf(t) = dα

dtα f(t) = f (α)

2.3 Properties

If n − 1 < α < n, (n,m) ∈ N2, f(t) and g(t) are causal
functions, then (Li and Deng, 2007):

Propriety 02: IαDαf(t) = f(t) with all initial conditions
are nulls.

Propriety 03: Dα(Dβf(t)) = Dβ(Dαf(t)) = Dα+βf(t)
with all initial conditions are nulls and m− 1 < β < m.

Propriety 04: Iα(Iβf(t)) = Iβ(Iαf(t)) = Iα+βf(t) with
β ∈ R+∗.

Propriety 05: Dα(λ.f(t) + γ.g(t)) = λ.Dαf(t) +
γ.Dαg(t).

Propriety 06: Dαc = ct−α

Γ(1−α) with c is a constant.

3. DESIGNING A FRACTIONAL-ORDER SLIDING
MODE CONTROL FOR FRACTIONAL NONLINEAR

SYSTEMS

In the conventional sliding mode control (integer SMC),
an arbitrary linear manifold is considered as a sliding
surface and a control law is planned in such a way that the
system state trajectories reach this manifold. In addition,
nowadays the sliding mode control is applied for governing
the fractional-order systems (Majidabad, 2015; Djari et al.,
2014).

3.1 Problem Formulation

We consider a fractional order nonlinear SIMO system
given by: 

x
(α)
1 = x2(t)

x
(α)
2 = f1(x) + g1(x).u(t)

x
(α)
3 = x4(t)

x
(α)
4 = f2(x) + g2(x).u(t)

...

x
(α)
2i−1 = x2i(t)

x
(α)
2i = fi(x) + gi(x).u(t)

...

x
(α)
2n−1 = x2n(t)

x
(α)
2n = fn(x) + gn(x).u(t)

(5)

where:

• 1
2 < α < 1 is a derivative order;

• state vector x(t) is given by: x(t) = [x1, x2, x3, ..., x2n]
T ;

• fi(t) and gi(t), i = 1, 2, 3, ...n; are smooth scalar
functions with gi(t) ̸= 0;

• u(t) is the control signal.

We can easily see that the system (5) contains n subsys-
tems as follows:{

x
(α)
2i−1 = x2i(t)

x
(α)
2i = fi(x) + gi(x).u(t)

(6)

We propose in what follows a strategy of fractional order
sliding mode control based on the proposal of a fractional
order sliding surface as a combination of fractional order
sliding subsurfaces. Each subsurface matches the subsys-
tem (6). This approach will be compared with integer SMC
where the sliding surface is also a combination of integer
order sliding subsurfaces.

3.2 Integer Sliding Mode Control

Let us consider the following proposal integer order sur-
faces: 

s1 = ė1 + λ1.e1
s2 = ė3 + λ2.e3
s3 = ė5 + λ3.e5

...
si = ė2i−1 + λi.e2i−1

...
sn = ė2n−1 + λn.e2n−1

(7)
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where:

• λi > 0, i = 1, 2, 3, ...n;
• e2i−1 = x2i−1 − xd2i−1 is a component of tracking
error;

• xd2i−1 is a given component of a reference trajectory

The subsurface si corresponds the subsystem (6).
To design a control u(t) signal for the system (5), we will
define the following integer order sliding function:

S =
n∑

i=1

(µi.si) =
n∑

i=1

(µi.(ė2i−1 + λi.e2i−1)); µi > 0 (8)

On the sliding surface S = 0, the state variables of the
sub-systems have reached the sliding sub-surfaces si = 0
and also tend towards the origin of the phase plane of the
global system. In this equilibrium point, the control signal
should force the trajectories of states to remain around
this point if t −→ ∞.

The µi coefficients are selected by the designer according
to the importance of an output to another output or
we let the automatic optimization of its values using
PSO algorithm via a predefined objective function (cost
function).

Taking the time derivative of (8), one can obtain:

Ṡ =
n∑

i=1

(µi.(e
(2)
2i−1 + λi.ė2i−1)) (9)

Forcing Ṡ = 0, (9) yields:

Ṡ =
n∑

i=1

(µi.(e
(2)
2i−1 + λi.ė2i−1)) = 0 (10)

Since 1
2 < α < 1 and all initial conditions are nulls; we can

rewrite (10) as follows:

n∑
i=1

(µi.(D
2(1−α)(e

(2α)
2i−1) + λi.ė2i−1)) = 0 (11)

=⇒
n∑

i=1

(µi.(D
2(1−α)(x

(2α)
2i−1 − xd

(2α)
2i−1) + λi.ė2i−1)) = 0(12)

From (5), we have:

x
(α)
2i−1 = x2i =⇒ x

(2α)
2i−1 = x

(α)
2i

and x
(α)
2i = fi(x) + gi(x).u(t)

(13)

Equation (12) yields:

n∑
i=1

(µi.(D
2(1−α)(fi(x) + gi(x).u(t)− xd

(2α)
2i−1)

+λi.ė2i−1)) = 0

(14)

It will be:

D2(1−α)
n∑

i=1

(µi.gi(x).u(t)) =

−
n∑

i=1

(µi.(D
2(1−α)(fi(x)− xd

(2α)
2i−1) + λi.ė2i−1))

(15)

Integrating both sides by order 2(1 − α) (or derivate by
order 2(α− 1)), yields:

n∑
i=1

(µi.gi(x)).u(t) =

−
n∑

i=1

(µi.(fi(x)− xd
(2α)
2i−1 + λi.e

(2α−1)
2i−1 ))

(16)

Notice that the last equality is a consequence of all
initial conditions being zeros; otherwise it would not be
necessarily true (Li and Deng, 2007). Equation (16) yields:

u(t).
n∑

i=1

(µi.gi(x)) =

n∑
i=1

(µi.(−fi(x) + xd
(2α)
2i−1 − λi.e

(2α−1)
2i−1 ))

(17)

The continuous control signal uc(t) is given by:

uc(t) =

∑n
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(2α−1)
2i−1 ))∑n

i=1(µi.gi(x))

with

n∑
i=1

(µi.gi(x)) ̸= 0

(18)

The global control signal designed is equal to the continu-
ous control uc(t) plus the attractant (discontinuous) con-

trol un(t): u(t) = uc(t)+un(t) with un(t) =
−k.sgn(S)∑n

i=1
(µi.gi(x))

;

so:

u(t) =∑n
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(2α−1)
2i−1 ))− k.sgn(S)∑n

i=1(µi.gi(x))

(19)

- Verification of the reachability condition

Let us consider the Lyapunov candidate function V = 1
2S

2

which used to verify the reachability condition V̇ = S.Ṡ ≤
0 of proposed control. We obtain (20) using expression
(14):

Ṡ =
n∑

i=1

(µi.(D
2(1−α)(fi(x) + gi(x).u(t)− xd

(2α)
2i−1)

+λi.ė2i−1))

(20)
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=⇒ Ṡ =

n∑
i=1

(D2(1−α)µi.gi(x).u(t))

+
n∑

i=1

(µi.(D
2(1−α)(fi(x)− xd

(2α)
2i−1) + λi.ė2i−1))

(21)

=⇒ Ṡ = D2(1−α)
n∑

i=1

(µi.gi(x).u(t))

+

n∑
i=1

D2(1−α)(µi.((fi(x)− xd
(2α)
2i−1) + λi.e

(2α−1)
2i−1 ))

(22)

Substituting (18) into (22), we obtain:

Ṡ =

D2(1−α)

[
n∑

i=1

(µi.(−fi(x) + xd
(2α)
2i−1 − λi.e

(2α−1)
2i−1 ))− k.sgn(S)

]

+D2(1−α)
n∑

i=1

(µi.(fi(x)− xd
(2α)
2i−1 + λi.e

(2α−1)
2i−1 ))

(23)

=⇒ Ṡ = D2(1−α) [−k.sgn(S)] (24)

=⇒ −Ṡ

k
= D2(1−α)sgn(S) (25)

=⇒ sgn

(
−Ṡ

k

)
= sgn

(
D2(1−α)sgn(S)

)
(26)

We can easily demonstrate that:

sgn
(
D2(1−α)sgn(S)

)
= sgn(S) (propriety 07) (27)

Propriety 07: If S(t) is a continuous function
and 1

2 < α < 1 then: sgn
(
D2(1−α)sgn(S)

)
= sgn(S)

Proof. if c = constant and 1
2 < α < 1 then Dαc = ct−α

Γ(1−α)

(subsection 2.3; propriety 06 ) with:

D2(1−α)c =
ct2(α−1)

Γ(2α− 1)
(28)

and

Γ(2α− 1) = lim
n→∞

n2α−1n!

(2α− 1)(2α)...(2α+ n)

(subsection 2.1; propriety01)

(29)

We note that Γ(2α− 1) > 0 (∀ n > 0 and 1
2 < α < 1) and

(t2(α−1) > 0 ∀ t > 0), so:

sgn(S) =

{
1 if S > 0
−1 if S < 0
0 if S = 0

(30)

⇒ D2(1−α)sgn(S) =

 D2(1−α)(1) if S > 0

D2(1−α)(−1) if S < 0

D2(1−α)(0) if S = 0

(31)

⇒ D2(1−α)sgn(S) =


t2(α−1)

Γ(2α− 1)
if S > 0

−t2(α−1)

Γ(2α− 1)
if S < 0

0 if S = 0

(32)

⇒ sgn(D2(1−α)sgn(S)) =
sgn(

t2(α−1)

Γ(2α− 1)
) if S > 0

sgn(
−t2(α−1)

Γ(2α− 1)
) if S < 0

sgn(0) if S = 0

(33)

⇒ sgn(D2(1−α)sgn(S)) =

{
1 if S > 0
−1 if S < 0
0 if S = 0

(34)

⇒ sgn(D2(1−α)sgn(S)) = Sgn(S) (35)

Equation (26) yields:

=⇒ sgn

(
−Ṡ

k

)
= sgn(S) (36)

with:

sgn(S) =

{
1 if S > 0
−1 if S < 0
0 if S = 0

(37)

and :

sgn(
−Ṡ

k
) =


1 if (

−Ṡ

k
) > 0

−1 if (
−Ṡ

k
) < 0

0 if (
−Ṡ

k
) = 0

(38)

We have three cases:

• case 01:

sgn(
−Ṡ

k
) = sgn(S) = 1 ⇒ (

−Ṡ

k
) > 0 and S > 0

⇒ S.(
−Ṡ

k
) > 0 ⇒ S.Ṡ < 0; (k > 0).

(39)

• case 02:

sgn(
−Ṡ

k
) = sgn(S) = −1 ⇒ (

−Ṡ

k
) < 0 and S < 0

⇒ S.(
−Ṡ

k
) > 0 ⇒ S.Ṡ < 0; (k > 0).

(40)

• case 03:

sgn(
−Ṡ

k
) = sgn(S) = 0 ⇒ (

−Ṡ

k
) = 0 and S = 0

⇒ S.(
−Ṡ

k
) = 0 ⇒ S.Ṡ = 0; (k > 0).

(41)

So, all cases prove that the proposed form of the control
signal causes (V̇ = S.Ṡ ≤ 0), which verifies the reaching
condition.
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3.3 Fractional-order sliding mode control

Let us consider the following proposal fractional order
surfaces: 

s1 = e
(α)
1 + λ1.e1

s2 = e
(α)
3 + λ2.e3

s3 = e
(α)
5 + λ3.e5
...

si = e
(α)
2i−1 + λi.e2i−1

...

sn = e
(α)
2n−1 + λn.e2n−1

(42)

where:

• λi > 0 with i = 1, 2, 3, ...n;;
• e2i−1 = x2i−1 − xd2i−1 is a component of tracking
error;

• xd2i−1 is a component of a reference trajectory

The subsurface si corresponds to the subsystem (6).

As we noted in section (4.1), we will define the following
fractional order sliding function to design a control u(t)
signal for the system (5):

S =

n∑
i=1

(µi.si) =

n∑
i=1

(µi.(e
(α)
2i−1 + λi.e2i−1)); µi > 0 (43)

Taking the time derivative of (43), one can obtain:

Ṡ =
n∑

i=1

(µi.(e
(1+α)
2i−1 + λi.ė2i−1)) (44)

Forcing Ṡ = 0, we have:

Ṡ =
n∑

i=1

(µi.(e
(1+α)
2i−1 + λi.ė2i−1)) = 0 (45)

Since 1
2 < α < 1 and all initial conditions are nulls; we can

rewrite (45) as follows:
n∑

i=1

(µi.(D
1−α(e

(2α)
2i−1) + λi.e

(α)
2i−1)) = 0 (46)

=⇒
n∑

i=1

(µi.(D
1−α(x

(2α)
2i−1 − xd

(2α)
2i−1) + λi.e

(α)
2i−1)) = 0 (47)

From (5), we have:

x
(α)
2i−1 = x2i =⇒ x

(2α)
2i−1 = x

(α)
2i

and x
(α)
2i = fi(x) + gi(x).u(t)

(48)

Equation (47) yields:
n∑

i=1

(µi.(D
1−α(fi(x) + gi(x).u(t)− xd

(2α)
2i−1) + λi.e

(α)
2i−1)) = 0(49)

It will be:

D1−α
n∑

i=1

(µi.gi(x).u(t)) =

−
n∑

i=1

(µi.(D
1−α(fi(x)− xd

(2α)
2i−1) + λi.e

(α)
2i−1))

(50)

Integrating both sides by order (1 − α) (or derivate by
order (α− 1)), yields:

n∑
i=1

(µi.gi(x)).u(t) =

−
n∑

i=1

(µi.(fi(x)− xd
(2α)
2i−1 + λi.e

(α)
2i−1))

(51)

Notice that the last equality is a consequence of all
initial conditions being zeros; otherwise it would not be
necessarily true (Li and Deng, 2007). Equation (51) yields:

u(t).
n∑

i=1

(µi.gi(x)) =

n∑
i=1

(µi.(−fi(x) + xd
(2α)
2i−1 − λi.e

(α)
2i−1))

(52)

The continuous control signal uc(t) is given by:

uc(t) =

∑n
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(α)
2i−1))∑n

i=1(µi.gi(x))

with
n∑

i=1

(µi.gi(x)) ̸= 0

(53)

The global control signal designed is equal to the continu-
ous control uc(t) plus the attractant (discontinuous) con-

trol un(t): u(t) = uc(t)+un(t) with un(t) =
−k.sgn(S)∑n

i=1
(µi.gi(x))

;

so:

u(t) =∑n
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(α)
2i−1))− k.sgn(S)∑n

i=1(µi.gi(x))

(54)

- Verification of the reachability condition

Taking the same Lyapunov candidate function V = 1
2S

2

which used above to verify the reachability condition V̇ =
S.Ṡ ≤ 0. From equation (49), one can obtain:

Ṡ = D1−α
n∑

i=1

(µi.gi(x).u(t))+

n∑
i=1

D1−α(µi.((fi(x)− xd
(2α)
2i−1) + λi.e

(2α−1)
2i−1 ))

(55)

⇒ Ṡ =

D1−α

[
n∑

i=1

(µi.(−fi(x) + xd
(2α)
2i−1 − λi.e

(α)
2i−1))− k.sgn(S)

]

+D1−α
n∑

i=1

(µi.(fi(x)− xd
(2α)
2i−1 + λi.e

(α)
2i−1))

(56)

=⇒ Ṡ = D1−α [−k.sgn(S)] (57)
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=⇒ −Ṡ

k
= D1−αsgn(S) (58)

=⇒ sgn

(
−Ṡ

k

)
= sgn

(
D1−αsgn(S)

)
(59)

We demonstrate, sgn
(
D1−αsgn(S)

)
= sgn(S) using the

same stages of propriety 07. Equation (59) yields:

sgn

(
−Ṡ

k

)
= sgn(S) (60)

We have the same cases studied in above paragraph (with
integer form of SMC). So, the proposed form of the FSMC

control signal causes V̇ = S.Ṡ ≤ 0.

The representation of the proposed OFSMC control sys-
tems is described in the flowing figure (fig.1).

Remark 01: If there is a singularity in the expression of
the control signal (

∑n
i=1(µi.gi(x)) = 0), we can add a very

small value tends to zero (ϵ → 0) to this term for avoid
the division by zero.

4. PARTICLE SWARM OPTIMIZATION
ALGORITHM

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Kennedy and Eber-
hart in 1995 (Eberhart, and Kennedy, 1995). The inspira-
tion underlying the development of this algorithm was the
social behaviour of animals, such as the flocking of birds
and the schooling of fish, and the swarm theory. It has been
proven to be efficient in solving optimization problem es-
pecially for nonlinearity and non differentiability, multiple
optimum, and high dimensionality (Chang and Shih, 2010;
Chiou and Liu, 2009). In PSO algorithm, the velocity of
each particle is modified iteratively by its individual best
position (pbest), and the best position found by particles
in its neighborhood, named global best position, (gbest).
As a result, each particle searches around a region defined
by its individual best position (pbest) and the global best
position (gbest) from its neighborhood. Henceforth we use
(Vi) to denote the velocity of the ith particle in the swarm,
pi denote its position. At each step (iteration) n, by using
the individual best position, pbest, and global best position,
gbest, the velocity and position of each particle are updated
by the following tow equations:

Vi(n) = ω. [Vi(n− 1) + c1.r1.(pbesti − pi(n− 1))]
+ω. [c2.r2.(gbest − pi(n− 1))]

(61)

pi(n) = pi(n− 1) + Vi(n) (62)

Where r1 and r2 are random numbers between 0 and 1; c1
and c2 are positive constant learning rates; ω is called the
constriction factor (Clerc, 1999) and is defined by (63):

ω =
2∣∣2− c−
√
c2 − 4c

∣∣ ; c = c1 + c2. (63)

In each step or iteration n the position is confined within
the range of [pmin, pmax]. If the position violates these
limits, it is forced to its proper values (Chang and Shih,
2010; Shi and Eberhart, 1999):

pi =

{
pmin if pi < pmin

pi if pmin < pi < pmax

pmax if pi > pmax

(64)

Changing position by this way enables the ith particle to
search around its local best position, pbest, and global best
position,gbest.
The following shows the design step for implementing the
PSO algorithm (Chang and Shih, 2010):

• Step 1. Initialize particles with random position and
velocity on dimension in the problem space;

• Step 2. If a prescribed number of iterations (gener-
ations) is achieved, and then stop the algorithm;

• Step 3. For each particle, evaluate the desired opti-
mization fitness function, and record each particle’s
best previous position (pbest), and global best position
(gbest);

• Step 4. Change the velocity and position according
to equations (61) and (62) respectively, for each
particle;

• Step 5. Check each particle’s position using (64);

• Step 6. Go back to Step 2.

Remark 02: We use the abbreviations OSMC and OF-
SMC when using the PSO algorithm optimization of the
parameters of designed controllers SMC and FSMC respec-
tively.

To converge toward the optimal solution, the PSO al-
gorithm must be guided by the cost function (objective
function). Hence, it should be properly defined before the
PSO algorithm is executed. In the present study, the used
cost function (F1) is defined by the following formula:

F1 =
N∑

k=1

[
n∑

i=1

(
|e2i−1(k)|2

)
+ |u(k)|2

]
(65)

Where e2i−1(k) is the trajectory error of kth sample, u(k)
is the control signal of kth sample, n is the number of
subsystems in the global system to be controlled (Problem
Formulation) and N is the number of samples.

5. SIMULATION RESULTS

In this section, we will give an illustrative example to show
the applicability and efficiency of the proposed controllers
(OSMC and OFSMC). The simulation is carried out using
the ”‘Matlab/Simulink”’ tools with 0.01 sample time. The
population size of PSO algorithm is set to 15 particles; the
parameters c1 and c2 are set to 2.05 respectively and the
maximum number of iteration n is set to 15 iterations. Let
P = [k λ1 λ2 µ1 µ2]

T
the vector of selective parameters of

OSMC and OFSMC, the regions of the decision variables
are mentioned as follows: 0.1 < k < 20 ; 0.1 < λ1 <
3 ; 0.1 < λ2 < 6 ; 0.1 < µ1 < 20 ; 0.1 < µ2 < 6
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Fig. 1. Block diagram of the proposed OFSMC control system.

In this illustrative example, we present simulation results
showing the state time responses for tracking both refer-
ences. Let us consider the dynamic of inverted pendulum
which given by (66), (Ji-Hyuk et al., 2009; Prasad et al.,
2012; Nour et al., 2007):

We put: y1 = x1 ; y2 = x3 ; [x1 x2 x3 x4]
T = [x ẋ θ θ̇]T

ẋ1 = x2

ẋ2 =
−m2l2g.cos(x3)sin(x3) +mld.cos(x3)x4

hN −m2l2.cos2(x3)

+
mlN.sin(x3)x

2
4 − bN.x2

hN −m2l2.cos2(x3)
+

N

hN −m2l2.cos2(x3)
.F

ẋ3 = x4

ẋ4 =
mgl

N
.sin(x3)−

d

N
.x4

+
cos(x3)

[
m3l3g.cos(x3)sin(x3)−m2l2d.cos(x3)x4

]
N (hN −m2l2.cos2(x3))

+
cos(x3)

[
−m2l2N.sin(x3)x

2
4 +mlbN.x2

]
N (hN −m2l2.cos2(x3))

− ml.cos(x3)

hN −m2l2.cos2(x3)
.F

(66)

Since the control force F , in terms of the motor voltage
Vc, can be expressed as (Prasad et al., 2012):

F =
rkmVc − kmkbx2

Rar2
(67)

where x2 is the velocity of the cart,Km is the motor torque
constant, Kb is the gearbox ratio, R is the motor armature
resistance and r is the radius of driving gear.

When the control variable of the model is the control
voltage Vc, it is enough to substitute the force F by its
expression depending on the voltage control Vc, we obtain:



ẋ1 = x2

ẋ2 =
−m2l2g.cos(x3)sin(x3) +mld.cos(x3)x4

hN −m2l2.cos2(x3)

+
mlN.sin(x3)x

2
4 − bN.x2

hN −m2l2.cos2(x3)

− Nkmkbx2

Rar2 (hN −m2l2.cos2(x3))

+
Nkm

Rar (hN −m2l2.cos2(x3))
.Vc

ẋ3 = x4

ẋ4 =
mgl

N
.sin(x3)−

d

N
.x4

+
cos(x3)

[
m3l3g.cos(x3)sin(x3)−m2l2d.cos(x3)x4

]
N (hN −m2l2.cos2(x3))

+
cos(x3)

[
−m2l2N.sin(x3)x

2
4 +mlbN.x2

]
N (hN −m2l2.cos2(x3))

− kmkbml.cos(x3)x2

Rar2 (hN −m2l2.cos2(x3))

+
kmml.cos(x3)

Rar (hN −m2l2.cos2(x3))
.Vc

(68)

In what follows, we propose a fractional form of the this
model state as follows with: 1

2 < α < 1 and u = Vc ;
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Fig. 2. Inverted pendulum system.

x
(α)
1 = x2(t)

x
(α)
2 = f1(x) + g1(x).u(t)

x
(α)
3 = x4(t)

x
(α)
4 = f2(x) + g2(x).u(t)

y = [x1, x3]
T

(69)

with:

f1 =
−m2l2g.cos(x3)sin(x3) +mld.cos(x3)x4

hN −m2l2.cos2(x3)

+
mlN.sin(x3)x

2
4 − bN.x2

hN −m2l2.cos2(x3)

− Nkmkbx2

Rar2 (hN −m2l2.cos2(x3))

g1 =
Nkm

Rar (hN −m2l2.cos2(x3))

f2 =
mgl

N
.sin(x3)−

d

N
.x4

+
cos(x3)

[
m3l3g.cos(x3)sin(x3)−m2l2d.cos(x3)x4

]
N (hN −m2l2.cos2(x3))

+
cos(x3)

[
−m2l2N.sin(x3)x

2
4 +mlbN.x2

]
N (hN −m2l2.cos2(x3))

− kmkbml.cos(x3)x2

Rar2 (hN −m2l2.cos2(x3))

g2 =
kmml.cos(x3)

Rar (hN −m2l2.cos2(x3))

(70)

We propose this fractional order model with α = 0.95 just
to show the applicability of the proposed controllers and
this value of α is approximately equal to 1 which means
the same model integer order model of inverted pendulum.

The numerical simulations are done with the following
system parameters: m = 0.2kg, b = 5.10−5Nsm−1, M =
2.3kg, l = 0.3m, g = 9.81ms−2, Ra = 2.5Ω, km =
0.05Nm, d = 0.005N.ms.rad−1, kb = 0.05NA−1, h =
M + m, r = 0.0027m, J = 1.4.10−5kgm2, N = ml2 +
J. We also assume that the order of derivatives in the
fractional model is α = 0.95 and the all initial conditions
are nulls ([x1 x2 x3 x4]

T = [0 0 0 0]T ).

5.1 Designing of optimal sliding mode control

The sliding function S(t) and the control signal u(t) are
given by (71) and (73) respectively:

S =
2∑

i=1

µisi =
2∑

i=1

µi(ė2i−1 + λie2i−1)

= µ1(ė1 + λ1e1) + µ2(ė3 + λ2e3)

(71)

u(t) =

∑2
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(2α−1)
2i−1 ))∑2

i=1(µi.gi(x))

− k.sgn(S)∑2
i=1(µi.gi(x))

(72)

⇒ u(t) =
µ1.(−f1(x) + xd

(2α)
1 − λ1.e

(2α−1)
1 )

µ1.g1(x) + µ2.g2(x)

+
µ2.(−f2(x) + xd

(2α)
3 − λ2.e

(2α−1)
3 )− k.sgn(S)

µ1.g1(x) + µ2.g2(x)

(73)

5.2 Designing of optimal fractional sliding mode control

In this application, the sliding function S(t) and the
control signal u(t) are given by (74) and (76) respectively:

S =
2∑

i=1

µisi =
2∑

i=1

µi(e
(α)

2i−1 + λie2i−1)

= µ1(e
(α)
1 + λ1e1) + µ2(e

(α)
3 + λ2e3)

(74)

u(t) =

∑2
i=1(µi.(−fi(x) + xd

(2α)
2i−1 − λi.e

(α)
2i−1))∑2

i=1(µi.gi(x))

− k.sgn(S)∑2
i=1(µi.gi(x))

(75)

⇒ u(t) =
µ1.(−f1(x) + xd

(2α)
1 − λ1.e

(α)
1 )

µ1.g1(x) + µ2.g2(x)

+µ2.(−f2(x) + xd
(2α)
3 − λ2.e

(α)
3 )− k.sgn(S)

µ1.g1(x) + µ2.g2(x)

(76)

We use two cases of references trajectories:

• case 01: In the 1st case, the 1st reference is a periodic
orbit sin(0.2t) and the 2nd equal to −π;

• case 02: In the 2nd case, we use the 1st reference equal
to unit ramp signal t and the 2nd equal to −π

15 .

5.3 Simulation results in 1st case and 2nd case

The optimal parameters obtained after optimization of
1st case (xd1 = sin(0.2t) and xd3 = −π), 2nd case
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(xd1 = t and xd3 = −π
15 ) are given in table 1 and table

2 respectevly. The simulation results of 1st case and 2nd

case are presented in figures (3-9) and figures (20-27)
respectevly.

Table 1. Optimal parameters obtained of
OSMC and OFSMC in the 1st case

k λ1 λ2 µ1 µ2

OSMC 12.0000 2.9600 1.0000 10.9459 0.5100
OFSMC 7.1196 0.4268 1.0000 15.0000 0.5100

Fig. 3. OSMC and OFSMC Control signals (1st case).

Fig. 4. Objective functions with OSMC and OFSMC (1st

case).

Table 2. Optimal parameters obtained of
OSMC and OFSMC in the 2nd case

k λ1 λ2 µ1 µ2

OSMC 1.3665 0.9500 5.5000 9.0000 5.0000
OFSMC 2.5324 0.9500 5.5000 9.0000 5.0000

5.4 Discussion and comparison

Figures (6 to 14) show that when the pendulum is initially
on upper position unstable (θ = 0), it stabilizes after a
transitional regime in its desired position due to the Vc

control voltage. To confirm the advantages of OFSMC over

Fig. 5. Output1 (x) with OSMC and OFSMC (1st case).

Fig. 6. Output2 (θ) with OSMC and OFSMC (1st case).

Fig. 7. Zoom of sliding surfaces of OSMC and OFSMC (1st

case).

OSMC, the performance of the both controllers is com-
pared in above figures. We adopt the optimal parameters
calculated by PSO algorithm, for OSMC and OFSMC con-
trollers. From this simulation results, it can be easily seen
that the system state responses with OFSMC is superior
to those obtained from applying OSMC controller. Also,
comparing the results, the proposed OFSMC possesses not
only more accurate control performance but also faster
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Fig. 8. Tracking error e1 with OSMC and OFSMC (1st

case).

Fig. 9. Zoom of sliding surfaces of OSMC and OFSMC (1st

case).

Fig. 10. OSMC and OFSMC Control signals (2nd case).

convergence speed (figures 5, 6, 12 and 13). This study
confirms that the proposed OFSMC controller reveals bet-
ter results and is preferment than OSMC controller.

6. CONCLUSION

[!htbp] In this paper, an optimal fractional-order sliding
mode control (OFSMC) and an optimal integer sliding

Fig. 11. Zoom of sliding surfaces of OSMC and OFSMC
(2nd case).

Fig. 12. Output1 (x) with OSMC and OFSMC (2nd case).

Fig. 13. zoom of Output1 (x) with OSMC and OFSMC
(2nd case).

mode control (OSMC) for fractional order nonlinear SIMO
systems are investigated. Based on the Lyapunov stability
criteria, the OFSMC and OSMC laws control are designed
and the tracking of references in closed loop is guaran-
teed under the proposed controllers. The optimality of
proposed approaches are ensured using PSO algorithm.
Simulation results have demonstrated the effectiveness and
the robustness of the proposed controllers. Besides, the
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Fig. 14. Output2 (θ) with OSMC and OFSMC ((2nd case).

Fig. 15. Objective functions with OSMC and OFSMC (2nd

case).

Fig. 16. Tracking error e1 with OSMC and OFSMC (2nd

case).

OFSMC is compared with the OSMC which results in
superior performance of the OFSMC.We can also conclude
that the choice of a sliding surface should be the same
nature with the systems to be controlled, i.e., to design
a fractional order sliding mode control for stabilizing this
form of fractional order systems, it must select a fractional

Fig. 17. Tracking error e3 with OSMC and OFSMC (2nd

case).

order sliding surface also contains same derivatives (or
integrals) orders of the plants to be stabilized.
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