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Abstract: The concept of the bidirectional platoon control system is developed, which enjoys significant 
advantages over present day adaptive cruise control systems in terms of string stability, tracking safety 
and fuel economy. A novel bidirectional platoon control system model is established, in which the effect 
of engine time uncertainty, time-varying actuator delay (including fuelling delay and braking delay) and 
actuator saturation is involved. Based on the new model, a H∞ controller is presented that can robustly 
stabilize the vehicular platoon system only use information from their immediate neighbors. The 
theoretical results show that the proposed system can achieve the objective of a smaller inter-vehicle 
spacing and bidirectional string stable. The effectiveness and advantage of the presented methodology are 
demonstrated by both numerical simulations and experiments with laboratory scale Arduino controlled 
cars. 
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

1. INTRODUCTION 

Over the past decade, a considerable attention has been paid 
to the research theme of automated vehicles in intelligent 
vehicle highway systems (Li, 2011). There are so many 
advantages of moving vehicle based on the notion of platoons, 
such as driving safety and comfort, reducing fuel 
consumption and air pollution, and improving the throughput 
in the highway (Tiberiu, 2005). Due to this, a lot of research 
works on platoon control have been extensively studied in 
( Jovanovic, 2005; Seiler, 2004). 

The control architectures of platoon investigated in the 
literature can be classified into three broad categories: 
predecessor-following, predecessor and leader following and 
bidirectional control. The architecture is called predecessor 
following if the control action on a particular vehicle depends 
on the information with the predecessor, i.e., the vehicle in 
front of it. This scheme is decentralized, since the control 
action on each following vehicle is computed based upon 
measurements obtained by on-board sensors. It was shown 
that this architecture suffers from a drawback known as string 
instability (Seiler, 2004). That is, the response of a 
disturbance on an individual vehicle will be amplified along 
the string of vehicles. Constant time-gap spacing strategy was 
introduced by (Vahidi, 2003) to overcome this difficulty, and 
in which the inter-vehicle distances are dependent on vehicle 
velocities. However, this only helps when the control 
bandwidths are allowed to diverge as the number of vehicles 
grows (Middleton, 2010). Alternatively, in (Xiao, 2011) 
shown that string stability can be achieved if a predecessor 
and leader following structure is adopted, where the control 

action on a particular vehicle is based on the distance 
between the preceding vehicle as well as the velocity and 
acceleration of the lead vehicle. This scheme is centralized, 
since the lead vehicle has to broadcast its information to all 
following vehicles. The use of the network to provide the 
following vehicles in the platoon with the lead vehicle 
information immediately cause some questions on the effect 
of disruptions of the wireless communication. Under this 
framework, these works presents in (Hedrick, 2001; Liu, 
2001) studied the effects of communication delays on string 
stability; longitudinal platoon control and state estimation via 
communication channels with packed-dropout are addressed 
in (Guo, 2011); a decentralized communication and control 
strategy is presented in (Guo, 2014) for automated driving 
assistance to a platoon of vehicles in heavy traffic and scarce 
visibility.  

Another control architecture investigated in the literature, and 
on which we focus in this research is decentralized 
bidirectional control. This control scheme is advantageous 
because, apart from its simplicity in achieving string stability, 
it does not require wireless communication. The control 
action on an individual vehicle depends on the information of 
its own velocity and the spacing errors between it and its 
predecessor and its follower vehicles, which can be obtained 
by on-board sensors alone. Still, the bidirectional platoon 
control suffers from the high sensitivity to the length of the 
vehicular platoon and lower performance (Hao, 2013). In 
(Jovanovic, 2005), the authors investigate optimal control 
strategies for a bidirectional platoon with an increasing 
number of vehicles and show that some related LQR 
problems are ill-posed. In order to enhance the coherence of 
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the bidirectional platoon, an optimal controller was designed 
in (Liu, 2012), which integrated the previous results. 

It is worth noting that most existing results on bidirectional 
platoon control are limited in at least the following three 
aspects. Firstly, ignoring the saturations in the engine, this 
can deteriorate the control performance or even render the 
platoon system unstable. In (Ibtissem, 2011), an error 
governor scheme was discussed for dealing with saturation, 
which can eliminate the windup phenomenon and guarantee 
stability. Nevertheless, this control method suggested is not 
applicable to the bidirectional platoon system. Secondly, 
without considering the uncertain factors such as the 
inaccuracies of model parameters and the errors of sensors 
and actuators, degrade the track performance and safety 
during the driving process. In recent years, many results have 
been reported to deal with the uncertainties in order to 
guarantee the stability of the platoon (Swaroop, 2001). The 
combined actuating delay is the third aspect that may add to 
the limitations since the delay effect may accumulate as it 
propagates both directions in the platoon. An upper bound of 
the actuator delay was derived in (Huang, 1998) under which 
the so-called slinky-effect can be avoided, and in (Yanakiev, 
2001) for a control method dealing with large actuator delays. 
However, these results are based on a single direction 
vehicular platoon and hence are not adequate for achieving 
more stringent performance requirement for bidirectional 
platoons control. To the authors’ knowledge, strategies 
systematically taking into account the desired system 
performance, uncertainties, saturations and actuator delay 
have not yet been reported. 

The aim of this paper is to set up a bidirectional platoon 
control framework that takes full consideration of the 
uncertainty in the engine time, the actuator saturation and 
actuator delay. In the suggested framework, each vehicle can 
only detect the distance between it and the adjoined vehicle 
with an on-board distance sensor. Then the time-varying 
fuelling and braking delay is taken into account. In addition, 
full consideration is given to the uncertainty in engine time 
and actuator saturation in our framework, which further 
highlights the completeness of the result. As will be shown 
later in both numerical simulations and experiments with 
Arduino cars, the presented method can serve as an effective 
algorithm for practical use. 

2. PROBLEM FORMULATION 

Consider a bidirectional platoon control system composed by 
n vehicles running in a horizontal environment. All vehicles 
in the platoon can measure the relative distance and velocity 
with respect to their nearest neighbours by on-board sensors. 
In what follows, the vehicle dynamics, actuator lumped delay, 
actuator saturation, and the engine time uncertainty will be 
formulated in detail.  

Denote by iz  and iv  the ith (i=1,…,n) vehicle’s position and 

velocity, and i=0 represents the lead vehicles with 00 z . 

Based on the constant time-gap spacing strategy (Vahidi, 
2003), the spacing error for the ith vehicle can be written as: 

iiiii hvLzz  1  (1) 

where h  is the time gap, iL  is the length of the vehicle. Then 

the dynamics of the ith following vehicle can be modelled by 
the following nonlinear differential equations: 

iiii vhvv   1 , iii aav  1 , iiiiiii cvgavfa )(),(  (2) 

where ic  is the control input of the ith vehicle’s engine/brake, 

with 0ic  and 0ic  representing the throttle input and the 

brake input, respectively, ),( iii avf  and )( ii vg  are given by: 

  iiidiiiimiiidiiiiii mavcAmdmvcAvavf   2),( 2 , 

iiii mvg 1)(  , 

where   is the specific mass of the air, im  is the vehicle 

mass, 
iA  is the cross-sectional area, idii mcA 2/  is the air 

resistance, dic  is the drag coefficient, mid  is the mechanical 

drag, i  is the engine time constant. 

The following control law was adopted: 

iidiiimiidiiiii avcAdvcAmuc   22 , (3) 

where iu  is the additional input signal to be designed so that 

the closed-loop system can satisfy certain performance 
criteria. Obviously, this control law achieves feedback 
linearization, since, after introducing (3), the third equation in 
(2) becomes: 

iiiii tutata  )()()(  . (4) 

A more realistic dynamic model should consider the changes 
of the engine time, actuator lumped delay (including fuelling 
delay and braking delay) and the actuator saturation 
nonlinearities in the vehicle i. Taking these properties into 
account (4) can be rewritten as, 

))(()11()()11()( sat ttutata iiiiiii i
   (5) 

where )(tfii  , with )(tf i  being a Lebesgue-measurable 

continuous function satisfying ii Dtf )(2 , 0iD . The 

actuator delay )(t
i
  is time-varying continuous function, and 

satisfies, 

21 )( iii t   , 
ii

t   )(0 
 (6) 

where 1i  and 
2i

  represent the lower and upper bounds of 

the lumped delay of the ith vehicle, respectively, and 
i

  is 

the delay variation rate bound. Take isat  to be the saturation 

level of the ith vehicle’s actuator, and describe as 

Tq

iiii
tutututu )]()...(),([)( sat

2

sat

1

satsat  , 
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Here, the controller )(tui  assumes the following form: 

11)(   ivbivfipbipfi vkvkkktu   (8) 

where pfk , pbk , vfk  and vbk  are the controller gains to be 

determined. Note that the control law for the ith vehicle is 
solely based on the relative position errors and the relative 
velocity errors between nearest neighbors. 

By combining the dynamics of the vehicle (1), (5) and (8) 
and setting )()(1 tdta ii   as a measurable disturbance from 

the preceding vehicle, the following state space equation for 
the bidirectional platoon system can be derived, 

)())(()()()()( tdBttuBBtxAAtx idiisatiiiiii i
  ,  

T
iiii xxCty ],[)( 1 , (9) 

where T

iiii avtx ][)(    ( 00 a  in 0x ) is the state of the 

system, T
iiiii vvty ],,,[)( 11     is the measurement output, 
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Using i  in (5) this leads to    
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(i 2), for i=1, 

12
E = ,

1

0








ItfDtF iii )]([)(  , 

which clearly satisfies ItFtF
i

T

i
)()( . 

Before designing the controller for each following vehicle, 
the following control objectives should be considered. 

(a). Asymptotic stability: The state of each vehicle in the 
bidirectional platoon control system can be asymptotically 
stabilized to the origin, i.e., spacing error and velocity error 
approach to zero when all vehicles running with a constant 
velocity. 

(b). Bidirectional string stability: If the thidis  (  nidis ,1 ) 

vehicle suffers from a sudden disturbance, the oscillations are 
not amplifying downstream or upstream the vehicular string 

with the vehicle index, namely, 1)( jwG  for any w , where 


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disii
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sG  with )(sai , )(1 sai  

and )(1 sai denotes the Laplace transforms of the acceleration 

)(tai , )(1 tai  and )(1 tai , respectively. 

Note that the asymptotic stability and bidirectional string 
stability discussed in here is different from the existing 
stability issues in (Xiao, 2011), which caused by the 
broadcast measurement is replaced by the bidirectional 
measurement. 

(c). Fuel economy: For the purpose of fuel consumption, in 
(Li, 2011), the authors provide criteria as, the absolute 
acceleration of all the following vehicles should be 
constrained and minimized, namely, minimizing )(ta

i
 in the 

controller design process with max)( ii ata  , thus, a new 

measurement output is defined as )()(
1

taty
ii

 . 

Furthermore, the H  norm is employed to measure the 

performance, whose value actually gives an upper bound of 
the root mean square gain. Hence, our goal is to minimize the 

H  norm itdty ii
T 

)()(1
, where )()(1 tdty ii

T  denotes the 

closed loop transfer function from )(tdi  to the output )(1 tyi . 

(d). Tracking safety: The designed controller should be 
capable to prevent the following vehicles from colliding with 
the preceding vehicle, the requirement is 

min2 )()( idii tty   , where 
minid

  is the minimal safety 

distance under all operational changes from vehicle in the 
platoon. 

Then, the platoon system can be described by the following 
state-space equations: 

)())(()()( tdBttuBtxAtx idiiisatiiii    (10) 

)(
11

txCy
iii

  (11) 

)(
22

txCy
iii

  (12) 

where iii AAA  , iii BBB  , T
iC ]100[1  , 

T

i
C ]001[

2
 . 

In this research, our goal is to find an output feedback 
controller for each vehicle in the platoon system 

)()( tyKtu iii  , (13) 

where ][ vbvfpbpfi kkkkK   is the controller gain, such 

that the requirements in (a)-(d) can be satisfied. 

3. H∞ CONTROLLER DESIGN 

In this subsection, a sufficient condition is given for the 
bidirectional platoon system to ensure that all the vehicles in 
the string are robust asymptotically stable with the effect of 



40                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 

uncertainties, time-varying delay and actuator saturation 
effects.  

To begin with, for output feedback gain matrix iK , we define 

},...2,1,)(:{)( max qjsattykRyKL j

ii

j

i

n

ii 


, 

where j

ik  is the jth row of iK . Then )( iKL  is the region in 

the output state space where the control input is linear in iy . 

Next, as shown in [Hu, 2002], we utilize the technique of 
auxiliary feedback matrices here to reduce the conservatism 
of dealing with the actuator saturation. Namely, for two 
matrices iK , nq

i RH   and a vector q

i RV  , a matrix set is 

introduced as 
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So we can ensure that )()1,( ii HLP  . 

Remark 1. There are 2q elements in )( iV . iV  is used to 

choose from the rows of iK  and iH  to form a new matrix 
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j
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Based on the above ideas, the following theorem gives the 
existence conditions of a desired output feedback controller 
for system (10).  

Theorem 1: The bidirectional platoon control system in (10) 
under the controller in (13) with actuator saturation and time-
varying delay is asymptotically stable and satisfies 
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Proof. See Appendix. 

Remark 2. Theorem 1 supplies a sufficient condition for the 
bidirectional platoon to be robust asymptotically stable with 
the uncertainties, time-varying delay and actuator saturation 
effects, implying that the control objective (a), (c) and (d) can 
be achieved. A stabilizing controller design method will be 
given in the following. 

Theorem 2: Suppose 
i

 , 
1i

 , 
2i

  and 
i

  are prescribed 

positive scalars. Consider the bidirectional platoon system in 
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then a stabilizing controller in (13) exists, and according to 
(11) and (12), the controller gain can be given as 

iiii
DTWK 1 , (19) 

where IDC
ii
 . 

Proof: by Shur complement, (17) is equivalent to  
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By invoking Lemma 1 in (Guo, 2014), (20) holds if  

0)()(
32231
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i

T

i

T

iiiii
tt , (21) 

where )}(),({)(
iiiii

TFTFdiagt  . 

From the norm bounded parameter uncertainty defined in (8) 

note that (21) is equivalent to (14) by defining 1
ii

TT , 
11 

iiliil
TNTN , 11 

iiliil
TSTS , 11 

iiliil
TPTP , 11 

iiliil
TMTM , 

11 
iiliil

TZTZ , 11 
iiliil

TQTQ , 1
iiii

TCKW , 

},,,,,,,,{ 11111111 
iiiiiiiii

TTTITTTTTdiagJ , and performing a 

congruence transformation to (14) with 1

i
J . Similarly, it also 

follows that (18) is equivalent to (15). Hence, the 
bidirectional platoon system is asymptotically stable with a 

H  disturbance attenuation level of 
i
  if (17) and (18) hold. 

This completes the proof. 

Remark 3. Theorem 2 shows that the conditions are LMIs 
not only over the matrix variables, but also over the objective 
scalar 

i
  is given, which implies that 

i
  can be included as 

an optimization variable to obtain a lower bound of the 
guaranteed H∞  performance. That is, the controller design 
problem has been transformed into a set of LMI conditions. 
Based on these conditions, the robust multi-objective (a, c 
and d) controller design can be accomplished by solving the 
convex optimization problem as: min 

i
  subject to (17) and 

(18). 

4. BIDIRECTIONAL STRING STABILITY AND 
CONTROL ALGORITHM 

In the above section, considerations have been focused 
primarily on robust asymptotical stability of all the vehicles 
in the bidirectional platoon system. This section is concerned 
with the issue of bidirectional string stability, which is 
associated with objectives (b) given in section II. The 
analysis and results are based on the output feedback 
controller (13) obtained above. 

Suppose each following vehicles in the bidirectional platoon 
system is under control of (13). Substituting (13) and (8) into 
(5) yields 

iiivfiivb
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Taking Laplace transformation to (22), and assuming that 
0)0( ia , then (22) can be changed to 

s
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By using (1) and (2) yield 
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sshassasas iiii )())()(()( 2
1   , 

ssasasv iii ))()(()( 1   . (24)  

For the platoon to achieve bidirectional string stability, 
assume that the thidis vehicle suffers from a sudden 

disturbance (such as a wind gust or a slope), corresponding to 
this situation, substituting (24) into (23), and collecting 
similar terms together yields, 
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
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Based on the transfer function (25), the following result on 
bidirectional string stability is derived. 

Theorem 3. The platoon system (10) with a disturbance on 
the thidis vehicle is bidirectional string stable if the 

following conditions are satisfied: 

0 vfpb khk
 

(26) 

For ]1,[ disii :  

pbpf kk 2 , (27) 

ivbipfpbi kkk  2)(21  02)(2  vbipbpfi kkk 
 

(28) 

For ),[ disini : 

pfpb kk 2 , (29) 

ipfpbivbi kkk  )(221  02  ivbk  , (30) 

)(2)( 22
pfpbpfvfvb kkhkkk  , (31) 

Proof. First, according to objective (b), )( jwG  can be 

written as the following two forms, 
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Due to 01   and 02  , 1)( jwG  holds true, i.e., the 

platoon is bidirectional string stable, if 01   and 02  . 

From (26), (27), (29) and the fact that 1)cos( wi  , 

21)cos( 22 wwi  , ww ii  )sin(  and ww ii  )sin( , 

we have for 0w  that, 
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Substituting the (34) and (35) into (32) and (33), 
respectively, and reorganized as  

Downstream, ivbipfpbii kkkw  2)(21[62

1   
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Thus, if the conditions (28) (29) and (31) hold, then 01   

and 02  . This implies that 1)( jwG  for any 0w . 

This completes the proof. 

Remark 4. From Theorem 3 (28) and (30), the upper bound 
for the actuator delay can be derived as 
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where pfpb kkk 1 . 

Finally, based on the above discussions and all the results 
established heretofore, the following control algorithm is 
given.  

Algorithm. Our robust controller design algorithm is given 
as follows: 

1). Design the feedback-linearization controller in (3), which 
is a routine procedure. 

2). Calculate the robust H∞ controller gain, according to 
Theorem 2 using standard LMI mathematic tool. 

3). Constrain the obtained H∞ controller gain iK  with the 

conditions given in Theorem 3. If this is feasible, then the 
resulted controller gain can be used for bidirectional string 
stabilizing control. Otherwise, reset matrices 0

i
P , 0

i
T , 

0
ji

Q , 0
im

Z , 
il

N , 
il

S , 
il

M  and other related parameters 

and return to step 2). 

5. SIMULATION AND EXPERIMENTS 

5.1 Numerical simulations 

The goal of the following simulations is to evaluate the 
performance of the proposed controller. These simulations 
are carried out with the virtual environment established by 
System Build software package in MATLAB. For 
comparison of performance, an optimal localized control 
algorithm (OLC) (Liu, 2012) is also designed based on the 
same control plant (10)-(12). Like the fuel economy 
consideration in proposed controller, its control law is also 
constrained by the fuel consumption criterion. 

The following parameters are used in the simulations: length 
of vehicle mLi 4 , engineer time constant 25.0i , the 

time gap 1h and the noisy measurements of i  and i  is 

assumed to be white and zero mean with standard deviations 
0.1 m and 0.01m/s, respectively. The other parameters used

 in the simulations are the same as (Guo, 2014), namely, 
specific mass of the air 32.1 mkg , cross-sectional area 

of vehicle 22.2 mAi  , drag coefficient 35.0dic , vehicle mass 

kgmi 1464 , mechanical drag Ndmi 5 , saturation level 
2/5.3 smsati  . 

The following parameters were used in the controller design: 
the delay variation rate 2.1  and the engine time 

uncertainties are expressed as )sin()( tDtf
iii

 , 

4
i

D . 

By using Theorem 2 and Theorem 3, the controller gains can 
be obtained as, 

For Downstream:  2.47.18.82.4iK  and for 

Upstream:  1.36.11.35.0iK . 

From Remark 4 the bidirectional string stability can be 
achieved when si 095.02   for the output feedback 

controller and set the actuator delay as s08.0 . 

In order to demonstrate the special performance of the 
proposed controller algorithm, the simulation is tested under 
three kinds of traffic scenario: Fictitious lead vehicle rapid 
accelerating, fictitious lead vehicle emergency braking and 
the fifth vehicle suffered a sudden disturbance. The proposed 
controller will be regarded as successful if its application can 
improve the string stability, the fuel consumption and 
tracking capability. 

A. Fictitious lead vehicle rapid acceleration 

In this scenario, it is assumed that all vehicles in the platoon 
run at the same initial speed 10m/s. At 5s, the fictitious lead 
vehicle accelerates at 23 sm from 10m/s to 25m/s. All the 

following vehicles are controlled to follow it by using the 
proposed controller and OLC algorithms, respectively. The 
results are shown in Figs. 1 and Figs.2. 
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Fig. 1. (a) Spacing errors; (b) Velocities; (c) Acceleration. 
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Fig. 2. (a) Spacing errors; (b) Velocities; (c) Acceleration. 

It is found from Fig. 1 (c) that the maximum accelerations for 
all following vehicles in the bidirectional platoon control 
system under the proposed controller is 3.4 2sm , satisfying 

the fuel economy. The control input satisfies ii satu  , hence 

the control input windup is avoided. From Figs. 1 (b), it can 
be seen that the whole platoon can achieve tracking control 
accurately. The maximum spacing errors is 3.6m, and the 
string stability can be achieved as shown in Fig. 1 (a). In this 

same case, when the method suggested in (Liu, 2012) is used, 
the system is string unstable (see Fig.2). The maximum 
spacing errors and acceleration are 7.8m and 4 2sm , 

respectively, which are much higher than in our case in Fig.1 
(a) and (c). As shown from Fig. 1 (b) and Fig. 2 (b), the 
maximum of velocities under the proposed controller is 
smaller than that under OLC. So, both better fuel economy 
and better tracking capability can be foreseen in our research. 
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Fig. 3. (a) Spacing errors; (b) Velocities; (c) Acceleration. 

When the fictitious lead vehicle accelerates at 25.3 sm  from 

0m/s to 17.5m/s (the input has reached the limits). From Figs. 
3 (b), it can be seen that the whole platoon can achieve 

tracking control accurately as well. The maximum spacing 
errors and acceleration are 4.2m and 4 2sm , respectively. 
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Fig. 4. (a) Spacing errors; (b) Velocities; (c) Acceleration. 
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Fig. 5 (a) Spacing errors; (b) Velocities; (c) Acceleration. 

B. Fictitious lead vehicle emergency braking 

In preceding car’s emergency braking scenario, the preceding 
car decelerates at the acceleration of -3 2sm  from 50m/s to 

35m/s, and the minimal safety distance 4
min


id
 m. All the 

following vehicles are controlled to follow the fictitious lead 
by the proposed controller and OLC algorithms, respectively. 
The results are shown in Figs. 4 and 5. From Fig 4 (a), it is 
found that the whole platoon can hold string stability. The 
acceleration is lower than the minimum acceleration and the 
longitudinal ride comfort can be satisfied. In contrast, as 
shown in Fig. 5 (a), the maximum spacing error is -5.9m, 
which mean a rear end collision has happened, and the 
platoon is string instability. The last vehicle in the platoon 
cannot achieve the cruise velocity, and the maximum 
acceleration is -4 2sm , as shown in Fig. 5 (b) and (c). 

5.2  Experiments 

The simulations in the previous sections indicate that the 
proposed controller is simple in structure and the parameters 

are easy to tune so that it can be quickly calibrated for a 
certain vehicle and can meet real-time requirements. In this 
section, experimental studies are carried out to demonstrate 
some properties of the proposed controller. The experiments 
are based on five radio controlled Arduino cars, shown in Fig. 
6. (a) and (b), which are driven by two rear wheels and 
steered by a serve on the front wheel. The infrared sensor is 
used to measure the front distance and rear distance between 
the adjacent vehicles, respectively. The actuator lumped 
delay is 0.04s, which is identified using operational data. 

 

Fig. 6. (a) Arduino car;    (b) Arduino platoon system. 
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Fig. 7. (a) Spacings; (b) Velocities. 

The most important objective of the experiment is to show 
the effectiveness of the presented method in dealing with a 
sudden disturbance on the following vehicle. In this case, the 
desired spacing is set to be 10cm, and a sudden drop of speed 
from 30cm/s to 22.5cm/s is applied to the third car in the 
interval [7s, 8s], and actuated by a command from the 
computer via a wireless communication. When the proposed 
controller is applied, the spacing error appears to be 

significantly larger than in the simulation. This is partly 
caused by measurement noise, the level of which is indicated 
by the constant velocity sections of the test scenario. Another 
cause is that the bidirectional platoon system behaviour is 
sensitive to variations of the neighbouring vehicle’s input. 
Although all test cars are of the same type, these 
“heterogeneous” occur, among others, because the batteries 
do not have the same state of charge. As shown in Fig. 7. The 
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second and the fourth car becomes biased during the sudden 
braking (the maximum spacing error is 6.1cm), while the 
entire platoon still remains string stable and the objectives in 
Subsection 2.3 are achieved.  

6. CONCLUSIONS 

In this paper, a bidirectional platoon control scheme has been 
developed with the effects of uncertainty, saturations and 
time delay. A robust controller was designed which can 
guarantee the individual stability as well as string stability 
without using the wireless communication. The results were 
further tested via experiments conducted with the laboratory 
scale Arduino cars.  
There are several interesting questions that worth this 
research. Such as, if the closed platoon system performance 
can be improved by using more than two vehicles’ 
information, and derive the fundamental limitations in this 
framework. In this scheme, the inter-vehicular 
communication will be required, and the wireless 
communication among the vehicles share should be 
considered, but may still be advantageous compared to the 
predecessor and leader following scheme. These issues raise 
various open problems that are worth investigating in future 
research work. 

APPENDIX 

Here, we present the proof of Theorem 1 

Define the following Lyapunov-Krasovskii functional for 
system (9) as 
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Next, the asymptotic stability of the system in (10) is 
established with 0)( td
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