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Abstract: The concept of the bidirectional platoon control system is developed, which enjoys significant
advantages over present day adaptive cruise control systems in terms of string stability, tracking safety
and fuel economy. A novel bidirectional platoon control system model is established, in which the effect
of engine time uncertainty, time-varying actuator delay (including fuelling delay and braking delay) and
actuator saturation is involved. Based on the new model, a H- controller is presented that can robustly
stabilize the vehicular platoon system only use information from their immediate neighbors. The
theoretical results show that the proposed system can achieve the objective of a smaller inter-vehicle
spacing and bidirectional string stable. The effectiveness and advantage of the presented methodology are
demonstrated by both numerical simulations and experiments with laboratory scale Arduino controlled

cars.
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engine time uncertainty.

1. INTRODUCTION

Over the past decade, a considerable attention has been paid
to the research theme of automated vehicles in intelligent
vehicle highway systems (Li, 2011). There are so many
advantages of moving vehicle based on the notion of platoons,
such as driving safety and comfort, reducing fuel
consumption and air pollution, and improving the throughput
in the highway (Tiberiu, 2005). Due to this, a lot of research
works on platoon control have been extensively studied in
(Jovanovic, 2005; Seiler, 2004).

The control architectures of platoon investigated in the
literature can be classified into three broad categories:
predecessor-following, predecessor and leader following and
bidirectional control. The architecture is called predecessor
following if the control action on a particular vehicle depends
on the information with the predecessor, i.e., the vehicle in
front of it. This scheme is decentralized, since the control
action on each following vehicle is computed based upon
measurements obtained by on-board sensors. It was shown
that this architecture suffers from a drawback known as string
instability (Seiler, 2004). That is, the response of a
disturbance on an individual vehicle will be amplified along
the string of vehicles. Constant time-gap spacing strategy was
introduced by (Vahidi, 2003) to overcome this difficulty, and
in which the inter-vehicle distances are dependent on vehicle
velocities. However, this only helps when the control
bandwidths are allowed to diverge as the number of vehicles
grows (Middleton, 2010). Alternatively, in (Xiao, 2011)
shown that string stability can be achieved if a predecessor
and leader following structure is adopted, where the control

action on a particular vehicle is based on the distance
between the preceding vehicle as well as the velocity and
acceleration of the lead vehicle. This scheme is centralized,
since the lead vehicle has to broadcast its information to all
following vehicles. The use of the network to provide the
following vehicles in the platoon with the lead vehicle
information immediately cause some questions on the effect
of disruptions of the wireless communication. Under this
framework, these works presents in (Hedrick, 2001; Liu,
2001) studied the effects of communication delays on string
stability; longitudinal platoon control and state estimation via
communication channels with packed-dropout are addressed
in (Guo, 2011); a decentralized communication and control
strategy is presented in (Guo, 2014) for automated driving
assistance to a platoon of vehicles in heavy traffic and scarce
visibility.

Another control architecture investigated in the literature, and
on which we focus in this research is decentralized
bidirectional control. This control scheme is advantageous
because, apart from its simplicity in achieving string stability,
it does not require wireless communication. The control
action on an individual vehicle depends on the information of
its own velocity and the spacing errors between it and its
predecessor and its follower vehicles, which can be obtained
by on-board sensors alone. Still, the bidirectional platoon
control suffers from the high sensitivity to the length of the
vehicular platoon and lower performance (Hao, 2013). In
(Jovanovic, 2005), the authors investigate optimal control
strategies for a bidirectional platoon with an increasing
number of vehicles and show that some related LQR
problems are ill-posed. In order to enhance the coherence of
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the bidirectional platoon, an optimal controller was designed
in (Liu, 2012), which integrated the previous results.

It is worth noting that most existing results on bidirectional
platoon control are limited in at least the following three
aspects. Firstly, ignoring the saturations in the engine, this
can deteriorate the control performance or even render the
platoon system unstable. In (Ibtissem, 2011), an error
governor scheme was discussed for dealing with saturation,
which can eliminate the windup phenomenon and guarantee
stability. Nevertheless, this control method suggested is not
applicable to the bidirectional platoon system. Secondly,
without considering the uncertain factors such as the
inaccuracies of model parameters and the errors of sensors
and actuators, degrade the track performance and safety
during the driving process. In recent years, many results have
been reported to deal with the uncertainties in order to
guarantee the stability of the platoon (Swaroop, 2001). The
combined actuating delay is the third aspect that may add to
the limitations since the delay effect may accumulate as it
propagates both directions in the platoon. An upper bound of
the actuator delay was derived in (Huang, 1998) under which
the so-called slinky-effect can be avoided, and in (Yanakiev,
2001) for a control method dealing with large actuator delays.
However, these results are based on a single direction
vehicular platoon and hence are not adequate for achieving
more stringent performance requirement for bidirectional
platoons control. To the authors’ knowledge, strategies
systematically taking into account the desired system
performance, uncertainties, saturations and actuator delay
have not yet been reported.

The aim of this paper is to set up a bidirectional platoon
control framework that takes full consideration of the
uncertainty in the engine time, the actuator saturation and
actuator delay. In the suggested framework, each vehicle can
only detect the distance between it and the adjoined vehicle
with an on-board distance sensor. Then the time-varying
fuelling and braking delay is taken into account. In addition,
full consideration is given to the uncertainty in engine time
and actuator saturation in our framework, which further
highlights the completeness of the result. As will be shown
later in both numerical simulations and experiments with
Arduino cars, the presented method can serve as an effective
algorithm for practical use.

2. PROBLEM FORMULATION

Consider a bidirectional platoon control system composed by
n vehicles running in a horizontal environment. All vehicles
in the platoon can measure the relative distance and velocity
with respect to their nearest neighbours by on-board sensors.
In what follows, the vehicle dynamics, actuator lumped delay,
actuator saturation, and the engine time uncertainty will be
formulated in detail.

Denote by z, and v, the ith (i=1,...,n) vehicle’s position and
velocity, and i=0 represents the lead vehicles with z, =0.

Based on the constant time-gap spacing strategy (Vahidi,
2003), the spacing error for the ith vehicle can be written as:

6 =z7,-7,-L-hy (1

where h is the time gap, L; is the length of the vehicle. Then

the dynamics of the ith following vehicle can be modelled by
the following nonlinear differential equations:

O, =V, -V, —hv, AV, =a,, —a;,8 = f,(v;,a,)+9;(v,)c; (2)

127

where C; is the control input of the ith vehicle’s engine/brake,
with ¢; 20 and c, <0 representing the throttle input and the
brake input, respectively, f,(v,,a) and g,(v,) are given by:

fi(vi,a) = _<Vi +OACV; /2m; +d,y /m, )/gi —oACgVia /m;
gi(v)=1/gm,

where o is the specific mass of the air, m; is the vehicle
mass, A is the cross-sectional area, 0AC, /2M; is the air
resistance, C, is the drag coefficient, d ; is the mechanical

drag, ¢; is the engine time constant.

The following control law was adopted:
G =um, +OACdiVi2/2+dmi +g0AC, VA, 3)

where U, is the additional input signal to be designed so that

the closed-loop system can satisfy certain performance
criteria. Obviously, this control law achieves feedback
linearization, since, after introducing (3), the third equation in
(2) becomes:

ai(t)z—ai(t)/gi +Ui(t)/gi . 4)

A more realistic dynamic model should consider the changes
of the engine time, actuator lumped delay (including fuelling
delay and braking delay) and the actuator saturation
nonlinearities in the vehicle i. Taking these properties into
account (4) can be rewritten as,

& () =—(1/; +1/A¢)a; ) + (/g +1/Ag)u,, t-7; (1)  (5)

where |Agi| = f,(t), with f (t) being a Lebesgue-measurable
continuous function satisfying f’(t)>D, , D, >0 . The
actuator delay z,(t) is time-varying continuous function, and
satisfies,

Ty <50 <7,, 0<E (D)< y (©6)
where 7;,, and z, represent the lower and upper bounds of
the lumped delay of the ith vehicle, respectively, and g is

the delay variation rate bound. Take sat; to be the saturation
level of the ith vehicle’s actuator, and describe as

U, (1) =[ug, ®,u, O..u3, O,
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sa ijmax |f ui > Satijmax
B A i ] '
ul, (O=qu,(t)  if —sat/™ <u, <sat/™, (7)
- Sa.tijmX if Ui < _Satiimax

Here, the controller u,(t) assumes the following form:
u () =k, 0 +k,0,, +K AV +K, AV, (8)

where K , K

determined. Note that the control law for the ith vehicle is
solely based on the relative position errors and the relative
velocity errors between nearest neighbors.

» > Ky and Kk, are the controller gains to be

By combining the dynamics of the vehicle (1), (5) and (8)
and setting a;_,(t)=d;(t) as a measurable disturbance from

the preceding vehicle, the following state space equation for
the bidirectional platoon system can be derived,

X (1) = (A + AA)X (1) + (B; + AB Uy (t =7 (1) + Byd; (1),

Yi () =Ci[%;, X, ]T > )
where X, (t)=[5, Av, a] (a,=0 in X,) is the state of the
system, Y;(t) =[0;,Av, 5|+1aAV|+1] is the measurement output,
and
01 -h 0 0 0
A=0 0 -1 |,B=|0], B;=|1|,AB,=| 0 |,
00 -l s, 0 I/Ag,
1 00 00O
00 0
01 00O00O0
AA =0 0 0 , C = .
000100
0 0 -1/Ag,
000010

Using Ag, in (5) this leads to [AA AB]=L,F()[E, E.],

001 00 0]
where L = /,/ :{00 J s

" o 0 1
E,2=L01 ﬂ (i>2), for i=1, Eu:M, F.()=[yD; /f®]l
which clearly satisfies F'(H)F (1)< .

Before designing the controller for each following vehicle,
the following control objectives should be considered.

(a). Asymptotic stability: The state of each vehicle in the
bidirectional platoon control system can be asymptotically
stabilized to the origin, i.e., spacing error and velocity error
approach to zero when all vehicles running with a constant
velocity.

(b). Bidirectional string stability: If the i th (i, € [l,n])
vehicle suffers from a sudden disturbance, the oscillations are
not amplifying downstream or upstream the vehicular string

with the vehicle index, namely,
a.(s)/a_(s),
G(S):{ (/31 (5)
ai (S)/ai+] (S)a

and &,,,(S) denotes the Laplace transforms of the acceleration

G(jw) <1 for any w, where
for i e [ig,1]

ith a.(S), a_,(s
forie[n,iy) with 8,(5). 8.,(5)

a;(t), a_,(t) and a;(t), respectively.

Note that the asymptotic stability and bidirectional string
stability discussed in here is different from the existing
stability issues in (Xiao, 2011), which caused by the
broadcast measurement is replaced by the bidirectional
measurement.

(c). Fuel economy: For the purpose of fuel consumption, in
(Li, 2011), the authors provide criteria as, the absolute
acceleration of all the following vehicles should be
constrained and minimized, namely, minimizing a (t) in the

controller design process with |a (t)|<a thus, a new

imax

measurement output is defined as y, (t)=a,(t).

Furthermore, the H_ norm is employed to measure the

performance, whose value actually gives an upper bound of
the root mean square gain. Hence, our goal is to minimize the

o

H, norm ||Ty“(t)di(t)||w<;/i , where T, 4 denotes the

closed loop transfer function from d,(t) to the output y;, (t).

(d). Tracking safety: The designed controller should be
capable to prevent the following vehicles from colliding with
the preceding vehicle, the requirement is

Y., () =|6,()| < 6,,,, , where 5, is the minimal safety
distance under all operational changes from vehicle in the
platoon.

Then, the platoon system can be described by the following
state-space equations:

X () = Ax,(t) + Bu, (t—7,(t) + B,d,(t) (10)
=C x (1) (11)
Y, =C.x(® (12)

where A =A +AA, B, =B, +AB,, C,=[0 0 1],
C.=[1 0 oT.

In this research, our goal is to find an output feedback
controller for each vehicle in the platoon system

u =Ky @,

where K, =[k, Kk

that the requirements in (a)-(d) can be satisfied.

(13)

» Ki K] is the controller gain, such

3. H- CONTROLLER DESIGN

In this subsection, a sufficient condition is given for the
bidirectional platoon system to ensure that all the vehicles in
the string are robust asymptotically stable with the effect of
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uncertainties, time-varying delay and actuator saturation
effects.

To begin with, for output feedback gain matrix K;, we define

L(K)={y, €R":

kly, (0| < sat™, j=12,..q} ,

where k! is the jth row of K,. Then L(K,) is the region in
the output state space where the control input is linear in Y, .

Next, as shown in [Hu, 2002], we utilize the technique of
auxiliary feedback matrices here to reduce the conservatism
of dealing with the actuator saturation. Namely, for two

matrices K;, H, € R™ and a vector V, € R?, a matrix set is
introduced as

vk +(1-v)h
A
W, (V.. K, H,)={W, & R¥" :W, = : :
vik® + (1-v*)h?

where V! =0 or 1, define l//(Vi)i{Vi eR":v/ =0o0r1} and the
auxiliary matrix H, satisfies |hij Y, (t)| <sat)™,j=12,.9 .
And a subset of the set L(K,) will be found and chosen to be
an ellipsoid of the form

EP.1)={y, eR" 1y Py, <1}

where P >0 will be determined. Combine &(P,1) with
|:Satlj max h]

! ,i=12,..q , which means that if
%* Sa.ti]maxl:)i
y/ Py, <1, we have 2|hi"yi (t)| <sat™+y/Py) <2sat)™ .

So we can ensure that £(P,,1) < L(H,).

Remark 1. There are 29 elements in y/(V,) .V, is used to
choose from the rows of K, and H, to form a new matrix
W,(V,,K,,H,) . If v/ =0, then the jth row of W,(V,,K ,H,) is
h’, and if v/ =1, then the jth row of W,(V,,K,,H,) is k/. For
example, assume g=2, then

{Vvi(vi’ Ki’ Hi):vi el//(v|)i{H|’|:::£:|’|::i:|’ Kl} .

Based on the above ideas, the following theorem gives the
existence conditions of a desired output feedback controller
for system (10).

Theorem 1: The bidirectional platoon control system in (10)
under the controller in (13) with actuator saturation and time-
varying delay is asymptotically stable and satisfies

ITyua. <y, for all d,(t) under zero initial condition if there

exist matrices P >0, T, >0, Q,>0,j=1,2,3, Z >0, m=1,

2’ NiI > SiI > Mil > IZI’ 2""’57 Wi(Vi’KiﬂHi) > Wi(Si’KiﬂHi)
and K, satisfying,

A

II; Tia TinS; M,
*oTmed 0 0 1o (14)
* * —Tin(Zy +Z;,) 0
| * * * — Tl
-1 3¢, <0 (15)
L * _5i2minpi
_Hlll +CITICI1 Hll'.’ HI!J HIM Hll5 Hllb_
* HIZ'.’ HI;’J HI24 H|25 0
- * * Hm H|34 HlSS 0
where 11, = ' ,
* * * H|44 H|45 0
* * * * HI55 Hlse
* * * * * _7.2
NP =[N, Ni Ni N; N 0],
SiT :[S:IV SITZ SI: S|T4 S|T§ O]’
M/ =[M{ M) MI M_ M{ 0], (16)

Hill = lej + Nil + N|T| +TiK| + KnTTi >

T, = NiTz =N, +S,-M, +Ti§iW'(Vi9Ki7Hi) P

II,=M +N, II, =-S, +N/|

i3 2 il4 i4 2

Hns = N|T> _T| + P| + KuTTu s

Hnm :-I—IB anz :(lul _I)Qix +Siz +S|Tz - an - Nsz - Miz - Msz’

id 2

I, =M_,-N +S'-M , IT_ =-S5, —-N +S.-M,
I, =SiT5 - NuTs _MiTs +WIT(Si’Ki’Hi)§iTTi
II,=-Q,+M, +M/

i3?

HI“M = _Si'( + M y Hi}‘ = M . Hi44 = _Q|2 - SI4 - ST

i4 2 is ? i4 2

HMS :_ST HISS = T Z

is 2

+7,Z,-2T ,11_=TB

TilZ = z-iz _Tn :
Proof. See Appendix.

Remark 2. Theorem 1 supplies a sufficient condition for the
bidirectional platoon to be robust asymptotically stable with
the uncertainties, time-varying delay and actuator saturation
effects, implying that the control objective (a), (€) and (d) can
be achieved. A stabilizing controller design method will be
given in the following.

Theorem 2: Suppose &, 7, , 7, and u, are prescribed

positive scalars. Consider the bidirectional platoon system in
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(10), if there exist matrices 5|> 0, f> 0, vV , 6] >0, j=1,2,

3,Z >0, m=1,2,N,S , M, I=1,2..5 and & >0
satisfying,

Aill AHZ 0 (17)
< b
ATll’.’ AI22
-1 et <0, (18)
* -0, P
where
7N, 7.5, oM, TC TE TE |
z-IQNIZ z-IIZS_II TIZIVLI 0 EITZ EITZ
A — lelqll z-IIZS_II TIZIVLI 0 0 0
" z-IQNM z-IIZS_II TIZIVLI 0 0 0 ’
TIZNIS z-IIZS_II TIZIVLI 0 0 0
|0 0 0 0 0 0 |

AIZZ = dlag {_lezil’_z- (Zil + Ziz)’_TnzZiz’_I =& I } H

i

I = +N +N +TA+AT,
il ZQ” il il it P

I, =N -N +S —M, +BW

i i

m,=B,, M, =(4-DQ,+S.+8 -N, - N -M_, M,
O,=M,-N+8 -M, T, =-S5, - N +5 -M,
M,=S"—-N'-M" +WB'T, Tl =-Q +M_ +M’,
O,=-S,+M[, T =M, T, =-Q,-S,-S],
ﬁ.jz—ST I1 =T.:Z +7 . Z Zf,ﬁ =B,,

then a stabilizing controller in (13) exists, and according to
(11) and (12), the controller gain can be given as

K =WT D, (19)
where CD, =1.
Proof: by Shur complement, (17) is equivalent to
E +eE 5 +&'EE <0, (20)
where

ET EKC 0 0 0 0 0 0 0 0
E,=|ET. EKC. 0 0 0 0 0 0 0 O/,

0 0 00 000 O0O0OTDO

L 0000 00O0O0O
=0 0001L 00000
0 000 0 O00O00O0TO0SO

By invoking Lemma 1 in (Guo, 2014), (20) holds if

= +E L(E, +E ' (HE <0,

il i i2

21

where T(t) = diag{F (T)), F (T)}.

From the norm bounded parameter uncertainty defined in (8)
note that (21) is equivalent to (14) by defining T, =T,
N, =T'NT". §=T'ST". R=T RT". M,=T"'MT",
Z,=T'2z1" , Q=TQT' , W=KCT' |,

J. =diag{T ", T, T, T,T",1,T",T", T}, and performing a
congruence transformation to (14) with J," . Similarly, it also
follows that (18) is equivalent to (15). Hence, the
bidirectional platoon system is asymptotically stable with a
H_ disturbance attenuation level of y, if (17) and (18) hold.

This completes the proof.

Remark 3. Theorem 2 shows that the conditions are LMIs
not only over the matrix variables, but also over the objective
scalar y, is given, which implies that y, can be included as

an optimization variable to obtain a lower bound of the
guaranteed /. performance. That is, the controller design
problem has been transformed into a set of LMI conditions.
Based on these conditions, the robust multi-objective (a, €
and d) controller design can be accomplished by solving the
convex optimization problem as: min y, subject to (17) and

(18).

4. BIDIRECTIONAL STRING STABILITY AND
CONTROL ALGORITHM

In the above section, considerations have been focused
primarily on robust asymptotical stability of all the vehicles
in the bidirectional platoon system. This section is concerned
with the issue of bidirectional string stability, which is
associated with objectives (b) given in section II. The
analysis and results are based on the output feedback
controller (13) obtained above.

Suppose each following vehicles in the bidirectional platoon
system is under control of (13). Substituting (13) and (8) into
(5) yields

a(t) = _ai(t)/gi +[kpb5i (t-7)+ kpf5i+1(t -7)

+ KAV (t—7,) + kA, (T -7, )]/gi (22)

Taking Laplace transformation to (22), and assuming that
a,(0) =0, then (22) can be changed to

(gis+Da(s)

= [k (8) + Ky 51,y (8) + KAV, (5) + K AV (8)]6 ™ (23)

By using (1) and (2) yield



42

CONTROL ENGINEERING AND APPLIED INFORMATICS

5,(5) = (a_,(s)—2,(s))/s* —ha,(s)/s ,

AV (s)=(a;(s) — 3 (9))/s. (24)

For the platoon to achieve bidirectional string stability,
assume that the i,th vehicle suffers from a sudden
disturbance (such as a wind gust or a slope), corresponding to
this situation, substituting (24) into (23), and collecting

similar terms together yields,

a,(9)/a,,(s),
O {ai (9)/a.,(s),
(k,, +k,s)e™
{[(k,h+k, —k)s+k, —k, Je™’
BEE YT (25)
[—(k, +k, h)s—k, Je™
{I(kh+k, —k)s+k, —k, Je™’

+5°+¢5°}

forie[i,,1]
forie[n,i,)

for i e[i,,,1]

forie[n,iy)

Based on the transfer function (25), the following result on
bidirectional string stability is derived.

Theorem 3. The platoon system (10) with a disturbance on
the i, th vehicle is bidirectional string stable if the

following conditions are satisfied:

hk,, =k, =0 (26)
For i €[ige,1]:

Koy =2K,, 27
1+26,(Ky, =K )7 = 2K,7y — 77 (K =K ) =26k, 20 (28)
For ie[n,ig):

Ko 22K,y (29)
1-2gk,, =26 (K, =Ky )7 —2K,07 20, 30)
kip — (ks + K h)? > 2(ky —k ), 31

Proof. First, according to objective (b), |G(jw)| can be

written as the following two forms,

1. Downstream ( ie[ig.11 ), [G(jw)|=|a,(jw)/a_,(jw)|
=y [(a,+ )

a, =k, +kyw’,

Br=ciw +w' +[(hk, —k, +k,)" =k w +k,
=2k, k, —2w’(k,, =k, )cos(z,w) +2w'g, (k, — K ,) (32)
-sin(z,w) — 2w’ (hk , —k , +K,,)sin(z,w)

—2w'g, (hk,, =k, +k,,)cos(z,w)

2. Upstream ( ie[nig) ). G(w)=[a(jw)/a,,(jw)
:‘\Iaz/(a2+ﬁz)

a, =k, +khy’w’ +k; ,

B =giw' +w' +[2(hk, -k, +k,)" —(k, +k,h) W’
+2w'g, (k,, — K, )sin(z,w)

—2w'(hk, —k, +k,,)sin(z,w) + k>, -2k K,
—2w’(k,, — Kk, ) cos(z,)

—2w'g, (hk, —k, +Kk,,)cos(z,w)

(33)

Due to ¢, >0 and o, >0, |G(jW)|S1 holds true, i.e., the
platoon is bidirectional string stable, if £, 20 and £, 2>0.
From (26), (27), (29) and the fact that cos(r;w)<1 ,

cos(t;w) > 1-w’z?/2 , sin(r;w)<z,w and sin(z;w) > -,w ,
we have for w> 0 that,

For downstream,

2w (K — Ky ) cos(rw) = 2w (Ko —k )1 — W7 /2)
2w, (hK gy, =Ky +Kyp)cos(z;W) 2 —2we, K

(34)
2W3gi (kpb - kpf )sin(z;w) = 2W3gi (kpb - kpf )W
—2w’ (hk, =k +Kyp)sin(z,w) > 2w’k , 7w
For upstream,
- 2W2(kpb =k )cos(z;w) 2 —2W2(kpb —ky)
—2w'g k,, cos(z,w) > 2wk, (35)

2wg; (K =Ko )sin(z;w) = —2w'g (K, — Ky )7y

—2w (hk , —k; + Ky )sin(zw) = 2wk , 7,

Substituting the (34) and (35)
respectively, and reorganized as

into (32) and (33),

Downstream, S, >¢'W* +[1+2¢,(k,, —k )7, —2k,7,

-7 (K, =K —2¢k, W' +2(k, =k w® +k; -2k K

pf

UpStreaml ﬂz = g|2W6 + [1 - 2g| kvb - 2g| (kpb - kpf )TI - 2|(vbT| ]W4

- Zgi (kpb - kpf )Ti - 2kvbTi ]W4
+ [kvzb - (kvf + kpf h)z - 2(kpb - kpf )]WZ
Thus, if the conditions (28) (29) and (31) hold, then S >0

and f,20. This implies that |G(jw)|£1 for any w>0.
This completes the proof.

Remark 4. From Theorem 3 (28) and (30), the upper bound
for the actuator delay can be derived as

7, <min{(0.5— gk, )/(giK, + Ky )
[k — ik, i\/(kvb _gik1)2 - kl(l_zgikvb)]/kl} ,
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where k =k, =k .

Finally, based on the above discussions and all the results
established heretofore, the following control algorithm is
given.

Algorithm. Our robust controller design algorithm is given
as follows:

1). Design the feedback-linearization controller in (3), which
is a routine procedure.

2). Calculate the robust H, controller gain, according to
Theorem 2 using standard LMI mathematic tool.

3). Constrain the obtained H, controller gain K, with the
conditions given in Theorem 3. If this is feasible, then the
resulted controller gain can be used for bidirectional string
stabilizing control. Otherwise, reset matrices P >0, T, >0,

Q,>0,Z >0, N,,S,, M, and other related parameters
and return to step 2).

5. SIMULATION AND EXPERIMENTS
5.1 Numerical simulations

The goal of the following simulations is to evaluate the
performance of the proposed controller. These simulations
are carried out with the virtual environment established by
System Build software package in MATLAB. For
comparison of performance, an optimal localized control
algorithm (OLC) (Liu, 2012) is also designed based on the
same control plant (10)-(12). Like the fuel economy
consideration in proposed controller, its control law is also
constrained by the fuel consumption criterion.

The following parameters are used in the simulations: length
of vehicle L, =4m, engineer time constant ¢, =0.25, the

time gap h =1and the noisy measurements of &, and 5} is

assumed to be white and zero mean with standard deviations
0.1 m and 0.01m/s, respectively. The other parameters used

4 28

in the simulations are the same as (Guo, 2014), namely,
specific mass of the air ¢ =1.2kg /m’ , cross-sectional area

of vehicle A =22m, drag coefficient c; =0.35, vehicle mass
m, =1464kg , mechanical drag d_, =5N , saturation level

sat, =3.5m/s”.

The following parameters were used in the controller design:
the delay variation rate =12 and the engine time
uncertainties are expressed as |Agi| = f.(t)=D,/sint) ,
D =4.

By using Theorem 2 and Theorem 3, the controller gains can
be obtained as,

For Downstream: K, =[42 88 1.7 42]
Upstream: K, =[0.5 3.1 1.6 3.1].

and for

From Remark 4 the bidirectional string stability can be
achieved when 7,,<0.095s for the output feedback

i2 —
controller and set the actuator delay as 7 =0.08s.

In order to demonstrate the special performance of the
proposed controller algorithm, the simulation is tested under
three kinds of traffic scenario: Fictitious lead vehicle rapid
accelerating, fictitious lead vehicle emergency braking and
the fifth vehicle suffered a sudden disturbance. The proposed
controller will be regarded as successful if its application can
improve the string stability, the fuel consumption and
tracking capability.

A. Fictitious lead vehicle rapid acceleration

In this scenario, it is assumed that all vehicles in the platoon
run at the same initial speed 10m/s. At Ss, the fictitious lead
vehicle accelerates at 3m/s® from 10m/s to 25m/s. All the
following vehicles are controlled to follow it by using the

proposed controller and OLC algorithms, respectively. The
results are shown in Figs. 1 and Figs.2.
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Fig. 1. (a) Spacing errors; (b) Velocities; (c) Acceleration.
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Fig. 2. (a) Spacing errors; (b) Velocities; (c) Acceleration.

It is found from Fig. 1 (c) that the maximum accelerations for
all following vehicles in the bidirectional platoon control
system under the proposed controller is 3.4m/s’ , satisfying

the fuel economy. The control input satisfies U; < sat; , hence

the control input windup is avoided. From Figs. 1 (b), it can
be seen that the whole platoon can achieve tracking control
accurately. The maximum spacing errors is 3.6m, and the
string stability can be achieved as shown in Fig. 1 (a). In this

60 80

same case, when the method suggested in (Liu, 2012) is used,
the system is string unstable (see Fig.2). The maximum
spacing errors and acceleration are 7.8m and 4 m/s’ ,

respectively, which are much higher than in our case in Fig.1
(a) and (c). As shown from Fig. 1 (b) and Fig. 2 (b), the
maximum of velocities under the proposed controller is
smaller than that under OLC. So, both better fuel economy
and better tracking capability can be foreseen in our research.
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Fig. 3. (a) Spacing errors; (b) Velocities; (c) Acceleration.

When the fictitious lead vehicle accelerates at 3.5m/s’ from

Om/s to 17.5m/s (the input has reached the limits). From Figs.
3 (b), it can be seen that the whole platoon can achieve

0.5 52
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tracking control accurately as well. The maximum spacing
errors and acceleration are 4.2m and 4 m/s’ , respectively.
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Fig. 4. (a) Spacing errors; (b) Velocities; (c) Acceleration.
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Fig. 5 (a) Spacing errors; (b) Velocities; (c) Acceleration.
B. Fictitious lead vehicle emergency braking

In preceding car’s emergency braking scenario, the preceding
car decelerates at the acceleration of -3m/s® from 50m/s to

=4m. All the

following vehicles are controlled to follow the fictitious lead
by the proposed controller and OLC algorithms, respectively.
The results are shown in Figs. 4 and 5. From Fig 4 (a), it is
found that the whole platoon can hold string stability. The
acceleration is lower than the minimum acceleration and the
longitudinal ride comfort can be satisfied. In contrast, as
shown in Fig. 5 (a), the maximum spacing error is -5.9m,
which mean a rear end collision has happened, and the
platoon is string instability. The last vehicle in the platoon
cannot achieve the cruise velocity, and the maximum
acceleration is -4 m/s’ , as shown in Fig. 5 (b) and (c).

35m/s, and the minimal safety distance o,

id min

5.2 Experiments

The simulations in the previous sections indicate that the
proposed controller is simple in structure and the parameters

Fig. 7. (a) Spacings; (b) Velocities.

The most important objective of the experiment is to show
the effectiveness of the presented method in dealing with a
sudden disturbance on the following vehicle. In this case, the
desired spacing is set to be 10cm, and a sudden drop of speed
from 30cm/s to 22.5cm/s is applied to the third car in the
interval [7s, 8s], and actuated by a command from the
computer via a wireless communication. When the proposed
controller is applied, the spacing error appears to be

60 80

are easy to tune so that it can be quickly calibrated for a
certain vehicle and can meet real-time requirements. In this
section, experimental studies are carried out to demonstrate
some properties of the proposed controller. The experiments
are based on five radio controlled Arduino cars, shown in Fig.
6. (a) and (b), which are driven by two rear wheels and
steered by a serve on the front wheel. The infrared sensor is
used to measure the front distance and rear distance between
the adjacent vehicles, respectively. The actuator lumped
delay is 0.04s, which is identified using operational data.

Infrancd sensors are
med 10 memsure the
Tront distance and rear
b

Fig. 6. (a) Arduino car; (b) Arduino platoon system.
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significantly larger than in the simulation. This is partly
caused by measurement noise, the level of which is indicated
by the constant velocity sections of the test scenario. Another
cause is that the bidirectional platoon system behaviour is
sensitive to variations of the neighbouring vehicle’s input.
Although all test cars are of the same type, these
“heterogeneous” occur, among others, because the batteries
do not have the same state of charge. As shown in Fig. 7. The
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second and the fourth car becomes biased during the sudden
braking (the maximum spacing error is 6.1cm), while the
entire platoon still remains string stable and the objectives in
Subsection 2.3 are achieved.

6. CONCLUSIONS

In this paper, a bidirectional platoon control scheme has been
developed with the effects of uncertainty, saturations and
time delay. A robust controller was designed which can
guarantee the individual stability as well as string stability
without using the wireless communication. The results were
further tested via experiments conducted with the laboratory
scale Arduino cars.

There are several interesting questions that worth this
research. Such as, if the closed platoon system performance
can be improved by using more than two vehicles’
information, and derive the fundamental limitations in this

framework. In this scheme, the inter-vehicular
communication will be required, and the wireless
communication among the vehicles share should be

considered, but may still be advantageous compared to the
predecessor and leader following scheme. These issues raise
various open problems that are worth investigating in future
research work.

APPENDIX
Here, we present the proof of Theorem 1

Define the following Lyapunov-Krasovskii functional for
system (9) as

V()= X OPX O + [ X (5)Q, (5)ds
+ [X ©1Q.x )5+ [X (90, (5)s
t t-7j (1)

~Ti2

(AT)

+ J-O J‘txf (8)Z,%,(s)dsd @ + JHH .[>§|T (8)Z,, (s)dsd @

t+6 —Ti2
where P >0, Q, >0, j=1,2,3, Z >0, m=1, 2, are matrices

to be determined.

Then, the time derivative of V,(t) along the trajectory of the
platoon system in (9) is given by:

Vi(t) = X (©ORX 0+ X (P (1) +X ()Q,X (1)

- XiT (t - Til)QiIXi (t - Tn) - XiT (t - Tiz)Qizx(t _Tiz)

X 00X [ 4 (92, (5)ds +,% (OZ,%(V
- (1 - z.-i (t))x|T (t -7 (t))QiSXi (t -7 (t))

X Q%O [ X (9)y, 4 (9ds+,.5 (V2,5 )

Then, for any appropriately dimensioned matrices T, >0 and
N.,S , M, ,I=1,2,...5yields

(A2)

mn[xi(t)—xi(t—r.(t))— ix;(s)ds} -0,

zg,z[x,(t —rt)-x(t-7.)- i;:((”s)ds} -0,

20, (t-r)-x(t-5.0)- [¥ (58| 0. (A3)
2 T, + X OT J- % )+ Ax (1) + Bu,, t—7,(1)
+B,d,(H)]=0 (A4)
where

Q=X ONy +X (t=7,(OIN, + X (E—7;)N;
+XiT(t_Ti2)Ni4+XiT(t)Ni5 ’
Q= XiT ®)S;, + XiT (t-7,(1))S;, + XiT (t-7,)S;;

+ XiT (t—7:,)S;, + X.T (®)S;s

Qi3 = XiT (t)Mil +XiT(t_Ti(t))Mi2 +XiT (t_Til)MB
+X (t=7,)M,, + X (DM '

Noticing that the following equations hold

2X O Bu,, (- 7.0) =2 X OTB, (t—7,1)

2K O Bu,, (-7, 0) =2 K OTBL, (t—7,(1).

where Ul (t—7,(t)) =k'c/x (t—7,(t)) .

Then, according to (7), for each term 2x' (t)Tit_)ijujaq (t—rz,(t),

a. if X' ()Th' >0 and k/c/x (t—7,(t)) <—sat’™ , then for
—sat/™ <hlc/x (t—7,(t)) we have

2% (OT,b'u,, (t—7,(t) = -2x] (T,bsat;™
<2x (OThh/e/x, (t~7,() '

b. if X" ()Th' >0 and k'c/x (t—7,(t)) > —sat’™  we have

2T (T u, (t—7,(t) <2x ()T k'c/x (t—7,(1)) .

satj i

c. if X' ()Thb'>0 and k'c'x (t—z,(t))>—sat’™ , then for
sat’™ >hlc/x (t —7,(t)) we have

2x; ('E)TiEiiusmi (t—7,(t)) = 2x ()T b sat/™
< 2% (OTD/h/e/x (t~7,(1) '

d. if X/ ()Tb' <0 and k/c/x,(t —7,(t)) < sat/™ , we have
2x] (DT ul, (t—z,(t) <2x T bk /X (t—z,(1)) .

satj (B |

By combining all the above four cases, we have
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(t—z,(1)) <max {2x (T 'k/c/x (t -7, (1),

2X" (t)Th 'u!

satj

2] (0T he/x (t—7,1)}
for any x, € £(P,1) and each je[l,q].

Now if 2x] (OTb'ul, (t—7,(t) <2x (OThhic/x t—7,(1) .
we set V! =1, otherwise we set V) =0. Then it is clear that

2XIT (t)-rl Eiusati
Vi ewi(v,)

2 (OT,BU,, (t—7,(1) < 2% OT,BW,(S. K, )X, (t—7,(H) w

i satj i

here S, ey, (S,).

(t—z. (1) <2x (OTBW.(V,, K, ,H )X (t -7 (1) ,

where Similarly, it also follows that

Hence, we can see from (A4) that for every X, € £(P.1) it
holds that

0= 2] (OT, + X O, |- % ®) + Ax 0) + Bu,, (t - 7,(t)
+B,d,(1)]
<20 OT, [ %, (0 + Ax,(0)+ BW,(V,, K., H)x,(t—7,(1)
+B,d,(t)]

_ _ (A5
2% (O[5 + Ax )+ BW,(S,. K, H)x, (t—7,(1)
+B,d, )]

After adding (A3) and (AS) to (A2) and some algebraic
manipulations it yields

Vi) =] O +d,NZ N +d,,5,(Z, +2,) 'S

+0,M.Z, M 1, ()

[, JOTON 4,67, (0] ON, +% o) ds

[l 0s K 0@, +212, 42

T2

@] OS; +X (9, +Z,)] ds

_ffﬁl [®] OM, +X (5)Z,1Z[®] OM, +X] (5)Z,]"ds
7 (t)

<O O, +7,NZ,'N +7,,8,(Z, +Z,)"'S]

+7,M ZIMT 10, (1)

(A6)

where

D,O=[x® xt-70) xt-7) xt-7,) %O dO.

By Shur complement,
Hi +TiZN|Z|71I NlT +TiIZSi (Zil —"_Ziz)i1 SiT +z.|ZM|Z|;]M|T <O ls equlvalent
to
I N, 7.5 oM,
* -7 7 0 0
o <0 (A7)
* * -7,.(Z,+Z)) 0
* * * -7

Next, the asymptotic stability of the system in (10) is
established with d{®=0 R that is

X (t) = le(t)+ Eusmi (t—7.(t)), then \/I(t) can be reduced to
V() <O O 1),

where

D) =[xt xt-7®) xt-7,) xt-z,) %O,

I, 7N, 7.5, .M,
i~ * _lezu O 0
and I1 = <0,
I * * _z-IIZ(ZII +ZIZ) 0
* * * _z-IZZIZ
where

Nlr =[N|1 Nuz Nuz N|4 an]T > SII’ = [Sn S Suz S|4 SIST >

Mir:[Mil Mil Mi3 MM MiS

Equation (14) implies that IT_ <0, which further leads to

\/I (t) < 0. Therefore, the system (10) with the uncertainties,

time-varying delay and actuator
asymptotically stable.

saturation 1S robust

Now, the H_ performance of the system under zero initial

conditions should be established. Considering the following
index:

3, = [0y, 0 -7 ) Okt "
This implies
3= [[v,0y,0- 7 0.0 +V, Wkt (A9)

for all nonzero d (t).
Via algebraic manipulations and Schur complement, yields

YL (DY, (0 = 77d ©)d, ) +V,(t) < D O, D, (1)

is i

(A10)

Then, IT. <0 , yields
y (D), () -7 d (t)d (1) +V (1) <0 , which implies J <0 .
Hence ||yi.||2 <7, ||di(t)||2 is guaranteed for any nonzero

d.(t) e L[0,0], and the H  performance is established.

using

Finally, the safe distance constraint needs to be guaranteed.
From above it is ensured that y (t)y (t)—y'd (t)d (1)<0,
and by integrating both sides of which yields

V() -V,0) < [d 0 0t < ]| : then

X (OPx () <yd_+V.(0)=94.Moreover, it is also true that
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2
max|y,, (1) = max|x] ()CLC,,x, (1)
= max|«] ()RR "CLC,RYRx, (0
(R™"CLCLR™)

i2hi

<8 -4

I max

where A__(.) represents the maximal eigenvalue of a matrix.
From above, it is easy to see that the safe distance constraint
is guaranteed if $-4 (P"C'C P")<d: | , which is
equivalent to (15), according to Schur complement. This
completes the proof.
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