
CEAI, Vol.17, No.2 pp. 73-81, 2015 Printed in Romania

 GPGPU optimized parallel implementation of AES using C++AMP

Gabriel Munteanu, Ştefan Mocanu, Daniela Saru


 Faculty of Automatic Control and Computer Science , University Politehnica of
Bucharest, 060042, Romania, (gabriel.munteanu2909@yahoo.com,

stefan.mocanu@upb.ro, daniela.saru@aii.pub.ro)

Abstract: Nowadays, the characterization of a computing system using attributes like "single core" is, for
most applications, deprecated. Multiprocessor or multi-core platforms are, now, widespread and serve for
solving more and more complex problems in shorter execution times. Video cards make no exception to
this rule since, for the past years, they are based on powerful GPUs with high parallelism architectures
and extremely fast memories. In addition, new development languages and platforms became available
for the programmers. This way, the processing power of the GPU (Graphics Processing Unit) can now be
used even for non-video or non-graphics applications that imply a serious amount of parallel processing.
This paper presents a comparative study of AES algorithm implementation on CPU and two different
GPGPU platforms. Similar studies involving GPGPUs are based on Nvidia's CUDA platform but this
approach imposes a severe limitation over the application portability. In our approach a platform
independent application was designed and implemented using C++ AMP, the latest C++ extension
oriented to parallel programming. Tests were conducted over two GPGPU platforms, one from NVidia
and one from AMD and a multi-core CPU from Intel. Results show that cross-platform portability was
achieved while the performances are similar or better as compared to similar studies.

Keywords: graphic processing unit, GPGPU, encryption, AES, parallel processing, C++ AMP



1. INTRODUCTION

Processing time, when it comes to solving a problem, is
reverse proportional with the available processing power. For
this reason, efforts for improving actual computing
techniques and facing new arriving challenges were made.

As one well knows, the heart of any intelligent device is the
processor. Preoccupations regarding the increase of
mathematical operations made in the same time unit have
lead, in the digital era, to dramatic changes both in
architecture and computing philosophy. Until 2006, engineers
made huge efforts to increase the working frequency of the
processors. This approach has reached it's technological
limits due to the problems derived from high working
frequencies such as high power consumption and huge
amount of dissipated heat which required more and more
advanced and expensive cooling systems. In this scenario,
unfortunately, most of the consumed electric energy was
converted into heat and then, lost, without having more than a
marginal positive impact over the processing power.

The solution was represented by developing the processor
with 2 cores (and more, soon afterwards) onto the same
silicon chip, working at low frequencies, but capable of
running, in real mode, 2 tasks in the same time. This way,
real parallelism was possible which had a significant
repercussion over lowering execution times.

Just like the central processors (CPU – Central Processing
Unit), video cards had an interesting evolution over the time

and the most significant moment, from this study's point of
view, was the one when the use of these devices for other
purposes than the pure graphics ones was aimed. From that
moment on, new programming languages, frameworks and
extensions were created with the sole goal of offering the
programmer the possibility of using the GPU (Graphics
Processing Unit) for solving general purpose high complexity
problems. This is encouraged by the GPU's highly
parallelized architecture, the processor itself embedding
hundreds or even thousands of cores. In addition, fast
memories were placed on the video card, close to the GPU,
allowing ultrafast communication between those two. That
was the moment a new concept was born: GPGPU – General
Purpose Graphic Processing Unit which is nothing but a GPU
with processing capabilities that can be exploited for non-
graphic applications.

Among the programming languages/frameworks allowing
GPGPU programming one may notice: CUDA (offered by
NVidia in 2007), OpenCL (2008) and C++ AMP (released by
Microsoft at mid 2012).

This paper presents an original optimized implementation of
AES (Advanced Encryption Standard) on two different
GPGPU platforms and a CPU platform. Due to its'
functionality and the way data is used, AES algorithm is
suitable for a parallel implementation so the obtained results
are relevant.

By using the "young" C++ AMP extension dedicated to
oriented parallel programming, a high portability was aimed.
Unlike similar studies based on CUDA (Luken et al, 2009),

74 CONTROL ENGINEERING AND APPLIED INFORMATICS

the developed application can be used on any GPGPU
platform under various versions of Microsoft Windows,
without considerable modifications or even no modifications
at all. Other authors tried to achieve platform independence
by using FPGA (Hoang and Nguyen, 2012).

The rest of paper is organized as follows. Section 2 describes
related work focusing on AES implementations on CUDA
but also investigates some existing alternatives. Section 3
presents implementation details and optimizations brought to
AES. In Section 4, actual results and performance evaluation
tests are presented. Conclusions and ideas for future
developments and improvements are presented in Section 5.

2. RELATED WORK

The popularity and potential of GPGPUs dramatically
increased as soon as new programming
languages/frameworks sustained programmers' efforts to
develop complex, parallel applications.

From 2007, GPGPUs have been used for developing complex
applications for various fields where parallelism is fitted:
image processing (Morar et al., 2012), biology (Benso et al.,
2010), medicine (Morar et al., 2012), data compression,
encryption and others. The common characteristic of these
fields is that data can be segmented and independently
processed and partial results can be aggregated at the end.
Results prove that, in certain conditions, GPGPU offers far
better performance than the CPU and rival more complex
parallel processing structures, such as computer clusters or
supercomputers, at infinite lower costs.

The first initiative was represented by CUDA (Compute
Unified Device Architecture) (Nvidia, consulted 2014)
offered by Nvidia for programming their proprietary
GPGPUs. The core of CUDA is C/C++ to which specific
APIs were added. Basically, CUDA offers the possibility to
use the GPGPU but writing code for the CPU is possible
within the same application. This way, the programmer has
the possibility of using both CPU and GPGPU according to
the application's demands.

There are, however, some severe drawbacks: the developed
applications are platform dependent, meaning they can not be
executed on different types of GPGPUs. Especially when it
comes to unknown hardware configurations, this imposes
severe limitations which can result in partial or total
incapacity of running the application.

An alternative for CUDA is represented by OCL (Open
Computing Language, OpenCL). OCL is a framework that
allows parallel implementations for various processing units
such as: CPUs, GPGPUs, DSPs (Digital Signal Processor),
FPGAs (Field Programmable Gate Array) and so on. Initially
OCL (OpenCL, 2014) was supported by Apple and was
presented to other companies with the purpose of
implementing the specification on the proprietary hardware.
Soon, a working group named Khronos was born. Intel,
AMD, Nvidia, Sun and others joined Apple and started to

offer OCL support. Unlike CUDA, in case of OCL the
portability issue was addressed.

Recent literature presents several implementations of AES on
CUDA platforms. In (Luken et al., 2009), CPU and CUDA
implementations of AES and DES algorithms are depicted.
The results reveal the fact that GPGPU implementation
surpasses the CPU implementation as soon as the data to be
encrypted is larger than 100 KB. For even bigger data, the
AES GPGPU implementation was about 3.5 time faster than
the CPU implementation while the DES GPGPU one was
about 4.5 times faster than DES CPU. In (Iwai et al., 2010)
authors report a performance gain of 10 times when running
the CUDA based AES encryption on NVIDIA GeForce
GTX285. A similar study (Manavski, 2007). reports a
performance gain of almost 20 times in favor of NVIDIA
GeForce 880 GTX as opposed to an Intel Pentium IV CPU.
However, the result was obtained only for a specific length of
the input data (8 MB) and, also, the investigated range of
input data volume was rather short (2KB to 8 MB).

Several studies approached the GPGPU based AES
encryption using OpenCL. In (Gervasi, Russo and Vella,
2010) a comparative study regarding the AES
implementation on a multicore CPU and GPGPU using
OpenCL is reported. As authors conclude, the GPGPU
OpenCL implementation was superior to CPU sequential and
parallel similar implementations. The study was conducted
over an Intel CPU and two different GPGPUs: one from
AMD (AMD Firestream 9270) and one from Nvidia (Nvidia
GeForce 8600 GT).

In (Xingliang et al., 2011) the authors present an AES
implementation based on OpenCL as opposed to a similar
implementation based on CUDA. Actual result show the
OpenCL implementation is superior to CPU serial and
parallel programming but a little slower than CUDA
implementation. However, the study concludes that a loss in
performance is acceptable if the implementation exhibits
better portability.

In this paper, AES implementation based on C++AMP is
presented. The comparative study is focused on a multi-core
CPU and two different GPGPU platforms. Portability as well
as performance improvements are aimed. Details will be
provided in the following sections.

3. IMPLEMENTATION DETAILS

3.1 C++ AMP

C++ Accelerated Massive Parallelism (or, shortly, C++
AMP) is a technology developed and maintained by
Microsoft that exploits parallel hardware architecture (CPU,
GPU, etc.) for accelerating applications written in C++. The
AMP extension of C++ has an open specification, meaning it
is created and maintained by Microsoft but it is available for
free to all interested programmers and, even more, anybody
can bring optimization proposals.

CONTROL ENGINEERING AND APPLIED INFORMATICS 75

C++ AMP was released in mid 2012 which makes it one of
the youngest development tools. It was included in Microsoft
Visual Studio 2012 and it is based on DirectX11, therefore all
hardware devices which run C++ AMP code must support
DirectX11 framework. With very few exceptions, most of the
devices of interest fulfil this demand. If C++AMP code will
run on Window 7 (or newer) and the computer does not have
a proper video card, the application may still be executed on
a device named Microsoft Basic Render Driver or Warp
(Windows Advanced Rasterization Platform) which is
nothing but an emulated device on the CPU based on SIMD
(Single Instruction Multiple Data) instructions.

One of the strongest points of C++AMP is represented by the
possibility of defining and using templates which allows the
design and use of a highly reusable code. Another strong
point is represented by the native support for developing
parallel applications. There are, however, some drawbacks:
the inexistence of new and delete operators, the impossibility
of converting pointers or the inexistence of throw-try-catch.
A programming difficulty is given by the restriction in using
pointers: the code running on CPU can only access RAM
memory while the code running on GPGPU can only access
the video memory.

The major advantage of a C++ AMP implementation is given
by its portability. In this study, the same application was run
over different hardware processing platforms without the
need of re-writing the code. Although, at this point, a minor
restriction is given by the operating system which is limited
to Microsoft Windows (regardless the version), at the
beginning of September 2014 Microsoft and AMD
announced the release of a C++ AMP compiler with Linux
Support. For this reason, we appreciate there is an even lower
portability limit when it comes to application developed with
C++ AMP.

3.2 AES

AES (Advanced Encryption Standard) is an
encryption/decryption standard defined by the US
governmental institutions. The standard is described in the
Federal Information Processing Standard 197 (AES, 2001)
and was requested due to the security issues identified in
DES (Data Encryption Standard) and the unacceptable speed
of 3DES. The replacement for DES had to support:
symmetric encryption, various size encryption keys (128, 192
and 256 bits) and, maybe most important, both hardware and
software implementation.

There were 50 candidates for the initial selection but only 5
of them qualified for the final turn. Based on its strong
security, efficiency, performance and ease of implementation,
Rijndael was declared winner and officially became AES.
Details about all 5 finalists can be found in (Ichikawa et al.,
2000; Schneier and Whiting, 2000).

AES is based on repetitive calls of 4 well defined functions:
SubBytes(), ShiftRows(), MixColumns() and
AddRoundKey(). The first three are dedicated to confusion
and diffusion, two operations that aim to prevent breaking the

encryption by cryptanalysis means. The fourth is in charge
with effective encryption. In other words, SubBytes()
scrambles the bits of each byte, ShiftRows() scrambles each
row, MixColumns() scrambles each column and
AddRoundKey() encrypts the data. Full details of how AES
works are presented in (AES, 2001).

Encryption algorithms can choose one of the three most
popular (Dworkin, 2001) operation modes:

1) ECB (Electronic Codebook) – this is the easiest
operation mode. Each data block is individually
encrypted using the same encryption key, as presented
in Figure 1. The main problem is that identical blocks
will generate, after encryption, identical results which
make cryptanalysis process easier. However, the
probability of having a considerable amount of identical
blocks of data is low and, furthermore, this mode is one
of the few that can be parallelized. This is why it was
chosen for this study.

2) CBC (Cipher block chaining), PCBC (Propagating
cipher-block chaining (PCBC), Cipher feedback (CFB),
Output feedback (OFB) – these modes are sequential
dependent since the current block encryption can be
made only if all previous blocks were encrypted.
Although all offer better confidentiality, they are not
proned to parallel implementation. This mode requires a
key which will only be used for encrypting the first
block of the message as one can see in Figure 2.

Fig. 1. ECB mode.

Fig. 2. CBC mode.

76 CONTROL ENGINEERING AND APPLIED INFORMATICS

3) CTR (Counter)/ICM (Integer counter mode) – this
mode is using a starting value for encryption process.
This value can be obtained from the beneficiary of the
encrypted data which aims to receive safe data through
a public network or channel. Since blocks of data are
independently encrypted, this mode can also be
parallelized. In addition to what ECB performs, the
encryption process modifies the initial key for each
block of data according to a known procedure, usually
an incremental one as depicted in Figure 3. This way,
identical blocks of data will no longer generate identical
results after encryption. The method used for this study
can be easily modified in order to implement this
operation mode.

Giving the fact that AES was designed before the "modern
parallel era" clearly it natively works as a sequential
algorithm. This is why it's main drawback is the encryption
speed which is considered rather low. As Vincent Rijman
himself stated, performance comes with a lack of speed.

Fig. 3. CTR mode.

3.3 Actual implementation

The main objective of this study was to use a software
platform in order to develop a parallel application exploiting
different types of processing devices. Secondary objectives
involved optimizations of AES implementation and increase
its' portability over heterogeneous hardware platforms.

The low data dependency in AES algorithm allows us to
consider that a parallel implementation is possible and,
furthermore, to expect superior results as opposed to a
sequential implementation. This, by itself, can be considered
an optimization to classic AES since low speed is considered
the major problem of the original AES. Previous
implementations based on CUDA (Manavski, 2007) seem to
confirm our hypothesis.

The AES implementation presented in this study is based on
The Design of Rijndael (Daemen and Rijmen, 2002). Several
parameters were eliminated, for example the variability of the
data block and the encryption key. It is important to
remember that the purpose of this study was not only AES

optimization but the use of C++ AMP in an attempt to
develop a fast, cross-platform project.

After a first, basic implementation, several questions were
obvious: what happens if we deal with large data, is there a
limitation regarding the number of active threads? And what
happens if we deal with small data, is the GPGPU parallel
implementation always better than a CPU parallel or even
sequential implementation ? The results section will provide
the answers to these questions.

The original sequential encryption procedure from (Daemen
and Rijmen, 2002) was implemented and adapted for GPGPU
as follows:

1) Current thread is identified and data to be processed
is located within it. The linear data is copied into a local
matrix in order to maintain the conformance with the
encryption algorithm which works with a 4x4 unsigned
int matrix unlike unsigned char that is described in
(Daemen and Rijmen, 2002).

2) Due to programming language restrictions, all data
types were converted from unsigned char to unsigned
int.

3) Globally declared structures embed the encryption
key and are available for the GPGPU specific code
which is executed by threads.

Implementing a parallel version of AES using C++ AMP
may seem both easy and fast. This is partially true because,
so far, modularity issues were not discussed and the "of the
box" algorithm was not tested in difficult conditions.

One of the biggest problems is represented by the inexistence
of char (byte) type in C++ AMP. This may seem a little
surprising since many applications need access at byte level.
Graphics processing applications are just one example of
such applications. As a consequence, the data was transmitted
to the GPGPU as unsigned int and a procedure to implement
bit operations for extracting byte values from the original
data array was developed starting from Gregoy and Miller
(2012). A major problem was given by the fact that char is
represented on 8 bits and the unsigned int is represented on
32 bits therefore it is imperative to work with groups of 4
bytes (32 bits). Moreover, since the encryption block has 128
bits (16 bytes), the input data must be a multiple of 16. In our
approach, if the above condition is not met missing values are
filled with zeros.

The parallelization aims to encrypt each data block of 128
bits on a different thread. Having the input data in a linear
form, as an array, data to be processed by each thread must
be brought to a matrix form as mentioned above. The start of
corresponding segment for each thread is obtained by
multiplying the thread order by 4. Extraction of data based on
this procedure revealed the fact that bytes are stored, in
memory, in reverse order. This is explained by the little
endian format (IBM, consulted 2014) in which a 4 bytes
integer is represented by some processing units. Having this
in mind, for every unsigned int value, bit operations and
masks were used to extract data in reverse order as depicted

CONTROL ENGINEERING AND APPLIED INFORMATICS 77

in Figure 4. The entire input text is transferred to video RAM
before encryption and, similarly, the encrypted text is
transferred to system's RAM at the end.

Fig. 4. Extracting data from Little endian format.

Another problem that had to be solved was given by the TDR
(Timeout Detection & Recovery) function of Windows
Operating System (earlier than Vista) that prevents
exhaustive use of the GPGPU. The utility of this function is
obvious when a general application makes excessive use of
the graphic processor, sometimes even preventing a simple
image to be displayed. The solution offered by TDR consists
in resetting video cards if they fail to respond to a request
within 2 seconds.

Since this study aimed to fully exploit the GPGPU processing
power in order to improve the AES algorithm without any
video requirements, the TDR function limited our initiative.
More precisely, as soon as the input data exceeded 200 MB,
the TDR stopped the encryption by resetting the video card.

Although the TDR function can be disabled by modifying
several keys in the Operating System's registry, this was not
considered a valid option since it reduces the portability of
the application (Other systems may not have the TDR
disabled and administrator privileges are needed to do that).
In order to avoid TDR, in our approach the data which is
encrypted by the GPGU was, initially, divided into segments
of 50MB, each segment being transferred alone from RAM to
GPGPU memory. The 50MB limit was chosen in order to
allow the application to run on any GPGPU regardless the
age, speed or memory.

However, for later generations GPGPUs, this limit may prove
to be too small therefore it may induce unwanted delays due
to the sub-optimal degree of data fragmentation. This is why
this limit should be maximized according to the individual
performance and capabilities of each GPGPU the application
will run on. This would have a positive impact over the data
fragmentation and reconstruction procedures, thus the overall
performance of the application.

In order to take full advantage of the system’s specific
GPGPU, a dynamic procedure to determine the optimum data
segment size that is passed at once to the GPGPU to be
encrypted was designed and implemented. Answers to
several questions had to be found first: how to accurately
measure execution time on the GPGPU, how to estimate the
optimum volume of data that a GPPGU can process before
TDR resets the video card and, finally, check if the procedure
must be applied for all chunks of data or only when the
program is started.

According to (Gregoy and Miller, 2012), chapter 7,
Optimization, the peak performance can be achieved only if

data copy procedure to video RAM is completely separated
from data processing itself. The possibility of using system’s
RAM directly by the GPGPU was investigated in order to
determine if the copying procedure of data to video RAM
was absolutely necessary. Although system’s RAM can be
accessed by the GPGPU using C++AMP, this approach did
not lead to any improvements. There are several reasons that
can explain this result: graphic memory bandwidth is bigger
than RAM’s while the latency is smaller. In addition, the PCI
bus itself introduces some delays in data exchange. Under
these circumstances, this direction was dropped.

The execution time can be accurately determined by using a
method presented in (Gregoy and Miller, 2012). A system
call activated before and after the processing on the GPGPU
is used to determine the exact elapsed time between those
calls.

As mentioned earlier, a testing procedure was implemented in
order to determine the optimum (maximum) volume of data
that a GPPGU can process before TDR is activated. An initial
value is set as a reference. In our case, this value is set to 50
MB for the reasons mentioned above. After the kernel call on
GPGPU, we check if the processed data is as big as expected
according to the reference. If so, the elapsed time is
determined and, by a simple proportional rule, the maximum
amount of data that can be processed within 1.8 seconds is
calculated. The interval of 1.8 seconds represents 90% of the
TDR interval (2 seconds). An error of 10% (0.2 seconds) was
considered in this case. If the system is used only for data
encryption, as it was the case of this study, the determined
value is relevant so it can be used for future use. This is why
the value is stored in a local file becoming the new reference.
In case multiple GPGPUs are present, multiple values will be
stored and used.

This procedure can be applied each time an encryption is
required so, regardless the GPGPU generation or capabilities,
the application will run at its peak performance. However,
its' efficiency is high if there is a big volume of data to be
encrypted and the procedure is executed only once, at the
beginning. Preferably, the stored reference value should be
used but this approach is fine only if the GPGPU suffers no
changes in load between encryption requests. If the GPGPU
gets busy (processing video or graphic information, for
instance) the reference value is no longer relevant. This
situation was not investigated in this study.

4. PERFORMANCE EVALUATION AND RESULTS

The first testing scenario was based on the following system:

- CPU Intel Core i7 960 @2GHz, 4 physical cores, 8
virtual processors

- RAM 8GB, DDR3, 1066MHz
- GPGPU Nvidia GeForce GTX 480, 1482 MB

DDR3, 448 cores
The second testing scenario was based on the following
system:

78 CONTROL ENGINEERING AND APPLIED INFORMATICS

- CPU Intel i5-4200M @ 2.5Ghz, 2 physical cores, 4
virtual processors

- 8GB Ram DDR3 1600Mhz
- AMD Radeon HD 8750M, 2048MB DDR3, 384

cores
The other hardware components are not relevant since all test
data was generated in RAM in order to avoid any delays
given by slow components. As one can observe, the testing
hardware configurations are not even close in performance.
For this reason, results will be presented separately.
However, it must be pointed that the study did not aim to
compare two different GPGPU platforms. Instead, one of the
main goals was to achieve a real portability for different
GPGPU platforms.

Given the architecture differences between the GPGPU and
the CPU, in case of the latter, a load balancing procedure was
implemented for a fair distribution of the processing effort to
all available cores.

In order to provide a relevant evaluation, a reference had to
be set. In our case, the reference is represented by two
implementations of AES algorithm on CPU, the first purely
sequential and the second, parallel. To eliminate any hazard
10 different tests were made and the results were averaged.

Table 2. Test results for the first hardware system.

Table 2 presents the data collected after running the
application on the first testing system. CPU S and CPU P
stand for CPU Sequential and CPU Parallel implementation
while GPU stands for Nvidia's GPGPU. The testing data were
chosen in order as many real case scenarios as possible. The

maximum size, set to 1GB, was more than enough to reveal
the differences between CPU an GPGPU behaviour. The first
test may appear useless but, in fact, it had the purpose of
initializing the GPGPU since a delay in reaction was
observed for the first processing. More or less, it should be
interpreted as a "wake up" signal for the GPGPU.

Data from Table 2 confirm some expectations but also reveal
several interesting aspects. For small data (<8KB), sequential
implementation on CPU outperforms the parallel CPU
implementation (as shown in Figure 5) and, also, the GPU
implementation.

Fig. 5. CPU S vs. CPU P implementation.

As soon as input data exceeds 8KB, the CPU S exhibits
worse results CPU P. After 256 KB, CPU S behaves worse
than both its competitors. For a better observation of CPU P
and GPU implementations, the CPU S will no longer appear
in following two figures.

a.

b.

Fig. 6. CPU P vs. GPU implementation.

CONTROL ENGINEERING AND APPLIED INFORMATICS 79

Figure 6a presents the encrypting times for data ranging from
8KB to 1MB. Within this interval, one can observe a better
behaviour for the CPU P as opposed to GPU. Similar
executing times were obtained for input data of 1 MB. After
the crossing point observed at 1 MB of data, the GPU
implementation clearly outperforms the parallel
implementation on CPU (Figure 6b). A dramatic difference in
performance is observed as soon as the input data exceeds 32
MB.

The overall behaviour of AES implementation on Nvidia's
GPGPU as opposed to the sequential and parallel CPU
implementations is revealed in Figure 7.

Performance ratio was defined as CPU processing time/GPU
processing time. Perf S represents the performance ratio of
GPU execution compared to CPU S execution while as Perf P
represents the performance ratio of GPU execution compared
to CPU P execution. For high volumes of input data
(>128MB), figures reveal a Perf S of 45 and a Perf P of 10.

Fig.7. Performance ratio, first testing system

Table 3 presents the data collected after running the
application on the second testing system. CPU-2 S and CPU-
2 P stand for CPU Sequential and CPU Parallel
implementation while GPU-AMD stands for AMD's GPGPU.
The testing data were identical to those used in the first
testing scenario. As previously stated, a direct comparison
between different GPGPU platforms was not aimed. Instead,
we consider that GPGPU's performance relative to system's
CPU is relevant in all cases.

Similar behaviours were observed as in the first testing
scenario. Figure 8 presents the performance of sequential and
parallel implementations of AES on the second's system
CPU. Measured execution times are slightly different (which
was expected) but the trend is the same. The parallel
implementation catches up the serial one as soon as input
data exceeds 8 KB just like in the previous testing scenario.

In Figure 9a encrypting times for data ranging from 8KB to
8MB are presented. A better behaviour for the CPU-2 P as
opposed to GPU-AMD can be observed but, in this case,
similar executing times were obtained for input data of 8 MB.
Comparing with Figure 6a, this behaviour can be explained
by the lower performance of second GPGPU and higher
performance of the second CPU. However, one can observe

that trends are similar. Just like in the previous test, GPU-
AMD's performance dramatically increases for large input
data, this time bigger than 32 MB (Figure 9b).

Table 3. Test results for the second hardware system

Fig. 8. CPU-2 S vs. CPU-2 P implementation.

a.

80 CONTROL ENGINEERING AND APPLIED INFORMATICS

b.

Fig. 9. CPU-2 P vs. GPU-AMD implementation.

Performance ratio was determined using the same criteria as
in the previous configuration and results are presented in
Figure 10. Perf-2 S and Perf-2 P exhibit the same trend as in
Nvidia's GPGPU case.

Fig. 10. Performance ratio, second testing system.

However, if the Perf-2 P is very close to Perf P from the first
scenario, one can observe that Perf-2 S is considerably lower
than Perf S (20 as opposed to 45).

5. CONCLUSIONS AND FUTURE WORK

In this study, an optimized version of AES was implemented
on GPGPU platforms from different manufacturers using
C++ AMP. The original AES was slightly modified for
parallel implementation. For each hardware testing platform,
CPU based sequential and parallel versions were tested and
used as references.

Previous studies covering various domains report differences
in execution times of CPU as opposed to GPGPU up to
hundreds of times (Govindaraju et al., 2008; Mocanu et al.,
2014). In their controversial paper (Lee et al, 2010) the
authors report smaller differences of only 2 or 3 times. For
input data bigger than 128MB, our study reveals actual
differences ranging from 20 and 45 times in case of non-
optimized GPGPU implementations vs. sequential CPU
implementations. A performance ratio of 10 in favor of
GPGPU implementation was observed when compared to a
parallel CPU implementation. For input data within 2MB and
128 MB, the GPPGU still outperforms the CPU but the
performance ratio is smaller, ranging from 1.7 to 10. The

results are very close to similar studies where AES was
implemented on GPGPU using different frameworks.

Even if the results are not the same for all testing systems, the
most important conclusion is that all systems exhibit the
same trend. It is safe to assume that collected and presented
data are relevant for any present system based on components
from the same generation.

Another very important aspect is related to the application's
portability. In fact, as stated from the beginning, this was one
of the major goals of this study since the literature does not
report similar achievements. As presented, the application
was tested over two GPGPUs from different manufacturers
and over two different CPUs. The only request is that
DirectX 11 (Microsoft DirectX, consulted 2014) should be
supported by the video hardware. This is a very lax
requirement since all major video cards manufacturers offer
this support for years now. For instance, Nvidia included
support for DirectX 11 staring with September 2009 when
GeForce GT430 was released. In the same month, ATI
(bought by AMD) released Radeon 5000 Series, also
providing support for DirectX 11.

An important achievement of the study is represented by the
procedure that determines the maximum amount of data that
the GPGPU can process before TDR is activated. From the
beginning, the procedure was designed to be adaptive,
meaning it can work considering previous results and the
present state (load) of the GPGPU. Since, in this study, the
load of the GPGPU was constant (there were no other
requests but the encryption) the procedure was called only
once and the resulted value was used for the entire encryption
process. However, in case of heavy loaded systems, the
procedure will be called for every step of the encryption. This
way, the optimum amount of data that can be processed at
that moment by the GPGPU without being disturbed by the
GPGPU will be determined.

Another direction that will be investigated is the
improvement of AES algorithm. One of the improvements
that can be easily achieved is replacing the ECB mode with
CTR mode. In fact, the only difference consists in adding an
incremental block to current implementation. This way,
stronger encryption will be possible without considerable
performance loss.

Since AES is a symmetric algorithm, decryption will be
implemented with small efforts. Moreover, security and
robustness of AES can be increased by adding all key lengths
indicated by the standard (192b and 256b) which will be very
important especially for very sensitive data.

In addition to the performance gain offered by the parallel
architecture of the GPGPUs, algorithms' optimization will be
addressed in our future studies. First step may be represented
by the implementation of a dynamic selection and scheduling
mechanism. A study dedicated to scheduling of
heterogeneous processors is presented by Noureddine et al,
(2008). In our case, the mechanism should choose between
the CPU and GPGPU implementations based on several

CONTROL ENGINEERING AND APPLIED INFORMATICS 81

parameters: size of input data, hardware configuration and
performance and hardware availability.

REFERENCES

AES (2001), http://csrc.nist.gov/publications/fips/fips197
/fips-197.pdf, consulted 2014

Benso, A., Di Carlo, S., Politano, G., Savino, A., and Scionti,
A. (2010). GPU cards as a low cost solution for efficient
and fast classification of high dimensional gene
expression datasets, Journal of Control Engineering and
Applied Informatics, ISSN 1454-8658, vol. 12, no.3, pp.
34-40

Daemen, J., and Rijmen, V. (2002). The Design of Rijndael.
Springer, Heidelberg, Germany, ISBN: 3-540-42580-2

Dworkin, M. (2001). Recommendations for Block Cipher
Modes of Operation. Methods and techniques, NIST
Special Publication 800-38A, 2001 Edition, Washington,
DC

Gervasi, O., Russo, D., and Vella, F. (2010). The AES
implantation based on OpenCL for multi/many core
architecture, Proceedings of the 2010 International
Conference on Computational Science and Its
Applications, 23-26 March, Fukuoka, Japan, pp. 129-
134, ISBN: 978-0-7695-3999-7

Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., and
Manferdelli, J. (2008). High performance discrete
Fourier transforms on graphics processors, IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'08),
15-21 November, Austin, Texas, USA, pp.1-12, ISBN:
978-1-4244-2834-2

Gregoy, K., and Miller, A. (2012). C++ AMP - Accelerated
Massive Parallelism with Microsoft® Visual C++®,
Microsoft Press, 1 edition, September 25, ISBN-10:
0735664730

Hoang, T., and Nguyen, V.L. (2012). An Efficient FPGA
Implementation of the Advanced Encryption Standard
Algorithm, IEEE International Conference on
Computing and Communication Technologies, Research,
Innovation and Vision for the Future (RIVF), Feb. 27
2012-March 1 2012, Ho Chi Minh City, Vietnam, pp. 1-
4, ISBN: 978-1-4673-0307-1

IBM, http://www.ibm.com/developerworks/ aix/library/au-
endianc/index.html?ca=drs-, consulted 2014

Ichikawa, T., Kasuya, T., and Matsui, M. (2000). Hardware
Evaluation of the AES Finalists, The third AES
Candidate Conference, 13-14 April, New York, USA,
pp. 279-285

Iwai, K., Kurokawa, T., and Nishikawa, N. (2010). AES
encryption implementation on CUDA GPU and its
analysis, Proceedings of 2010 First International
Conference on Networking and Computing, 17-19 Nov.,
Higashi-Hiroshima, pp. 209-214, ISBN 978-1-4244-
8918-3

Lee, V., Kim, C., Chhugani, J., Deisher, M., Kim, D.,
Nguyen, A.D., Satish, N., Smelyanskiy, M., Chennupaty,
S., Hammarlund, P., Singhal, R., and Dubey, P. (2010).
Debunking the 100X GPU vs. CPU Myth: An Evaluation
of Throughput Computing on CPU and GPU.
Proceedings of 37th International Symposium on
Computer Architecture (ISCA’10), June 19-23, Saint-
Melo, France, pp. 451-460, ISBN: 978-1-4503-0053-7

Luken, B., Ouyang, M., and Desoky, A.H. (2009). AES and
DES Encryption with GPU, Proceedings of the ISCA
22nd International Conference on Parallel and
Distributed Computing and Communication Systems
(PDCCS 2009), September 24-26, 2009, Louisville,
Kentucky USA, pp. 67-70

Manavski, S.A. (2007). Cuda compatible GPU as an efficient
hardware accelerator for AES cryptography. IEEE
International Conference on Signal Processing and
Communications (ICSPC 2007), 24-27 November 2007,
Dubai, United Arab Emirates, pp. 65-68, ISBN: 978-1-
4244-1235-8

Microsoft DirectX - https://msdn.microsoft.com/en-us/
library/windows/desktop/ee663275%28v=vs.85%29.aspx
consulted 2014

Mocanu, Ş., Din, R., Saru, D., and Popa, C. (2014). Using
Graphics Processing Units for Accelerated Information
Retrieval, Studies in Informatics and Control, ISSN
1220-1766, vol. 23 (3), pp. 249-257, 2014.

Morar, A., Moldoveanu, F., Asavei, V., Moldoveanu, A., and
Egner, A. (2012). Multi-GPGPU Based Medical Image
Processing in Hip Replacement, Journal of Control
Engineering and Applied Informatics, ISSN 1454-8658,
vol. 14, no.3, pp. 25-34

Noureddine, L., Yahia, H., and Borne, P. (2008). Multi-
objective Scheduling onto Heterogeneous Processors
System Using Ant System & Fuzzy Logic Controller,
Studies in Informatics and Control, vol. 17 (1), pp. 95-
106, 2008, ISSN 1220-1766

Nvidia CUDA ZONE, https://developer.nvidia.com/cuda-
zone, 2014

OpenCL, https://www.khronos.org/opencl, 2014
Schneier, B., and Whiting, D. (2000). A Performance

Comparison of the Five AES Finalists, The third AES
Candidate Conference, 13-14 April, New York, USA,
pp. 123-135

Xingliang, W., Li, X., Zou, M. and Zhou, J. (2011). AES
finalists implementation for GPU and multi-core CPU
based on OpenCL, IEEE International Conference on
Anti-Counterfeiting, Security and Identification (ASID),
24-26 June, Xiamen, China, pp. 38-42, ISBN: 978-1-
61284-631-6

