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Abstract: The paper presents the research whose the main goal was to build a control system for a 
swarm of Unmanned Underwater Vehicles UUVs for predator-prey problem. To control a swarm of the 
vehicles new Fuzzy System with Neural Aggregation of the fuzzy rules FSNA was proposed. To learn 
the FSNA innovative Cooperative Co-evolutionary Genetic Algorithm with Indirect Neural Encoding 
CCGA-INE was used. At the beginning of the paper, the introduction to the subject of the paper is 
included. Next, the principles of operation of new FSNA and its tuning method CCGA-INE are 
presented. In the end, the results of numerical research of FSNA controlling a swarm of the underwater 
vehicles in a predator-prey problem are presented. 
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1. INTRODUCTION 

Autonomous Underwater Vehicles (AUVs) are robots which 
can perform many different underwater missions both civilian 
and military, (Yong and Bishop, 2004; Menafo, 2011). 
Civilian usage of AUV is mainly connected with different 
inspections of underwater environment, especially for 
oceanography and marine biology purposes. Military 
applications of AUV are focused on mine countermeasure, 
anti-submarine warfare and Intelligence, Surveillance and 
Reconnaissance ISR tasks.  

More often, the missions are performed by swarm of AUVs 
instead of single vehicles, which can enlarge the inspected 
area, increase the speed of execution, improve the accuracy 
of the performed operations. In the case of the swarm 
operation, all AUVs usually cooperate to achieve a common 
aim of mission (Leonard et al., 2010; Birk et al., 2011; 
Healey and Horner, 2008). In this case, selection of an 
appropriate method for a swarm control is an essential 
problem. 

The paper takes the issue of the development of a new control 
approach for AUVs, which is based on evolutionary method, 
fuzzy system and artificial neural network. The approach is 
complementary and includes three components: a new 
Control-Oriented Model of motion of Unmanned Marine 
Vehicle COMUV, a Fuzzy System with Neural Aggregation 
of fuzzy rules FSNA for the control of AUV swarm and a 
tuning method for FSNA called Cooperative Co-evolutionary 
Genetic Algorithm with Indirect Neural Encoding CCGA-
INE. The COMUV is described in more details in (Praczyk 
and Szymak, 2011). This paper does not include details about 
the new model of motion. However, it includes details of the 
FSNA and CCGA-INE, which are described in the next 
sections, also in reference to the literature. The whole

 approach was improved during past research, which are 
briefly presented in the next subsection. 

1.1 Past research 

The first results of the own research carried out in the field of 
control of AUVs team is included in (Szymak and Praczyk, 
2010). In the paper, the results of the research with ‘pure’ 
fuzzy system in predator-prey problem are included. The 
system was tuned by the expert in the experimental way. 
Additionally in the paper, verification of the Control-
Oriented mathematical Model of Unmanned underwater 
Vehicle COMUV, compared with the ‘classical’ nonlinear 
model was presented (Fossen, 1994). The obtained results of 
the verification tests shown that both models behave 
similarly. Moreover, using the control-oriented model 
reduces significantly simulation time what is very interesting 
especially in the case of using time-consuming evolutionary 
algorithms. Therefore, during the next research also the ones 
included in this paper, the COMUV was used.  

In the paper (Szymak, 2012), comparison of centralized, 
dispersed and hybrid multi-agent system used for control of 
the vehicle team is presented. The compared multi-agent 
systems with different architectures were simple fuzzy expert 
systems. To examine the systems, the predator-prey problem 
was used. The achieved results were satisfied but not in all 
scenarios.  

In the next paper, the fuzzy control systems mentioned above 
were compared with the systems based on neural network 
built by a neuro-evolutionary method called assembler 
encoding (Praczyk and Szymak, 2011). The paper shown 
more better efficiency of the neural network built by 
assembler encoding method than the classical fuzzy expert 
system (Praczyk and Szymak, 2011). The assembler encoding
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 method used for building neural networks is described in 
more details in (Praczyk and  Szymak, 2013). During a next 
research devoted to an anti-collision problem of Unmanned 
Surface Vehicle USV (Szymak and  Praczyk, 2012), the 
architecture of the classical fuzzy system TSK (Takagi and  
Sugeno, 1985), was tuned by the new CCGA-INE. The 
achieved TSK system successfully (without collision) 
controlled single USV in different collision scenarios. Based 
on the preliminary unpublished research, the TSK system 
tuned by CCGA-INE could not successfully control the AUV 
swarm in predator-prey problem. Control without success in 
predator-prey problems means that the prey was not caught 
by the predators in all scenarios. Therefore, in this paper the 
new FSNA system tuned by CCGA-INE is applied to control 
the AUV swarm. 

1.2 General ideas of the FSNA and CCGA-INE 

The FSNA is based on classical TSK fuzzy system with two 
improvements. The first one is connected with using artificial 
neural network instead of classical operator for calculation of 
crisp value on the fuzzy system output (called in the paper 
fuzzy rules aggregation). The second one depends on 
integration of the fuzzy rules and fuzzy sets. Both 
improvements allow to introduce more nonlinearity in the 
fuzzy system and consequently to achieve desired solution.  

The CCGA-INE is based on Cooperative Coevolution 
Genetic Algorithm CCGA proposed by (Potter and De Jong, 
2000). It was improved by adding indirect encoding of the 
fuzzy system by means of artificial intelligence network. The 
CCGA depends on the evolution of cooperating 
subcomponents of the overall solution. The subcomponents 
evolve in different populations of species, which have to 
cooperate to achieve desired solution.  

1.3 Content of the paper 

The paper is as follows: Section 2 includes details of new 
Fuzzy System with Neural Aggregation FSNA. Section 3 
explains details of tuning method of FSNA called 
Cooperative Co-evolutionary Genetic Algorithm with 
Indirect Neural Encoding CCGA-INE. Section 4 includes 
description of predator-prey problem used as a test problem 
and section 5 presents selected results of numerical research. 
The last Section 6 includes a summary for the research. 

2. FUZZY SYSTEM WITH NEURAL AGGREGATION 

2.1 Assumptions 

The new FSNA is based on classical TSK fuzzy system 
proposed by (Takagi, Sugeno, 1985). The TSK system is well 
known and often used especially in control applications. 
Comparing to another classical Mamdani fuzzy system 
(Mamdani and Assilian, 1975), TSK system is 
computationally simpler but similarly efficient (Guney and  
Sarikaya, 2009).  

Comparing to the TSK system, following assumptions were 
made for the FSNA: 

(1) using logical or algebraic product for aggregation of the 
rule’s prerequisites (conjunction of the prerequisites); 

(2) input variables represented by gaussian membership 
functions (two parameters for each fuzzy set) and output 
variables represented by singletons (one parameter for 
each rule’s consequent). 

Modifications that led to the creation of the FSNA are as 
follows: 
(1) integration of the fuzzy sets and rules (parameters of the 

fuzzy sets are included directly in fuzzy rules); 
(2) using artificial neural network for aggregation of the 

fuzzy rules (e.g. instead of weighted sum (Driankov et al., 
1996)). 

The modifications are described in more details in the 
following subsections.  

2.2 Integration of fuzzy sets with fuzzy rules 

In the classical TSK system, each variable is defined by the 
specified number of fuzzy sets (represented by membership 
functions). The fuzzy sets are usually set by an expert. If the 
fuzzy sets are tuned automatically, usually, the expert 
specifies number of fuzzy sets for each variable. In TSK 
system, each rule’s prerequisite can operate on one fuzzy set, 
selected from all fuzzy sets defined for the variable. In this 
case, prerequisite is defined by linguistic expression, e.g.:  

X1 is HIGH 

(here: X1 is a input, HIGH determines one of fuzzy set of 
input X1).   

In the FSNA, fuzzy sets are integrated with fuzzy rules. It 
means that instead of linguistic expression each prerequisite 
is defined by parameters of the fuzzy set (in the case of 
gaussian membership function two parameters define this 
function: expected value and variance). In the FSNA, the 
same prerequisite (relating to the same input) in different rule 
can operate on different fuzzy sets. In an extreme case, in 
FSNA, each variable is defined by the number of fuzzy sets 
equal to number of fuzzy rules. This approach is very useful 
in the situation, when the rules or all fuzzy system parameters 
are tuned in automatic way, e.g. by means of the evolution. In 
this case, division of input-output space is only limited by the 
number of fuzzy rules and tuning method decides on number 
(and parameters) of fuzzy sets needed to represent specified 
variable. 

2.3 Matrix representation of integrated fuzzy sets and rules 

In the research presented in the further section, the following 
representation of FSNA in form of matrix of integrated fuzzy 
sets and rules VBI was applied: 

VBI =
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n
kmr  − m-th parameter of fuzzy set or singleton of k-th input 

or output variable in n-th fuzzy rule, 
nk −  number of input and output variables, 
nm −  maximal number of parameters describing fuzzy set or 

singleton, 
nn −  number of fuzzy rules. 

In the matrix VBI, some elements can be zero. In this case, 
appropriate prerequisites or conclusions will be removed, e.g. 
if the first and second elements in the first row are equal to 
zero, it means that prerequisite relating to the first input is 
removed in the first rule.  

2.4 Neural aggregation of the rules 

The next step in the modification of the classical TSK fuzzy 
system is an artificial neural network to aggregate 
implications of fuzzy rules. In the classical TSK system, 
conclusion of i-th implication of fuzzy rule is in the form of 
functional dependence of the rule’s predecessors. In this case, 
the aggregation of the implications is typically calculated 
using a weighted sum of individual rules (Driankov et al., 
1996). 

Often (in engineering practice), due to the need of reduction 
the number of parameters necessary to tune and, 
consequently, to simplify the system, the functional 
dependence of the rule’s predecessors is simplified into 
singletons. This leads to a reduction of non-linearity of the 
system, which in turn may lead to the inability to match a 
problem. The possibility of using an artificial neural network 
to aggregate rule outputs, results mainly from the fact that 
they are successfully used to approximate non-linear 
functions (Osowski, 2006). Thus, it seems that the application 
of neural network, in this case, is more flexible in obtaining a 
satisfactory solution fitted to the nonlinear control object. 

It was assumed that an artificial neural network in the FSNA 
performs the process of rule aggregation, i.e. inputs of the 
network are weights of rules wi, and weights are determined 
using logical or algebraic product. Weights are calculated on 
the basis of the membership function of the individual 
fragments of the predecessor of each rule. In this case, an 
output of the whole TSK system is a crisp value of the neural 
network output y. The network architecture is always related 
to the number of rules (the number of inputs of neural 
network) and generally a solved problem (internal network 
topology, weights and types of activation function).  

Fig. 1 shows an example of the FSNA structure formed by 
the connection of the neural network with the TSK fuzzy 
system. In the Fig. 1, the i-th neuron of the network is 
represented by Ni. 

In the research presented in the further part of the paper, a 
feed-forward artificial neural network was applied for 
aggregation of the fuzzy rules (Osowski, 2006). The 
architecture of the network was determinated by the 
evolutionary method CCGA-INE. 

 
Fig. 1. The connection of neural network with TSK fuzzy 
system for the aggregation of fuzzy rules (Ni defines the i-th 
neuron). 

The method of encoding an artificial neural network and its 
tuning by means of evolution is described in the next section. 

3. CCGA WITH INDIRECT NEURAL ENCODING 

3.1 Evolution and co-evolution 

Co-evolution is a specific type of the evolution of closely 
related species. In the basic evolutionary algorithm, the 
process of evolution is seen as an attempt to adapt a 
population of individuals to a specific environment. 
Meanwhile, in the co-evolutionary approach the process of 
co-evolution is seen as an attempt to adapt the population (or 
a subgroup of individuals from the population) to the specific 
environment that is affected by a population of another 
species (or subgroup of individuals from the population). 
Usually, in the co-evolution, a complex solution is divided 
into sub-component solutions to evolve independently, i.e. 
there are many populations of individuals (multiple species), 
wherein each population encodes one sub-component 
solution.  

A good example of co-evolution comes from natural world in 
the form of relation between predator and prey. A predator 
hunting a prey eliminates the weaker individuals from the 
population of prey. It causes that individuals which survive 
have better features that transfer to their offspring. A predator 
which achieve “worst results” in catching preys, has also less 
chance to deliver its features to its offspring. 

3.2 Cooperative Coevolution Genetic Algorithm CCGA 

In general, a genetic algorithm (GA) is a search heuristic that 
mimics the process of natural selection. The GA is based on 
iterative evolutionary procedure involving selection of 
genotypes for reproduction based on their fitness, and then by 
introducing genetically changed offspring (mutation, 
crossover and other genetic operators) into a next population. 
The procedure is finished after achieving satisfactory 
genotypes (a set of features of an individual) which 
correspond to high fitness phenotypes (the individual from a 
population) (Goldberg, 1989).  
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The CCGA is a specific Cooperative Coevolution Genetic 
Algorithm proposed by (Potter and De Jong, 2000). 
Generally, the CCGA solution is divided into sub-
components that evolve in separate populations. There is no 
possibility of an exchange of genetic information between 
populations of separate species, but individuals of different 
species must work together to achieve a satisfactory overall 
solution. Division into the sub-components, in this case, is 
generally carried out by the following method. Initially, the 
solution is encoded in a single chromosome, which evolve in 
a single population. If the evolution of this population, after a 
specified number of iterations, does not lead to a satisfactory 
solution, then the next species is created, which follows the 
evolution of the two populations, etc. At some point, the 
CCGA algorithm may find that a particular species 
(population) does not make a significant contribution to the 
overall solution. In this case, the population is removed from 
evolutionary algorithm. In the CCGA, for the assessment of 
the overall solution a single individual of the first population 
must be connected with individuals from other populations 
(Potter, 1997). 

3.3 General overview of CCGA-INE method 

Because the fuzzy system is described by large number of 
parameters, therefore the chromosomes coding these 
parameters should be very long. Evolution of long 
chromosomes is connected with complicated calculations, 
and in consequence, problems with achieving a final solution 
within assumed finite time. Due to potentially long 
chromosomes for the system defined by large number of 
parameters, indirect encoding of the fuzzy system is 
proposed. In the indirect encoding method, information from 
the chromosomes is used to generate other system (neural 
network, nonlinear function, etc.), which in turn generates 
parameters of the FSNA. Such way of encoding is used to 
create large fuzzy systems using relatively short 
chromosomes. 

Generally, in the CCGA-INE a single chromosome encodes a 
neural network called coding network, defined by a Coding 
Neural Network Definition Matrix cNDM (Praczyk, 2015), 
while the coding network or networks encode the FSNA (i.e. 
coding networks fills elements of matrices representing this 
system). In the case of a neural network for aggregation of 
fuzzy rules, coding networks generate elements of 
Aggregation Neural Network Definition Matrix aNDM, 
defining structure and parameters of the aggregation network. 
It should be noted that in the CCGA many populations can 
evolve, i.e. many chromosomes can generate many coding 
networks (Fig. 2). For many coding networks, each element 
of the matrices representing the FSNA is generated by one of 
the coding network according to the algorithm described in 
the following subsection.  

In conclusion, it should be noted that the task of CCGA-INE 
is to find the best structure and parameters of coding neural 
networks (one or several depending on the progress of the co-
evolution), which in turn, encode integrated matrix of fuzzy 
sets and rules VBI and a matrix defining an artificial neural 
network for the rules aggregation aNDM. 

 
Fig. 2. Generation of the FSNA using CCGA-INE. 

3.4 Generation of coding and aggregation neural networks 

Fig. 3 shows a method for generating a coding neural 
network (defined by cNDM) (Praczyk, 2015), using the 
information stored in the chromosome, consisting of four 
parts (components). Each component is composed of 7 bits, 
i.e. the chromosome includes 28 bits in total. During the 
research, co-evolution produced chromosomes consisting of 4 
to more than 30 components, i.e. chromosomes consisting of 
more than 200 bits. The first component of each chromosome 
is considered as a string of bits, while the next components 
represent integer values (scaled to real values), which are 
further elements of the matrix. In the illustrated example 
(Fig. 3), the first component of the chromosome determines 
the topology of the neural network by indicating the elements 
of matrix cNDM, which should be reset (white boxes), and 
other which should adopt the values determined by the 
successive components of the chromosome c1, c2 and c3 
(black boxes). 

Consecutive bits included in "topology" component 
determine, if the following elements of matrix (beginning 
from the first column and row, and ending on the last row and 
column) are zero or non-zero (Fig. 3). Bit string "topology" is 
too short to determine all the elements of the matrix, 
therefore, the string is repeated, i.e. after the last bit is the 
first bit of the string, then second bit, etc., until the all 
elements are determinated. Bit which has a zero value 
determines zero value of the relating element in the matrix. 
This element is illustrated by white box in the table in Fig. 3. 
Bit which has value “1” determines non-zero value of the 
relating element in the matrix. The non-zero element is 
marked by grey box in the table in Fig. 3. The precise values 
of non-zero elements are determinated by another 
components of the chromosome "coefficient no. 1", 
"coefficient no. 2" and "coefficient no. 3". The assignment of 
values c1, c2 and c3 for successive elements of matrix cNDM 
is carried out according to the same principle as it is applied 
to the bits of the component "topology". 
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Fig. 3. Generation of matrix cNDM defining coding neural 
network by chromosome consisting of four components. 

Matrix cNDM shown in Fig. 3 has n rows and n + 2 columns, 
where n is the number of neurons in the network layers 
sequentially input, hidden and output. Elements of matrix 
cNDM from the first element to the element of n-th row and 
n-th column determine the weights of connections between 
neurons. Column n + 2 determines the type of activation 
function, and the column n + 1 is a constant added to the total 
weight of input neurons called bias. 

Fig. 4 shows the architecture of an artificial neural network 
generated by means of information included in the 
chromosome and the relating matrix cNDM.  

In the Fig. 4 chromosome components are presented in a 
different forms: the first component in the form of a binary 
sequence, the other in the form of real numbers (in fact, 
chromosomes include integers, which become real numbers 
after scaling). Individual neurons were visualized by 
succeeding numbers N1, N2, …, Nn and the type of the 
activation function: S - sigmoid, L - linear and additionally 
numerical value of the bias. The resulting neural network in 
the Fig. 4 comprises 4 neurons. The distribution of these 
neurons to the input and output layers and possibly hidden is 
determined by the designer of the system. In this case, it is 
assumed that two neurons are in the input layer, one is hidden 
neuron and one is located in output layer. As mentioned 
previously, the matrix NDM can define the coding neural 
network cNDM and also neural network for the rules 
aggregation aNDM in the same way as it was described for 
cNDM. 

In the research, it was assumed that the coding neural 
network is composed of nine neurons: three in the input layer, 
three in the output layer, and three are the hidden neurons. 
Therefore matrix cNDM is composed of 9 rows and 11 
columns (Praczyk, 2015). 

 

 
Fig. 4. Generation of neural network based on neural 
Network Definition Matrix NDM, which in turn, was 
obtained based on information included in the chromosome. 

3.5 Method of filling FSNA matrices 

Fig. 3 shows how to fill the matrices elements representing 
the FSNA. The values of the elements are produced by the 
coding networks. The coding networks have three inputs and 
three outputs. The inputs of the network determine 
parameters of the element, whose value is produced by the 
network on its output. The first and second inputs determine 
the row and the column of the matrix, and the third input 
determine the ordinal number of the matrix. The coding 
network produce on its outputs following values: 

(1)  the strenght: in a situation, where there is more than one 
network, this parameter determines which coding network 
should be used to "fill" the matrix in the current step 
("wining" coding network, which has the largest 
strength), 

(2)  the threshold: this parameter determines whether the 
value should be written to a specific element of the 
matrix, or the item should be zero (the element is reset if 
the threshold value is less than the desired threshold for 
the matrix), 

(3)  the value: assigned to the specific matrix element, defined 
by the coding network inputs, if the network has the 
largest strength, and the threshold output is greater than 
the desired threshold for this matrix. 
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Fig. 5. Method of filling elements of FSNA matrices by 
coding neural networks in selected steps 2), 24), 25). 

Fig. 5 shows selected steps of "filling" the FSNA matrices by 
coding network, generated based on chromosomes evolving 
in two populations (two coding networks). Step 2 illustrates a 
situation in which the first coding neural network (defined by 
cNDM1) has a larger strength and its threshold output is 
greater than the desired threshold for VBI. Therefore, the first 
coding network writes a value to a specified element of the 
matrix. Step 24 illustrates the case in which the second 
coding network is a "stronger" (has a larger value at the 
output strenght), but the network’s threshold value is less 
than the desired threshold for this matrix. In this case, the 
element specified by the coding network inputs obtains zero 
value. Step 25 illustrates a situation similar to that which 
occurred in step 2, with the difference that in this case, the 
second element of the second matrix aNDM is filled. 
Generation of the all elements of the matrices requires 
iterations equal to the sum of elements in these matrices. 

It can be seen that using the described indirect encoding 
method CCGA-INE, matrices defining FSNA consisting of 
even hundreds of parameters can be filled by means of 
information included in several chromosomes (depending on 
the number of the population). 

In the next section predator-prey problem used as a test 
problem is described in details. 

4. PREDATOR-PREY PROBLEM 

4.1 Assumptions 

During the previous research, the predator-prey problem was 
applied to compare different methods, e.g. fuzzy expert 
system tuned in experimental way by an expert (Praczyk and  
Szymak, 2011). Therefore, using the same test problem in the 

research presented in this paper enable to indicate if the new 
method is effective and how much it is effective comparing 
to the fuzzy expert system.  

In general, in the predator-prey problem, underwater vehicles 
acting as predators have to catch another underwater vehicle, 
which plays a role of a prey. In the research presented further, 
the three predators had to catch the single prey. Both the prey 
and the predators were underwater vehicles moving in the 
horizontal plane. To simulate the motion of the vehicles, 
control-oriented model of the underwater vehicle “Ukwial” 
was used (Praczyk and Szymak, 2011). The vehicles moved 
in artificial environment – the square of 200x200 meters. The 
environment did not contain any obstacles, but it was open at 
each side. Therefore, the vehicle which “disappeared” on the 
left edge of the environment, appeared at this time on the 
right edge, and vice versa. Similarly, the vehicle which 
“disappeared” on the top edge of the environment, it 
appeared at this moment on the bottom edge, and vice versa. 
This simple mechanism allowed an infinite environment to be 
created. 

During the experiments, the motions of predators were 
controlled by designed fuzzy system. The predators moved 
with constant velocity 0.5 m/s, but their directions of motion 
were determined by the fuzzy system. The courses of the 
vehicles could be changed by 0,5,10,...,355 degrees. It was 
assumed that the predators captured the prey, if the distance 
between the nearest predator and prey was lower than 5 
meters. The prey was able to move with higher velocity (even 
two times) than the predators. The prey used the following 
strategy:   

(1)  Do not move if there is no predators in your field of 
vision, 

(2)  Run in the direction opposite to the course of predator 
when there is only one predator in your field of vision, 

(3)  In the case when there are two or three predators in the 
field of vision, move the following course: 

n
d

dn

i
i

i
s

∑
== 1

min ψ
ψ  (1) 

where ψs is a set value of the prey course (for maneuver to 
escape from predators), di is a distance between i-th predator 
and the prey, dmin is a minimum distance between the 
predators and the prey, ψi is a course of i-th predator (in the 
range ±180°) and n is a number of predators in the field of 
vision of the prey. 

The ratio dmin/di determines what is the influence of the 
distance between the prey and predators on desired course of 
the prey in the case, when the prey sees two or more 
predators, i.e. the predator which is closer to the prey should 
decides more on set value of the prey course, or otherwise, 
the prey should escape in the opposite direction, in particular 
to the direction of motion of the closest predator.  

Taking into account especially larger velocity of motion of 
the prey and the artificial infinite environment without 
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obstacles, it can be seen that the prey can be caught only as a 
result of coordinated effort of all the predators.  

4.2 Scenarios 

In order to tune the FSNA by CCGA-INE, and then verify the 
achieved solutions of FSNA in different situations, 
respectively 30 learning scenarios and further 60 validating 
scenarios were designed. The scenarios differ in the 
following parameters: 

(1) the prey velocity (Table 1), 

(2) the vision range of predators by the prey (Table 1), 

(3) the starting position of the prey (Table 2). 

Table 1. Velocity and vision range of the prey for learning 
(no. 1-30) and validating (no. 31-90) scenarios. 

Scenario no. Prey velocity  
[m/s] 

Vision range of 
prey   [m] 

1-5 0,5 40 
6-10 0,75 40 
11-15 1 40 
16-20 0,5 50 
21-25 0,75 50 
26-30 1 50 
31-40 0,5 40 
41-50 0,75 40 
51-60 1 40 
61-70 0,5 50 
71-80 0,75 50 
81-90 1 50 

In all the scenarios, the underwater vehicles acting as 
predators start from position with coordinates (0, 0). 

Table 2. Starting position of the prey for learning  
(no. 1-30) and validating (no. 31-90) scenarios. 

Scenario 
no. 

Coordinates of 
prey starting 

position  [m; m] 

Scenario 
no. 

Coordinates of 
prey starting 

position  [m; m] 
1, 6, 11, 

16, 21, 26  
50; 50 31, 36, 41, 

46, 51, 56 
0; 100 

2, 7, 12, 
17, 22, 27 

150; 50 32, 37, 42, 
47, 52, 57 

30; 170 

3, 8, 13, 
18, 23, 28 

50; 150 33, 38, 43, 
48, 53, 58 

40; 180 

4, 9, 14, 
19, 24, 29 

100; 100 34, 39, 44, 
49, 54, 59 

50; 100 

5, 10, 15, 
20, 25, 30 

150; 150 35, 40, 45, 
50, 55, 60 

100; 0 

  61, 66, 71, 
76, 81, 56 

100; 50 

  62, 67, 72, 
77, 82, 87 

100; 150 

  63, 68, 73, 
78, 83, 88 

170; 30 

  64, 69, 74, 
79, 84, 89 

150; 100 

  65, 70, 75, 
80, 85, 90 

180; 40 

 

Scenarios presented in Tables 1 and 2 were designed in the 
way to increase their difficulty level. In the first scenario, the 
prey has a smaller range of vision and the same velocity of its 
movement as the predators. In the following scenarios, the 
prey velocity is increased by 50%, and in the part of the 
scenarios, even by 100%. Also in the scenarios, the range of 
vision of the prey is increased. 

Tuning the FSNA is performed for 5 different starting 
positions, and testing the final solution of the FSNA is carried 
out for 10 various starting positions. Moreover, tuning and 
testing are made for different velocities and various field of 
vision of the prey. 

4.3 Evaluation function  

The scenarios are used for training and then validating 
sequentially, i.e. the first scenario was followed by a second, 
then the third, etc. Scenario finished at the moment of 
catching the prey by the predators or after the maximum 
number of decisions taken by the FSNA. During research, the 
maximum number of decisions for a single scenario was 
assumed to 100 decisions. 

The behaviour of the n-th FSNA in 30 scenarios was 
evaluated using the fitness function F(FLn). The function 
F(FLn) was calculated as the sum of the rewards gained in all 
the scenarios. The following form of the reward function f in 
k-th scenario was applied (Praczyk and Szymak, 2013): 
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where k is a scenario number, FLn  is the estimated n-th 
FSNA, dmax is a maximal distance between two points in 
artificial environment and dk(p) is a distance between prey 
and p-th predator at the end of k-th scenario without success. 
Additionally, fcap is a reward for catching prey, equal to 100, 
mmax is a maximal number of decisions taken by FSNA, equal 
to 100, mk is a number of decisions taken by FSNA to catch 
the prey and l is a number of all scenarios. 

The cases are as follows: 

(a)  the UUV – prey was captured in the previous scenario, 

(b) the prey was captured in the current scenario, 

(c)  the prey was caught in the current scenario. 

5. RESULTS OF NUMERICAL RESEARCH 

5.1  Assumptions 

To model motion of UUVs imitating both the prey and the 
predators, control oriented simulation model of the 
underwater vehicle Ukwial (Fig. 6) was used (Praczyk and  
Szymak, 2011). Ukwial is a Remotely-Operated underwater 
Vehicle ROV, equipped with a cable called an umbilical 
cord, which is used to power supply and control of the robot. 
For simplicity and making research more realistic (vehicles 
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should be autonomous) the control-oriented model does not 
take into account the effect of the affecting umbilical cord. 

  
Fig. 6. Underwater vehicle Ukwial designed by Gdansk 
University of Technology. 

Due to the fact that the proposed tuning method CCGA-INE 
is complicated and time-consuming and the propellers system 
of UUV Ukwial consists of four thrusters located in a 
horizontal plane and two in a vertical plane (acting 
independently in two planes of motion), the following 
simplifications was applied: 

(1) the motions in the horizontal and vertical planes are 
considered independently – only motion in the horizontal 
plane is considered in the research of FSNA (motion in 
horizontal plane is more complicated than in vertical 
plane – greater manoeuvrability), 

(2) the motion parameters are discreted, what is associated 
with the used motion model and relating limitation of the 
set of control signals, e.g. the velocity is (0.5, 0.75, 
1 m/s), the course is (0, 5, 10, ... 355°), 

(3) based on initial research, the time between following 
decisions is equal to 10 sec, 

(4) the effects of sea current was omitted due to the fact that 
when the current is small and has a constant direction the 
indirect methods for measuring and effectively counteract 
the sea current work properly (Praczyk, Szymak, 2013); 
however, when the current is relatively large (i.e. close to 
the underwater vehicle velocity) and/or with variable 
direction of affecting, there are no effective methods to 
counteract (in such situations usually mission is not 
continued). 

5.2  Input and output variables 

In the system control of the swarm of underwater vehicles, it 
was assumed that the system produced change of course for 
each predator on its outputs based on distances vectors 
determined from each predator to the prey. For applied 
simplification, only motion in horizontal plane is considered, 
and each distance vector is represented by two scalar 
components: the distance in axis x and the distance in axis y. 
In this case, the FSNA has six fuzzy input variables and three 
output variables (Fig. 7). 

 
Fig. 7. Input (d1x, d1y, d2x, d2y, d3x, d3y) and output 
(∆ψ1, ∆ψ2, ∆ψ3) variables of FSNA controlling the swarm of 
underwater vehicles no. 1, 2 and 3 trying to catch underwater 
vehicle – the prey. 

5.3  Tuning of FSNA by CCGA-INE 

In the process of tuning the FSNA, nine preliminary variants 
of the system were examined. The variants differed in the 
maximum number of fuzzy rules and the number of hidden 
neurons (Table 3). 

In the first stage of the tuning phase, parameters of 
evolutionary method were selected: the mutation and the 
crossover probabilities, and the number of iterations between 
generation of the next population participating in the co-
evolution. In accordance with the general description of the 
CCGA contained in the previous section, coevolution starts 
from one population, and when there is a lack of progress in 
evolution (no increase of a fitness function value), next 
population is created. In this case, more coding neural 
networks (generated from chromosomes) are involved in 
process of filling the FSNA matrices VBI and aNDM.  

Table 3. Nine initial variants of FSNA. 

Ordinal 
number of 

FSNA variant 

Maximal 
number of fuzzy 

rules 

Number of 
hidden neurons 

1 8 0 
2 8 2 
3 8 5 
4 16 0 
5 16 2 
6 16 5 
7 24 0 
8 24 2 
9 24 5 

Based on the initial research, following values of the 
evolutionary parameters were used: the crossover probability 
equal to 0.7 and the number of iterations between generation 
of the next population equal to 10 000. Due to obtaining 
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different results for initial variants of the FSNA, it was 
decided to carry out research for the four selected mutation 
probability equal to: 0.0005, 0.002, 0.05 and 0.01. Therefore, 
each FSNA variant was examined in 120 runs of evolutionary 
algorithm (30 runs for each of four mutation probability). 

The basic comparison of the FSNA variants was carried out 
based on an evaluation index named a number of runs 
without success. Runs without success is observed when 
predators do not catch the prey in one or more scenarios. In 
the case that two FSNA variants have the same values of the 
number of runs without success, the average number of the 
iterations is taken into account. The average number of 
iterations is calculated as an arithmetic average of the number 
of iterations of tuning runs ended successfully. Successful run 
means that the prey was captured in all 30 learning scenarios.  

During the next research, which results were inserted in 
Table 4, the number of hidden neurons and the maximum 
number of fuzzy rules were examined. Increasing the value of 
the both parameters increases the calculations connected with 
the FSNA tuning. In this case, it was expected that an 
increase in the number of rules will increase the "system 
intelligence". At the beginning, the best number of hidden 
neurons was determined. As it can be seen, based on 
evaluation of the operation of different FSNA variants 
(Table 4), the most runs of evolutionary algorithm finished 
with success for variants with two hidden neurons, and 
therefore, this value of hidden neurons was used in the further 
research, in order to determine the best number of rules. 
Based on the results inserted in Table 4, the best evaluation 
indexes were obtained for variant no. 8, i.e. the FSNA with 
the largest maximal number of rules. Therefore, for the initial 
variants 24 rules is the best maximal number of rules. 

In the next step of tuning phase, two additional FSNA 
variants were developed (Table 5) with greater number of 
rules than before (Table 4), respectively 32 and 40 rules 
(variant no. 10 and 11), with two hidden neurons in 
aggregation neural network (based on previously achieved 
results). 

Table 4. Results of the evolution for the nine initial FSNA 
variants in predator-prey problem. 

FSNA variant FSNA evaluation (learning) 

No. 
Number of 

hidden 
neurons 

Number of 
rules 

Average 
number of 
iterations 

Number of 
scenarios 
without 
success 

1 0 8 24749 67 
2 2 8 28077 81 
3 5 8 21341 85 
4 0 16 17927 18 
5 2 16 14927 14 
6 5 16 14673 21 
7 0 24 12360 2 
8 2 24 17826 0 
9 5 24 10960 3 

Based on the obtained results (Table 5), it can be seen that 
during tuning the FSNA control system for the swarm of 
underwater vehicles: 
(1)  The best results (all 30 runs with success) were obtained 

for variants with 24 or more fuzzy rules, 
(2)  Increasing number of rules (above 24) reduced the 

average number of iterations needed to obtain solutions, 
which worked effectively in all 30 learning scenarios, 

(3)  The best performance of the FSNA in the predator-prey 
problem was achieved for the FSNA variants with two 
hidden neurons in aggregation neural networks. 

Table 5. Results of evolution for two additional FSNA 
variants in predator-prey problem. 

FSNA variant FSNA evaluation (learning) 

No. 
Number of 

hidden 
neurons 

Number of 
rules 

Average 
number of 
iterations 

Number of 
scenarios 
without 
success 

10 2 32 11909 0 
11 2 40 8336 0 

In the next subsection, a verification of obtained FSNA 
solutions is presented.  

5.4  Validation tests of FSNA solutions 

Validation tests of obtained FSNA solutions (for all 11 
variants) were performed for 60 validating scenarios 
(Table 6). Table 6 presents the fitness functions (mean, 
minimum and maximum) obtained for all FSNA solutions 
achieved in 30 runs of the evolutionary algorithm, i.e. 
presents the average results of 30 FSNA with different 
structure obtained in 30 runs of evolutionary tuning in each 
of the tested variant. For verification tests, only FSNA 
solutions generated in the process of evolution with mutation 
probability equal to 0.01 were selected. 

Table 6. Results of validation tests for twelve FSNA variants 
in predator-prey problem. 

FSNA variants FSNA evaluation (generalization) 

No. 

Number 
of 

hidden 
neurons 

Number 
of rules 

Average 
number 

of 
iterations 

Fitness function 

mean min max 

1 0 8 11 1105 3545 4941 
2 2 8 29 2919 151 5141 
3 5 8 22 2263 2947 5042 
4 0 16 45 4595 49 5141 
5 2 16 44 4495 2046 5338 
6 5 16 46 4628 151 5439 
7 0 24 45 4549 46 5042 
8 2 24 44 4498 0 5239 
9 5 24 44 4475 46 5340 

10 2 32 47 4728 3844 5539 
11 2 40 44 4462 3144 5239 
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Based on the results of validation phase illustrated in Table 6 
following conclusions could be formulated: 

(1) The best results were obtained for the FSNA variant 
no. 10; similar results were received for the FSNA variant 
no. 11 and 8, which confirmed that FSNA for predator-
prey problem should have a neural network for the 
aggregation rules with two hidden neurons, 

(2)  The best results were achieved for the FSNA with 32 
fuzzy rules (variant no. 10);  

(3) The best solution of the control system of underwater 
vehicle allowed predators to catch prey in 55 scenarios 
(FSNA variant no. 10 obtained in 21st test with fitness 
function equal to 5539). 

Comparing FSNA variant no. 10 with variants no. 8 and 11 
(respectively 24 and 40 rules), it is worth underlining that the 
FSNA should have the structure possibly simplest (e.g. 32 
rules instead of 40 rules), which guarantees generalization 
properties.  

It is also worth noting that the FSNA variant no. 10 has a 
fuzzy inference base consisting of 32 rules and an 
aggregation neural network with two hidden neurons. In this 
case, the system is encoded in two matrices: VBI with size 
32x14 and aNDM with size 37x39. Together these two 
matrices have 1891 elements. In practice, some elements are 
zero, and some elements of the matrices have the same value. 

5.5  Example of FSNA operation 

For visualization of the exemplary operation of the system 
controlling the swarm of underwater vehicle, the FSNA 
variant no. 10 achieved in 22nd test was selected. This system 
has achieved the fitness function equal to 4740, which means 
that predators caught the prey in 47 scenarios (one of them is 
illustrated in Fig. 8). 

 

Fig. 8. Visualization of the FSNA operation in the vertical 
plane (variant no. 10 obtained in 22nd test), performing with 
success scenario no. 32: S - start position of the prey, 1, 2, 3 - 
predators no. 1, 2, 3, which start from position (0, 0). 

Fig. 8 shows the strategy for control of underwater vehicles 
learned during the process of evolution. The vehicles acting 
as predators caught the prey in the position with coordinates 
(90, 150). Place of catching the prey was marked by a circle 

with a dotted line. Starting position of the prey was marked 
by “S”, and trajectories of predators by their ordinal numbers 
1, 2, 3. Predators in all scenarios started from the position 
specified by the coordinates (0, 0). The next Fig. 9 illustrates 
changes of course of all four underwater vehicles.  

 
Fig. 9. Changes of course: the prey (black dashed line) and 
predators (number: 1, 2 and 3) – the FSNA variant no. 10 
obtained in 22nd run in scenario no. 32. 

As can be seen, predators made changes in every step (10 s), 
while the predator decided on changes of course, even at 3 
decision steps (30 s). The difference is due to a range of 
vision of the prey equal in this scenario to 40 m, i.e. the prey 
'saw' only predators that were on distance no more than 40 m. 

6. CONCLUSIONS 

In the paper, new neuro-fuzzy system called FSNA was 
presented. The FSNA was tuned by the evolutionary method 
named CCGA-INE. The FSNA was correctly learned and 
then verified by means of validating scenarios in the 
predator-prey problem.  

Comparing the results for the FSNA with the results obtained 
earlier for the fuzzy expert system (Praczyk, Szymak, 2011), 
significant improvement in the effectiveness of the new 
FSNA is observed. The best fuzzy expert system effectively 
chased the prey only in 12 successive learning scenarios. 

Generally, the selected solutions of FSNA obtained during 
evolution (Table 6) guarantee good behaviour for the 
validation scenarios. It should be noted that in the case of 
new scenarios, they always can be used for precise tuning of 
the FSNA (additional learning). 
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