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Abstract: This paper proposes a robust T-S fuzzy output regulator for affine nonlinear systems
in the presence of parametric uncertainties and external disturbance. First, we introduce the
fuzzy output regulator by involving an integral error state and PDC compensation, where a set
of virtual desired variables (VDVs) is solved for error coordinate transformation. The benefit
of the VDV-based regulator is with systematic design. However, since the VDV-based fuzzy
regulator is unavailable when the system is subject to uncertainty and external disturbance,
the controller is further reduced to the non-VDV fuzzy output regulator. The VDV calculation
is removed in a more simplified manner, while the exponential output regulation is assured.
To reject uncertainty and external disturbance, the robust H∞ theorem is derived with linear
matrix inequality (LMI) stability condition. Finally, numerical simulation of the DC-DC buck
converter is given to show the benefits of the non-VDV fuzzy output regulator.
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1. INTRODUCTION

Fuzzy logic systems have been successfully applied to many
control problems of complex or poorly modeled systems
over the past decades, e.g., Marcu (2011), Cuibus and
Letia (2012), Wallam and Abbasi (2014), Tasar et al.
(2015), Khelchandra et al. (2014), Ameur et al. (2013).
Recently, the T-S fuzzy model approach has been deve-
loped for stability analysis and stabilization of nonlinear
systems (Ma and Fei, 2015; Jabri et al., 2012; Chuang
et al., 2011; Sadeghi and Vafamand, 2014) because of
its ability to accurately approximate complex nonlinear
systems by a set of linear subsystems with associated
membership functions (Takagi and Sugeno, 1985; Wang
et al., 1996). The stability can be rigorously proven by
Lyapunov theory and the controller can be designed with
the framework of the parallel distributed compensation
(PDC)(Tanaka and Wang, 2001). In addition, the control
gains also can be quickly obtained via powerfully solving
linear matrix inequalities (LMIs)(Boyd et al., 1994). For
example, many fuzzy control methods incorporated with
LMI-based strategies have been developed for stabilization
(Tanaka et al., 1998; Chen et al., 2000; Tuan et al., 2001;
Liu and Zhang, 2003).

Besides stabilization problem, regulation is also an im-
portant task for the control systems. The output regula-
tion problem studies the stabilization of dynamic systems
with the system output asymptotically rejecting unwanted
disturbances and tracking prescribed trajectories (Huang,
2004). For example, the regulation theory (Ma and Sun,

2000) based method is extended to solve the output regula-
tion control problem of T-S fuzzy systems, e.g., Yuan
and Li (2007), Meda-Campaña et al. (2012). These papers
have to solve some regulation equations for exact output
regulation and are failed when considering system uncer-
tainty/disturbance or bias terms, cf. (Byrnes and Isidori,
2000). This means that the regulation theory based ap-
proaches are difficultly applied on more general uncertain
nonlinear systems. On the other hand, some alternative
methods which calculate equilibrium point or virtual de-
sired variable (VDV) for T-S fuzzy output regulation of
nonlinear systems have been developed in (Chiu et al.,
2004), and (Lian et al., 2005), respectively. In (Chiu et al.,
2004), the operational point reference approach is provided
to take coordinate transformation and to construct the
regulation error system. However, this method may lead
to a nontrivial control task when solving the equilibrium
points of complex system is infeasible. Afterward, a novel
VDV based method is occurred to overcome drawbacks of
the above method. In (Lian et al., 2005), a set of virtual
desired variables (VDVs) is introduced to synthesize the
control law for the speed control of induction motors. After
the output tracking system is transformed to a stabiliza-
tion problem via the VDV concept, the original controller
becomes as two-parts of control law including PDC and
VDV calculation. Although the VDV concept scheme can
avoid searching equilibrium point to design fuzzy regula-
tor, the design procedure still has computational comple-
xity to solve the VDVs for high-order systems. Meanwhile,
the VDV based fuzzy regulator is unavailable to control
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the systems with uncertainty and external disturbance. In
other words, its practical applications are limited due to
the computational-intensive characteristic and unavailable
uncertainty for VDVs. This motivated us to further im-
prove the above regulator with a simpler form and robust
performance.

This paper will present an easy implement condition to
design output regulator for nonlinear affine systems with
uncertainty and external disturbance. First, we augment
the nonlinear affine system with an added integral state
of the output regulation error. Second, we introduce a
set of VDVs to construct the output regulation error
system and represent it in a T-S fuzzy model. Then, the
output regulation problem is converted to the stabilization
problem in a straight-forward design manner. Third, we
further remove the VDVs to simplify the controller as a
non-VDV fuzzy regulator. Meanwhile, the robustness of
the resulted regulation error system to uncertainty and
external disturbance is enhanced by the non-VDV fuzzy
regulator. As a result, the exponential output regulation
and H∞ performance are assured under LMI conditions,
i.e., the H∞ disturbance attenuation is obtained based
on the proposed gain design. In contrast to the work
(Lian et al., 2005), this paper comes with such merits:
(i) it is not necessary to determine VDVs; (ii) an error
coordinate transformation is not required; (iii) controller
gains guarantee the stability of the nonlinear system in the
presence of system uncertainty and external disturbance;
(iv) the output regulation stability is transformed to the
feasible LMI problem; (v) even if the desired output
signal is changing, the piecewise regulation performance
can be achieved without redesigning the controller. In
addition, to demonstrate the effectiveness of the robust
output regulator, numerical simulation for a DC-DC buck
converter with uncertainty and external disturbance is
given.

The rest of this paper is organized as follows. A VDV-
based T-S fuzzy regulator design for nonlinear affine sys-
tems is introduced in Section 2. In Section 3, a non-VDV
T-S fuzzy regulator synthesis is proposed by removing
VDV and redesigning control gain. In Section 4, robustness
design is presented. Numerical simulation is carried out
for a DC-DC buck converter to verify the proposed two
regulators and comparison results are included in Section
5. Finally, some conclusions are given in Section 6.

2. VDV-BASED REGULATOR

First of all, a VDV-based design scheme is introduced for
the T-S fuzzy output regulation control. Consider a kind of
affine nonlinear system described by the following dynamic
equation:

ẋp(t) = f(xp(t)) + g(xp(t))u(t) + ξ (1)

y(t) = h(xp(t)) (2)

where xp ∈ Rn, u ∈ Rq, y ∈ Rm (q ≤ m) are the
state, the input, and the output respectively; f(·), g(·)
and h(·) are nonlinear function vectors with appropriate
dimensions; ξ is a bias term. Through this paper, the
nonlinear dynamic functions f(·) and h(·) are assumed to
be expressed in the forms: f(xp(t)) = A(xp(t))xp(t) and
h(xp(t)) = C(xp(t))xp(t), where the matrices A(xp(t)),

C(xp(t)) and g(xp(t)) are well defined in the discussed
region Ω. For this system, the control objective is to
drive the output y(t) to a desired constant value yd. To
achieve zero steady-state regulation error, the integral
compensation is used to cope with the bias term and
uncertainty. A new state variable is added to account the
integration of output regulation error i.e.,

ẋe(t) = yd − y(t) (3)

where xe is the error integration. For multi-output sys-
tems, xe(t) denotes a stack ofm integrators. By combining
(1), (2) and (3), the overall augmented dynamics becomes

ẋp(t) = A(xp(t))xp(t) + g(xp(t))u(t) + ξ

ẋe(t) = yd − C(xp(t))xp(t) (4)

By letting the augmented state x =
[
xTp xTe

]T
∈ Rn+m,

the above dynamics is rewritten in the state-space form:

ẋ(t) = A(xp(t))x(t) +B(xp(t))u(t) + ξ

where A(xp(t)), B(xp(t)), and ξ are denoted as follows:

A(xp(t)) =

[
A(xp(t)) 0
−C(xp(t)) 0

]
, B(xp(t)) =

[
g(xp(t))

0

]
,

ξ =

[
ξ
yd

]

If the output regulation control is achieved, then there is
an operational point xd = [xTpd x

T
ed]

T for y(t) = yd, where
xpd, xed are the operational point for the state xp, and
the integral state xe, respectively. Since we only need to
control the output, the operational point xd has freedom
to be designed later. As a result, xd is called the virtual
desired variable (VDV) for the system state. Let us define
the error states x̃p(t) = xp(t) − xpd, x̃e(t) = xe(t) − xed,
e(t) = x(t) − xd. The regulation error system is obtained
below:

ė(t) = A(xp(t))e(t) +B(xp(t))u(t) + ξ +A(xp(t))xd

= A(xp(t))e(t) +B(xp(t))τ(t) + ψ(t) (5)

where the terms B(xp(t))τ(t) and ψ(t) satisfy

ψ(t) = B(xp(t))u(t) + ξ +A(xp(t))xd −B(xp(t))τ(t) (6)

If letting ψ(t) = 0, the term τ(t) becomes a virtual control
input in (5) to be designed later. Next, according to the T-
S fuzzy modeling method Lian et al., (2001), and letting
ψ(t) = 0, the nonlinear regulation error system (5) is
further expressed in terms of T-S fuzzy rules as follows:

Plant Rule i :

IF z1(t) is F1i and · · · and zs(t) is Fsi

THEN ė(t) = Aie(t) +Biτ(t), i = 1, 2, ..., r (7)

where z1(t) ∼ zs(t) are premise variables which consist of
proper state variables of the system; Fji(j = 1, 2, . . . , s)

are the fuzzy sets; r is the number of fuzzy rules; Ai

and Bi are system matrices with appropriate dimensions.
Using singleton fuzzifier, product inference, and weighted
defuzzifier, the fuzzy system is inferred as the dynamic
equation:
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ė(t) =

r∑

i=1

µi(z(t))Aie(t) +

r∑

i=1

µi(z(t))Biτ(t) (8)

where z(t) = [z1(t) z2(t) · · · zs(t)]
T and µi(z(t)) =∏

s

j=1
Fji(zj(t))∑

r

i=1

∏
s

j=1
Fji(zj(t))

≥ 0 for all t in the regarded dis-

cussion region Ω; and
∑r

i=1 µi(z(t)) = 1. In the fuzzy
model (8), the membership function Fji(zj(t)) and the

subsystem matrices Ai, Bi will be properly chosen, such
that

∑r
i=1 µi(z(t))Ai = A(xp(t)) and

∑r
i=1 µi(z(t))Bi =

B(xp(t)). At this step, if the error state e(t) is stabilized
to zero, then the state x(t) is driven to the VDV xd for
the regulation objective. The output regulation control is
transformed to a stabilization problem by designing the
virtual control input τ(t), while the desired variables xd
and the control input u(t) are conformed to (6). Based on
the IF-THEN fuzzy rules in (7), the T-S fuzzy stabilization
law is constructed as follows:

Controller Rule i :

IFz1(t) is F1i and . . . and zs(t) is Fsi
THEN τ(t) = −Kie(t), i = 1, 2, . . . , r (9)

where the K ′
is are the feedback gains. By substituting the

inferred output of (9) into the regulation error system (8),
the closed-loop system is thus obtained below:

ė(t) =

r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))Gije(t) (10)

whereGij = Ai−BiKj . Afterward, according to Lyapunov
stability method, the gain design can be performed by
solving the following LMIs

[
XA

T

i +AiX −M
T
j B

T

i −BiMj XD
DX −X

]
< 0, (11)

for i, j = 1, 2, . . . , r, where Mj = KjX (i.e., Kj =MjX
−1

); D is a diagonal positive-definite matrix chosen by
designer for adjusting the control performance. In other
word, if the above LMIs have a feasible solution, then the
error system (10) is asymptotically stable. This means that
the output regulation objective is achieved.

Next, the remaining design for the output regulation is to
determine xd and u(k). From the constraint ψ(t) = 0 in
(6), we partition the matrices as follows:

B(xp(t)) =

[
Bu(xp(t))
−−−−−−
0(n+m−q)×q

]
, A(xp(t)) =

[
Au(xp(t))
−−−−−
Ad(xp(t))

]
,

ξ =

[
ξu
−−
ξd

]

where Bu(xp) ∈ R
q×q is the nonzero term of g(xp) ∈ R

n×q

; Au(xp) ∈ Rq×(n+m); Ad(xp) ∈ R(n+m−q)×(n+m); ξu ∈

Rq×1; and ξd ∈ R
(n+m−q)×1. Then, the condition ψ(t) = 0

in (6) can be rewritten below:

[
Bu(xp(t))(u(t)− τ(t))
−−−−−−−−−−

0(n+m−q)×1

]
=

[
−Au(xp(t))xd − ξu
−−−−−−−−−
−Ad(xp(t))xd − ξd

]

(12)

From the upper part of (12), the practical T-S fuzzy
regulator is formed as follows:

u(t) =−

r∑

i=1

µi(z(t))Kie(t)

−B−1
u (xp(t)){Au(xp(t))xd + ξu} (13)

where the virtual control input (9) has been applied; xd is
solved from the lower part of (12), i.e.,

0 = Ad(xp(t))xd + ξd (14)

Since the number of the above constraint is lower than
the dimension of xd, there exist q redundant freedoms for
solutions of xd, i.e. xed can be unlimited under the output
regulation objective yd = C(xpd)xpd. From the above, the
structure of the VDV-based integral T-S fuzzy regulation
control is shown in Fig. 1.

( )e tdx ( )tτ
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−
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Fig. 1. Diagram of the VDV-based T-S fuzzy output
regulation control.

Remark1 : From the aforemention, the VDV-based con-
trol is a systematic scheme for output regulation. But (13)
is unavailable as well as xd cannot be solved from (14)
when there exists uncertainty or disturbance. To overcome
the disadvantage, we will design a new T-S fuzzy output
regulator by removing VDV design.

3. NON-VDV T-S FUZZY REGULATOR DESIGN

From the above VDV based regulator design, the controller
is complex due to solving the virtual desired variables
which are dependent on the dynamic function Ad(xp).
To reduce the complexity of the regulator, the controller
redesign is proposed in this section.

Step1 . Remove the VDV

To avoid solving VDVs and calculating the complex con-
trol law, the constraint (6) is firstly modified. By applying
the definition e = x − xd, the term ψ(t) in (6) with the
virtual control input (9) is rewritten in the form:
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ψ(t) = B(xp(t))(u(t) +

r∑

i=1

µi(z(t))Kie(t)) + ξ

+A(xp(t))xd

= B(xp(t))(u(t) +

r∑

i=1

µi(z(t))Kix(t))

+ ψ̂(xd) + ∆ψ(t) (15)

where

ψ̂(xd) = −B(xpd)

r∑

i=1

µi(zd)Kixd + ξ +A(xpd)xd

∆ψ(t) = −[B(xp(t)
r∑

i=1

µi(z(t))Kixd

−B(xpd)
r∑

i=1

µi(zd)Kixd]

+ [A(xp(t))−A(xpd)]xd (16)

and zd is the premise variable composed of xd w.r.t. z.
From the above equation, we simplify the fuzzy output
regulator to

u(t) = −

r∑

i=1

µi(z(t))Kix(t), (17)

while the controller constraint is changed to

ψ̂(xd) = 0 (18)

As a result, this implies ψ(t) = ∆ψ(t) in (5) under (17) and
(18), i.e., the term ∆ψ(t) becomes an error to the closed-
loop system. The dynamics of the closed-loop system by
applying the designed virtual control input (9) becomes

ė(t) =

r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))Gije(t) + ∆ψ(t) (19)

On the other hand, by taking the same partition as (12)

on the new controller constraint ψ̂(xd) = 0, the following
two equations are obtained below:

Bu(xpd)
r∑

i=1

µi(zd)[Kpixpd +Keixed] = Au(xpd)xd + ξu

(20)

Ad(xpd)xd + ξd = 0 (21)

From the above, xpd can be first solved from (21), then xed
is found from (20). The number of the constraint equals to
the dimension of xd, so that there exist a feasible solution

xd satisfying the constraint ψ̂(xd) = 0. Since the real
control law (17) is not dependent on the VDV xd, the
VDV xd is not required to solve for the controller, i.e. the
VDV xd is removed in the controller implementation. As a
result, the configuration of the non-VDV T-S fuzzy output
regulation control is shown in Fig. 2.

Step2 . Design controller gains

To assure the stability, let us consider the closed-loop error
system (19) again. Without loss of generality, the error
term ∆ψ(t) has a benefited property for Lipschitz dynamic
functions A(xp(t)), B(xp(t)) and µi(z(t)). The Lipschitz
condition implies the term ∆ψ(t) can be expressed in

( )x t( )ex t
� �

• ��
dy ( )ex t ( )u t ( )y t

( )px t
-
+ Non-VDV
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 Eq. (17)
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Nonlinear
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Output

Fig. 2. Diagram of the non-VDV T-S fuzzy output regula-
tion control.

terms of the error e(t) by the mean value theorem. It yields
that there is a constant matrix ∆E such that

∆ψ(t)T∆ψ(t) ≤ e(t)T∆ET∆Ee(t) (22)

Afterward, the gain design is given in the following theo-
rem.

Theorem 1. By using the simplified fuzzy output regulator
(17), the closed-loop system (19) is exponentially stable
and assures the output regulation objective if there exist
a symmetric positive matrix X > 0 and control gain Kj

satisfying the following LMIs




(
XA

T

i +AiX −M
T
j B

T

i −BiMj

+X∆ET +∆EX

)
XD

DX −X


 < 0 (23)

where Mj = KjX; D = DT > 0; and i, j = 1, 2, . . . , r.

Proof. The result can be proven via the Lyapunov’s
stability method. By choosing the Lyapunov function
candidate V (e(t)) = e(t)TPe(t) with P = P T > 0
and taking the time derivative of V (e(t)) along the error
dynamics (19), we have

V̇ (e(t)) =





r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))Gije(t) + ∆ψ(t)





T

× Pe(t) + e(t)TP

×





r∑

i=1

r∑

j=1

µi(xp(k))µj(xp(t))Gije(t) + ∆ψ(t)





=

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))

× e(t)T {GT
ijP + PGij}e(t)

+ ∆ψ(t)TPe(t) + e(t)TP∆ψ(t) (24)

Due to the Property (22), V̇ (e(t)) further satisfies the
following inequality:

V̇ (e(t)) ≤
r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))e(t)
T {GT

ijP + PGij

+∆ETP + P∆E +DPD}e(t)

− e(t)TDPDe(t) (25)

If the following inequality is satisfied, then V̇ (e(t)) <
−e(t)TDPDe(t), i.e.,

GT
ijP + PGij + P∆E +∆ETP +DPD < 0 (26)

Due to

V̇ (e(t)) < −e(t)TDPDe(t) ≤ −σV (e(t))
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it results in

V (e(t)) ≤ V (0)e−σt (27)

with σ = λmin(DPD)/λmax(P ), where λmin(M), λmax(M)
denote the minimal and maximal eigenvalue of a ma-
trix M , respectively. Since V (e(t)) > 0, V̇ (e(t)) <
−e(t)TDPDe(t) < 0, and ‖e(t)‖2 ≤ V (0)e−σt/λmin(P ),
the error e(t) exponentially converges to zero as t → ∞.
Therefore, the simplified regulator assures the output
regula-tion control objective. Furthermore, the stability
condition can be transformed to LMI conditions. After
pre-multiplying and post-multiplying (26) by X = P−1,
it leads to

XA
T

i +AiX −M
T
j B

T

i −BiMj +X∆ET +∆EX

+XDX−1DX < 0 (28)

where Mj = KjX. Then the LMIs (23) are obtained by
applying Schur’s complement technique on (28).

Remark2 : Based on the simplified fuzzy output regulator
(i.e, the non-VDV fuzzy output regulator), the output
regula-tion does not require solving the equilibrium points
and VDVs as well as performing coordinate transforma-
tion. Even if there exists uncertainty on A(xp), the con-
troller (17) can be realized. The control performance can
be adjusted by the LMI design.

4. ROBUSTNESS DESIGN

Furthermore, both system uncertainty and disturbances
are considered in this section. From taking observation on
(19), the uncertain closed-loop system can be assumed in
the following form:

ė(t) =

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))(Gij +∆Gij)e(t)

+ ∆ψ(t) + Jω(t) (29)

where ω(t) denotes an external disturbance; J is a known
matrix; ∆Gij = ∆Ai − ∆BiKj denotes the system un-

certainty; ∆Ai, and ∆Bi are unknown time-varying para-
metric uncertainties, which hold the norm-bounded condi-
tion:

[∆Ai ∆Bi] = UiΦi(t)[E1i E2i] (30)

where Ui, E1i, and E2i are known real constant matrices;
and Φi(t) is an unknown matrix function with Lebesgue-
measurable elements and satisfies Φi(t)

TΦi(t) ≤ I for
all t, in which I is an identity matrix with appropriate
dimension. According to (30), the uncertain term ∆Gij

can be expressed in the form:

∆Gij = ∆Ai −∆BiKj

= UiΦi(t)(E1i − E2iKj)

≡ UiΦi(t)Eij

i.e., Eij = E1i − E2iKj . This implies that the closed-
loop system (29) along with the simplified fuzzy output
regulator (17) arrived with the following form:

ė(t) =

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t)){Gij + UiΦi(t)Eij}e(t)

+ ∆ψ(t) + Jω(t) (31)

For the disturbance, the control objective becomes to
achieve the H∞ criterion

∫ tf

0

e(t)TDTPDe(t)dt < e(0)TPe(0)− e(tf )
TPe(tf )

+
1

ρ2

∫ tf

0

ω(t)Tω(t)dt (32)

where x̃(0) is the initial error; P is a symmetric positive-
definite matrix; and ρ is an attenuation factor. The effect
of the disturbance will be attenuated below a desired level
(1/ρ). If no disturbances exists, the control law (17) will
stabilize e(t) to zero exponentially, i.e., the output signal
y(t) is regulated to the prescribed value yd. To this end,
the robust gain design is given in the following theorem.

Theorem 2. Considering the closed-loop system (31) en-
dowed with the simplified fuzzy control law (17), the H∞

regulation performance (32) is guaranteed for a desired
attenuated level 1

ρ
of disturbance if there exist a symmetric

positive definite matrix X > 0 and Mj = KjX satisfying
the LMIs:







XA
T

i +AiX

−MT
j B

T

i −BiMj

+X∆ET +∆EX


 ∗ ∗ ∗ ∗

εUT
i −εI ∗ ∗ ∗

E1iX − E2iMj 0 −εI ∗ ∗
DX 0 0 −X ∗

JT 0 0 0 −
1

ρ2
I




< 0

(33)

for i, j = 1, 2, ..., r.

Proof. Choosing the Lyapunov function candidate V (e(t))
= e(t)TPe(t) with P = P T > 0 and taking the time
derivative of V (e(t)) along the error dynamics (31) yields

V̇ (e(t)) = {

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))[Gije(t)

+ UiΦi(t)Eij ]e(t) + ∆ψ(t) + Jω(t)}TPe(t)

+ e(t)TP{

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))

× [Gije(t) + UiΦi(t)Eij ]e(t) + ∆ψ(t) + Jω(t)}
(34)

According to the property in (22), V̇ (e(t)) satisfies

V̇ (e(t)) ≤

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))e(t)
T {A

T

i P + PAi

−KT
j B

T

i P − PBiKj + ET
ijΦi(t)

TUT
i P

+ PUiΦi(t)Eij +∆ETP + P∆E}e(t)

+ ω(t)TJTPe(t) + e(t)TPJω(t) (35)
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Due to Φi(t)
TΦi(t) ≤ I, we have

V̇ (e(t)) ≤

r∑

i=1

r∑

j=1

µi(xp(t))µj(xp(t))e(t)
T {A

T

i P + PAi

−KT
j B

T

i P − PBiKj + εPUiU
T
i P +

1

ε
ET
ijEij

+∆ETP + P∆E +DPD + ρ2PJJTP}e(t)

− e(t)TDPDe(t) +
1

ρ2
ω(t)Tω(t) (36)

for some positive constant ε > 0 and DPD > 0. If the
matrix inequality

A
T

i P + PAi −K
T
j B

T

i P − PBiKj + εPUiU
T
i P +

1

ε
ET
ijEij

+∆ETP + P∆E +DPD + ρ2PJJTP < 0 (37)

is satisfied, then

V̇ (e(t)) < −e(t)TDPDe(t) +
1

ρ2
ω(t)Tω(t) (38)

Therefore, by integrating both sides of the inequality (38),
the H∞ criterion (32) is assured under the condition (37).

Next, the robust gain design is performed in the following.
After pre-multiplying and post-multiplying (37) by X−1

and denoting Mj = KjX, the inequality (37) is equivalent
to

XA
T

i +AiX −M
T
j B

T

i −BiMj + εUiU
T
i

+
1

ε
(E1iX − E2iMj)

T (E1iX − E2iMj)

+X∆ET +∆EX +XDX−1DX + ρ2JJT < 0 (39)

Applying Schur complement to (39), the LMI stability
condition (33) is obtained. Therefore, if there exists a
feasible solution satisfying the LMIs (33), the non-VDV
fuzzy output regulator (17) can drive the system to the
desired operational point with y(t) = yd even if the system
uncertainty and disturbance are considered. The effect of
disturbance is attenuated to 1

ρ
level.

5. NUMERICAL SIMULATIONS

In this section, the VDV and non-VDV based T-S fuzzy
output regulators will be applied on a DC-DC buck con-
verter to verify the theoretical validity. Moreover, some
comparisons are performed to demonstrate differences be-
tween the two proposed regulation control methods and
to show the benefits of the non-VDV based T-S fuzzy
regulator. Consider the DC-DC buck converter (Sun and
Grotstollen, 1992) with the equivalent circuit illustrated
in Fig. 3. The DC-DC buck converter is described by the
dynamics:

İL(t) = −
IL(t)

L

(
RL +

RRC

R+RC

)
−

Vc(t)R

L(R+RC)

+
u(t)(Vin + VD −RMIL(t))

L
−
VD
L

V̇c(t) =
IL(t)R

C(R+RC)
−

Vc(t)

C(R+RC)

Vo(t) =
RRC

R+RC

IL(t) +
R

R+RC

Vc(t) (40)

RM

DV

L

i L

RL

C CV

RC

R oVinV

M

Du

Fig. 3. The equivalent circuit of a DC-DC buck converter

where IL(t) is the inductor current; Vc(t) is the capacitor
voltage; Vo(t) is actual output voltage; Vin is a voltage
source; VD is the forward voltage of the diode; u(t) is
a duty ratio of the PWM signal to control the power
MOSFET; R is the load resistance; L is the inductance; C
is the capacitance; RC is the capacitor resistance; RL is the
inductor resistance; and RM is the MOSFET resistance.

In general, voltage regulation is the most common objec-
tive for the DC-DC converter. To this end, we define an
error state xe(t) by the following dynamic equation:

ẋe(t) = Vd − Vo(t)

where Vd is the desired voltage. Let x(t) = [x1(t) x2(t)

x3(t)]
T = [IL(t) Vc(t) xe(t)]

T , the overall system dynamics
is written in the form:

ẋ(t) =




−
1

L

(
RL +

RRC

R+RC

)
−

R

L(R+RC)
0

R

C(R+RC)
−

1

C(R+RC)
0

−
RRC

R+RC

−
R

R+RC

0



x(t)

+




1

L
(Vin + VD −RMx1(t))

0
0


u(t) +



−
VD
L
0
Vd




≡ A(xp(t))x(t) +B(xp(t))u(t) + ξ (41)

where x1(t) is well-defined in the discussion region Ω;
and the system matrices A(xp(t)), B(xp(t)), ξ are thus
defined by (41). From the state-space model form, the
state x1(t) is taken as the premise variable z(t). According
to the fuzzy modeling method (Lian et al., 2001), the
membership function of z(t) is chosen such that A(xp(t)) =∑r

i=1 µi(z(t))Ai, and B(xp(t)) =
∑r

i=1 µi(z(t))Bi. Then,
(41) can be exactly represented by the T-S fuzzy model as
follows:

Plant Rule i :

IF x1(t) is Fi

THEN ẋ(t) = Aix(t) +Biu(t) + ξ, i = 1, 2 (42)

where the fuzzy set are F1 = {about α mA} and F2 =
{about β mA} which corresponding membership functions
are denoted below:

F1 (z(t)) =
x1(t)− β

α− β
, F2 (z(t)) =

α− x1(t)

α− β

where α ≡ maxx1∈Ωx1(t), β ≡ minx1∈Ωx1(t), x1(t) =
F1α + F2β, F1 + F2 = 1. The subsystem matrices are
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given by:

A1 = A2 =




−
1

L

(
RL +

RRC

R+RC

)
−

R

L(R+RC)
0

R

C(R+RC)
−

1

C(R+RC)
0

−
RRC

R+RC

−
R

R+RC

0



,

B1 =




1

L
(Vin + VD −RMα)

0
0


 ,

B2 =




1

L
(Vin + VD −RMβ)

0
0


 , ξ =



−
VD
L
0
Vd


 .

On the other hand, from (6), the constraint of the VDVs
is



1

L
(Vin + VD −RMx1(t))

0
0


 (τ(t)− u(t))

=




−
1

L

(
RL +

RRC

R+RC

)
−

R

L(R+RC)
0

R

C(R+RC)
−

1

C(R+RC)
0

−
RRC

R+RC

−
R

R+RC

0




[
x1d
x2d
x3d

]

+



−
VD
L
0
Vd


 (43)

where xd = [x1d x2d x3d]
T . Applying the partition as (12)

on the above equations yields the following conditions for
determining xd:

R

C(R+RC)
x1d −

1

C(R+RC)
x2d = 0

RRC

R+RC

x1d +
R

R+RC

x2d = Vd (44)

This implies that x1d = Vd

R
, x2d = Vd, and x3d is not

limited. Here we set x3d = 0 for simplification. Meanwhile,
we can easily obtain the control input:

u(t) = −

2∑

i=1

µi(z(t))Kie(t) +
1

Vin + VD −RMx1(t)

×

{(
RL +

RRC

R+RC

)
x1d +

R

R+RC

x2d + VD

}

(45)

Obviously, if there exist parametric uncertainties, the
solutions of x1d, x2d, u are unavailable. This means that
the VDV-based fuzzy output regulator fails to control
uncertain systems. To show the benefits of the proposed
non-VDV fuzzy regulator, the uncertain buck converter
is considered. The system parameters are set to Vin =
30V ; VD = 0.82V ; R = 10Ω; L = 3mH; C = 470µF ;
RC = 0.162Ω; RL = 0.0485Ω; RM = 0.27Ω, while all
system parameters are uncertain but bounded within 1%

of their nominal values. In other words, the norm-bounded
condition of uncertainties is regarded with

U1 = U2 = I3×3,

E11 = 0.01A1, E12 = 0.01A2,

E21 = 0.01B1, E22 = 0.01B2.

Moreover, the external disturbance is assumed as ω(t) =
2 sin(200πt) with J = [0 1 0]T . For the T-S fuzzy model
(42), the fuzzy parameters are chosen as α = 5 and
β = 0.01.

First, the fixed regulation is considered to drive the buck
converter to generate the desired output yd = 12V . For the
non-VDV fuzzy output regulator, the control parameters
are set with D = diag{10, 8, 5}, ∆E = diag{48, 48, 20},
ρ = 60, ε = 2−4. After solving the LMIs (33) in Theorem
2, the feasible controller gains are obtained as follows:

K1 = [ 0.5605 0.2127 −31.2302 ] ,

K2 = [ 0.5605 0.2127 −31.2302 ] .

By letting the initial states of the buck converter to
be x(0) = [3 5 0.1]T . The output regulation results
are obtained in Fig. 4 and Fig. 5. The output quickly
tends to the desired value without solving the VDVs and
performing coordinate transformation. Next, a piecewise
constant signal (Vd is changed from 12V → 24V → 12V)
is also taken as the desired output. Based on the above
controller setting, the control responses are shown in Fig.
6 and Fig. 7. The output also quickly tracks the desired
piecewise constant signal without VDV calculation and
controller redesign.
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Fig. 4. Result of the fixed regulation of buck converter.

To demonstrate the benefit of the non-VDV fuzzy regula-
tor, the VDV-based fuzzy controller is also applied on the
buck converter. The VDVs are solved from the nominal
system by omitting uncertainty and disturbance. The
controller gains of the VDV-based fuzzy regulator is solved
according to LMIs (11) and we obtain

K1 = [−0.0097 0.0832 −2.3333 ] ,

K2 = [−0.0097 0.0832 −2.3333 ] .

For the piecewise constant output regulation as Fig. 6, the
VDVs of (44) should be solved simultaneously according
to the varying desired command yd(t). However, the VDVs
cannot be exactly obtained due to considering uncertainty.
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Fig. 5. State responses of the buck converter for the fixed
regulation.
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Fig. 6. The piecewise constant regulation of buck converter
by using non-VDV T-S fuzzy regulator.
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Fig. 7. State responses of the piecewise constant regula-
tion of buck converter by using non-VDV T-S fuzzy
regulator.

As a result, the VDV-based fuzzy regulator is difficultly
realized. Under the same initial condition, the results of
the VDV-based fuzzy regulation control for the piecewise
constant regulation are obtained in Fig. 8 and Fig. 9.

Compared with Figs. 6 and 7, the VDV-based fuzzy
regulator lead to large oscillation in the transient response.
In addition, since the input source voltage Vin is usually
not fixed from AC voltage rectification, the variation
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Fig. 8. The piecewise constant regulation of buck converter
by using VDV-based T-S fuzzy regulator.
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Fig. 9. State responses of the piecewise constant regulation
of buck converter by using VDV-based T-S fuzzy
regulator.
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Fig. 10. The fixed regulation of buck converter when Vin
is changed from 30V → 20V → 30V for R = 10Ω by
using non-VDV T-S fuzzy regulator.

of the input voltage is taken as an uncertainty. Also,
the output load changes in various applications of a
buck converter. To show and observe the benefits of the
proposed control method, we further consider piecewise
varying input voltage source Vin and output load R which
are worst cases with suddenly changing input voltage (due
to suddenly changed AC line voltage) and load (due to
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Fig. 11. The fixed regulation of buck converter when Vin
is changed from 30V → 20V → 30V for R = 10Ω by
using VDV-based T-S fuzzy regulator.
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Fig. 12. The fixed regulation of buck converter when R is
changed from 8 Ω → 10 Ω → 8 Ω for Vin= 30V by
using non-VDV T-S fuzzy regulator.

users’ applications). Comparisons of non-VDV and VDV
based fuzzy output regulators for coping with piecewise
varying input voltage and output load are made and shown
in Figs. 10 - 13. Obviously, the non-VDV based fuzzy
regulator has better control performance than the VDV
based fuzzy regulator. The effect of the uncertainty and
disturbance is attenuated from the proposed gain design.

Furthermore, to test the robustness during the starting up
procedure of regulation, a worst case with Vin changing
from 20V→ 30V→ 20V respectively at 0.01 and 0.06 sec is
applied to the DC-DC buck converter before the regulation
is settled by the T-S fuzzy output regulators. For the
reference command yd = 12V and the load R = 10Ω,
the results by using the non-VDV and VDV fuzzy output
regulators are shown in Figs. 14 and 15, respectively.
In comparison, the VDV-based fuzzy regulator results
in large oscillation and steady-state error due to lacking
an exact solution of the VDVs for uncertain model with
disturbance. In contrast, the non-VDV fuzzy regulator has
better robust performance with short settling time, small
overshot, and fast recovery. As a result, the proposed non-
VDV fuzzy output regulator is better and simpler than the
VDV-based fuzzy regulator.
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Fig. 13. The fixed regulation of buck converter when R is
changed from 8 Ω → 10 Ω → 8 Ω for Vin= 30V by
using VDV-based T-S fuzzy regulator.
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Fig. 14. The fixed regulation of buck converter when Vin is
changed from 20V→ 30V→ 20V respectively at 0.01
and 0.06 sec by using non-VDV T-S fuzzy regulator.
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Fig. 15. The fixed regulation of buck converter when Vin is
changed from 20V→ 30V→ 20V respectively at 0.01
and 0.06 sec by using VDV-based T-S fuzzy regulator.

6. CONCLUSION

In this paper, the concept of robust integral fuzzy output
regulator design with and without solving VDVs has been
discussed. In comparison, the non-VDV regulator removes
the main drawbacks of the VDV-based fuzzy regulator —
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the error coordinate transformation and VDV calculation
so that only the system states and the output regulation
objective are required. Furthermore, the uncertainty and
disturbance are allowed by the proposed non-VDV fuzzy
regulator, but the traditional VDV-based fuzzy regula-
tor cannot. The robustness can be enhanced by proper
LMI gain design. From the simulation results, H∞ per-
formances have been shown by using the non-VDV fuzzy
regulator. In contrast, the VDV-based fuzzy regulator has
lower robustness.
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