
CEAI, Vol.18, No.3 pp. 82-92, 2016 Printed in Romania

Using Neuro-Evolutionary-Fuzzy Method
to Control a Swarm of Unmanned Underwater Vehicles

Piotr Szymak

Polish Naval Academy, Institute of Electrical Engineering and Automatics,
81-103 Gdynia, Poland, (e-mail: p.szymak@amw.gdynia.pl).

Abstract: The paper presents the research whose the main goal was to build a control system for a
swarm of Unmanned Underwater Vehicles UUVs for predator-prey problem. To control a swarm of the
vehicles new Fuzzy System with Neural Aggregation of the fuzzy rules FSNA was proposed. To learn
the FSNA innovative Cooperative Co-evolutionary Genetic Algorithm with Indirect Neural Encoding
CCGA-INE was used. At the beginning of the paper, the introduction to the subject of the paper is
included. Next, the principles of operation of new FSNA and its tuning method CCGA-INE are
presented. In the end, the results of numerical research of FSNA controlling a swarm of the underwater
vehicles in a predator-prey problem are presented.

Keywords: neuro-fuzzy system, co-evolution, indirect encoding, control of unmanned vehicles swarm.

1. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are robots which
can perform many different underwater missions both civilian
and military, (Yong and Bishop, 2004; Menafo, 2011).
Civilian usage of AUV is mainly connected with different
inspections of underwater environment, especially for
oceanography and marine biology purposes. Military
applications of AUV are focused on mine countermeasure,
anti-submarine warfare and Intelligence, Surveillance and
Reconnaissance ISR tasks.

More often, the missions are performed by swarm of AUVs
instead of single vehicles, which can enlarge the inspected
area, increase the speed of execution, improve the accuracy
of the performed operations. In the case of the swarm
operation, all AUVs usually cooperate to achieve a common
aim of mission (Leonard et al., 2010; Birk et al., 2011;
Healey and Horner, 2008). In this case, selection of an
appropriate method for a swarm control is an essential
problem.

The paper takes the issue of the development of a new control
approach for AUVs, which is based on evolutionary method,
fuzzy system and artificial neural network. The approach is
complementary and includes three components: a new
Control-Oriented Model of motion of Unmanned Marine
Vehicle COMUV, a Fuzzy System with Neural Aggregation
of fuzzy rules FSNA for the control of AUV swarm and a
tuning method for FSNA called Cooperative Co-evolutionary
Genetic Algorithm with Indirect Neural Encoding CCGA-
INE. The COMUV is described in more details in (Praczyk
and Szymak, 2011). This paper does not include details about
the new model of motion. However, it includes details of the
FSNA and CCGA-INE, which are described in the next
sections, also in reference to the literature. The whole

 approach was improved during past research, which are
briefly presented in the next subsection.

1.1 Past research

The first results of the own research carried out in the field of
control of AUVs team is included in (Szymak and Praczyk,
2010). In the paper, the results of the research with ‘pure’
fuzzy system in predator-prey problem are included. The
system was tuned by the expert in the experimental way.
Additionally in the paper, verification of the Control-
Oriented mathematical Model of Unmanned underwater
Vehicle COMUV, compared with the ‘classical’ nonlinear
model was presented (Fossen, 1994). The obtained results of
the verification tests shown that both models behave
similarly. Moreover, using the control-oriented model
reduces significantly simulation time what is very interesting
especially in the case of using time-consuming evolutionary
algorithms. Therefore, during the next research also the ones
included in this paper, the COMUV was used.

In the paper (Szymak, 2012), comparison of centralized,
dispersed and hybrid multi-agent system used for control of
the vehicle team is presented. The compared multi-agent
systems with different architectures were simple fuzzy expert
systems. To examine the systems, the predator-prey problem
was used. The achieved results were satisfied but not in all
scenarios.

In the next paper, the fuzzy control systems mentioned above
were compared with the systems based on neural network
built by a neuro-evolutionary method called assembler
encoding (Praczyk and Szymak, 2011). The paper shown
more better efficiency of the neural network built by
assembler encoding method than the classical fuzzy expert
system (Praczyk and Szymak, 2011). The assembler encoding

CONTROL ENGINEERING AND APPLIED INFORMATICS 83

 method used for building neural networks is described in
more details in (Praczyk and Szymak, 2013). During a next
research devoted to an anti-collision problem of Unmanned
Surface Vehicle USV (Szymak and Praczyk, 2012), the
architecture of the classical fuzzy system TSK (Takagi and
Sugeno, 1985), was tuned by the new CCGA-INE. The
achieved TSK system successfully (without collision)
controlled single USV in different collision scenarios. Based
on the preliminary unpublished research, the TSK system
tuned by CCGA-INE could not successfully control the AUV
swarm in predator-prey problem. Control without success in
predator-prey problems means that the prey was not caught
by the predators in all scenarios. Therefore, in this paper the
new FSNA system tuned by CCGA-INE is applied to control
the AUV swarm.

1.2 General ideas of the FSNA and CCGA-INE

The FSNA is based on classical TSK fuzzy system with two
improvements. The first one is connected with using artificial
neural network instead of classical operator for calculation of
crisp value on the fuzzy system output (called in the paper
fuzzy rules aggregation). The second one depends on
integration of the fuzzy rules and fuzzy sets. Both
improvements allow to introduce more nonlinearity in the
fuzzy system and consequently to achieve desired solution.

The CCGA-INE is based on Cooperative Coevolution
Genetic Algorithm CCGA proposed by (Potter and De Jong,
2000). It was improved by adding indirect encoding of the
fuzzy system by means of artificial intelligence network. The
CCGA depends on the evolution of cooperating
subcomponents of the overall solution. The subcomponents
evolve in different populations of species, which have to
cooperate to achieve desired solution.

1.3 Content of the paper

The paper is as follows: Section 2 includes details of new
Fuzzy System with Neural Aggregation FSNA. Section 3
explains details of tuning method of FSNA called
Cooperative Co-evolutionary Genetic Algorithm with
Indirect Neural Encoding CCGA-INE. Section 4 includes
description of predator-prey problem used as a test problem
and section 5 presents selected results of numerical research.
The last Section 6 includes a summary for the research.

2. FUZZY SYSTEM WITH NEURAL AGGREGATION

2.1 Assumptions

The new FSNA is based on classical TSK fuzzy system
proposed by (Takagi, Sugeno, 1985). The TSK system is well
known and often used especially in control applications.
Comparing to another classical Mamdani fuzzy system
(Mamdani and Assilian, 1975), TSK system is
computationally simpler but similarly efficient (Guney and
Sarikaya, 2009).

Comparing to the TSK system, following assumptions were
made for the FSNA:

(1) using logical or algebraic product for aggregation of the
rule’s prerequisites (conjunction of the prerequisites);

(2) input variables represented by gaussian membership
functions (two parameters for each fuzzy set) and output
variables represented by singletons (one parameter for
each rule’s consequent).

Modifications that led to the creation of the FSNA are as
follows:
(1) integration of the fuzzy sets and rules (parameters of the

fuzzy sets are included directly in fuzzy rules);
(2) using artificial neural network for aggregation of the

fuzzy rules (e.g. instead of weighted sum (Driankov et al.,
1996)).

The modifications are described in more details in the
following subsections.

2.2 Integration of fuzzy sets with fuzzy rules

In the classical TSK system, each variable is defined by the
specified number of fuzzy sets (represented by membership
functions). The fuzzy sets are usually set by an expert. If the
fuzzy sets are tuned automatically, usually, the expert
specifies number of fuzzy sets for each variable. In TSK
system, each rule’s prerequisite can operate on one fuzzy set,
selected from all fuzzy sets defined for the variable. In this
case, prerequisite is defined by linguistic expression, e.g.:

X1 is HIGH

(here: X1 is a input, HIGH determines one of fuzzy set of
input X1).

In the FSNA, fuzzy sets are integrated with fuzzy rules. It
means that instead of linguistic expression each prerequisite
is defined by parameters of the fuzzy set (in the case of
gaussian membership function two parameters define this
function: expected value and variance). In the FSNA, the
same prerequisite (relating to the same input) in different rule
can operate on different fuzzy sets. In an extreme case, in
FSNA, each variable is defined by the number of fuzzy sets
equal to number of fuzzy rules. This approach is very useful
in the situation, when the rules or all fuzzy system parameters
are tuned in automatic way, e.g. by means of the evolution. In
this case, division of input-output space is only limited by the
number of fuzzy rules and tuning method decides on number
(and parameters) of fuzzy sets needed to represent specified
variable.

2.3 Matrix representation of integrated fuzzy sets and rules

In the research presented in the further section, the following
representation of FSNA in form of matrix of integrated fuzzy
sets and rules VBI was applied:

VBI =

n

mk

nnn

m

nn

mkm

mkm

n
nn

nnn
n

nn

nnn

nnn

rrrrrr

rrrrrr
rrrrrr

......
...

......

......

121111211

22
22

2
21

2
1

2
12

2
11

11
22

1
21

1
1

1
12

1
11

where:

http://en.wikipedia.org/wiki/Expected_value�
http://en.wikipedia.org/wiki/Variance�

84 CONTROL ENGINEERING AND APPLIED INFORMATICS

n
kmr − m-th parameter of fuzzy set or singleton of k-th input

or output variable in n-th fuzzy rule,
nk − number of input and output variables,
nm − maximal number of parameters describing fuzzy set or

singleton,
nn − number of fuzzy rules.

In the matrix VBI, some elements can be zero. In this case,
appropriate prerequisites or conclusions will be removed, e.g.
if the first and second elements in the first row are equal to
zero, it means that prerequisite relating to the first input is
removed in the first rule.

2.4 Neural aggregation of the rules

The next step in the modification of the classical TSK fuzzy
system is an artificial neural network to aggregate
implications of fuzzy rules. In the classical TSK system,
conclusion of i-th implication of fuzzy rule is in the form of
functional dependence of the rule’s predecessors. In this case,
the aggregation of the implications is typically calculated
using a weighted sum of individual rules (Driankov et al.,
1996).

Often (in engineering practice), due to the need of reduction
the number of parameters necessary to tune and,
consequently, to simplify the system, the functional
dependence of the rule’s predecessors is simplified into
singletons. This leads to a reduction of non-linearity of the
system, which in turn may lead to the inability to match a
problem. The possibility of using an artificial neural network
to aggregate rule outputs, results mainly from the fact that
they are successfully used to approximate non-linear
functions (Osowski, 2006). Thus, it seems that the application
of neural network, in this case, is more flexible in obtaining a
satisfactory solution fitted to the nonlinear control object.

It was assumed that an artificial neural network in the FSNA
performs the process of rule aggregation, i.e. inputs of the
network are weights of rules wi, and weights are determined
using logical or algebraic product. Weights are calculated on
the basis of the membership function of the individual
fragments of the predecessor of each rule. In this case, an
output of the whole TSK system is a crisp value of the neural
network output y. The network architecture is always related
to the number of rules (the number of inputs of neural
network) and generally a solved problem (internal network
topology, weights and types of activation function).

Fig. 1 shows an example of the FSNA structure formed by
the connection of the neural network with the TSK fuzzy
system. In the Fig. 1, the i-th neuron of the network is
represented by Ni.

In the research presented in the further part of the paper, a
feed-forward artificial neural network was applied for
aggregation of the fuzzy rules (Osowski, 2006). The
architecture of the network was determinated by the
evolutionary method CCGA-INE.

Fig. 1. The connection of neural network with TSK fuzzy
system for the aggregation of fuzzy rules (Ni defines the i-th
neuron).

The method of encoding an artificial neural network and its
tuning by means of evolution is described in the next section.

3. CCGA WITH INDIRECT NEURAL ENCODING

3.1 Evolution and co-evolution

Co-evolution is a specific type of the evolution of closely
related species. In the basic evolutionary algorithm, the
process of evolution is seen as an attempt to adapt a
population of individuals to a specific environment.
Meanwhile, in the co-evolutionary approach the process of
co-evolution is seen as an attempt to adapt the population (or
a subgroup of individuals from the population) to the specific
environment that is affected by a population of another
species (or subgroup of individuals from the population).
Usually, in the co-evolution, a complex solution is divided
into sub-component solutions to evolve independently, i.e.
there are many populations of individuals (multiple species),
wherein each population encodes one sub-component
solution.

A good example of co-evolution comes from natural world in
the form of relation between predator and prey. A predator
hunting a prey eliminates the weaker individuals from the
population of prey. It causes that individuals which survive
have better features that transfer to their offspring. A predator
which achieve “worst results” in catching preys, has also less
chance to deliver its features to its offspring.

3.2 Cooperative Coevolution Genetic Algorithm CCGA

In general, a genetic algorithm (GA) is a search heuristic that
mimics the process of natural selection. The GA is based on
iterative evolutionary procedure involving selection of
genotypes for reproduction based on their fitness, and then by
introducing genetically changed offspring (mutation,
crossover and other genetic operators) into a next population.
The procedure is finished after achieving satisfactory
genotypes (a set of features of an individual) which
correspond to high fitness phenotypes (the individual from a
population) (Goldberg, 1989).

CONTROL ENGINEERING AND APPLIED INFORMATICS 85

The CCGA is a specific Cooperative Coevolution Genetic
Algorithm proposed by (Potter and De Jong, 2000).
Generally, the CCGA solution is divided into sub-
components that evolve in separate populations. There is no
possibility of an exchange of genetic information between
populations of separate species, but individuals of different
species must work together to achieve a satisfactory overall
solution. Division into the sub-components, in this case, is
generally carried out by the following method. Initially, the
solution is encoded in a single chromosome, which evolve in
a single population. If the evolution of this population, after a
specified number of iterations, does not lead to a satisfactory
solution, then the next species is created, which follows the
evolution of the two populations, etc. At some point, the
CCGA algorithm may find that a particular species
(population) does not make a significant contribution to the
overall solution. In this case, the population is removed from
evolutionary algorithm. In the CCGA, for the assessment of
the overall solution a single individual of the first population
must be connected with individuals from other populations
(Potter, 1997).

3.3 General overview of CCGA-INE method

Because the fuzzy system is described by large number of
parameters, therefore the chromosomes coding these
parameters should be very long. Evolution of long
chromosomes is connected with complicated calculations,
and in consequence, problems with achieving a final solution
within assumed finite time. Due to potentially long
chromosomes for the system defined by large number of
parameters, indirect encoding of the fuzzy system is
proposed. In the indirect encoding method, information from
the chromosomes is used to generate other system (neural
network, nonlinear function, etc.), which in turn generates
parameters of the FSNA. Such way of encoding is used to
create large fuzzy systems using relatively short
chromosomes.

Generally, in the CCGA-INE a single chromosome encodes a
neural network called coding network, defined by a Coding
Neural Network Definition Matrix cNDM (Praczyk, 2015),
while the coding network or networks encode the FSNA (i.e.
coding networks fills elements of matrices representing this
system). In the case of a neural network for aggregation of
fuzzy rules, coding networks generate elements of
Aggregation Neural Network Definition Matrix aNDM,
defining structure and parameters of the aggregation network.
It should be noted that in the CCGA many populations can
evolve, i.e. many chromosomes can generate many coding
networks (Fig. 2). For many coding networks, each element
of the matrices representing the FSNA is generated by one of
the coding network according to the algorithm described in
the following subsection.

In conclusion, it should be noted that the task of CCGA-INE
is to find the best structure and parameters of coding neural
networks (one or several depending on the progress of the co-
evolution), which in turn, encode integrated matrix of fuzzy
sets and rules VBI and a matrix defining an artificial neural
network for the rules aggregation aNDM.

Fig. 2. Generation of the FSNA using CCGA-INE.

3.4 Generation of coding and aggregation neural networks

Fig. 3 shows a method for generating a coding neural
network (defined by cNDM) (Praczyk, 2015), using the
information stored in the chromosome, consisting of four
parts (components). Each component is composed of 7 bits,
i.e. the chromosome includes 28 bits in total. During the
research, co-evolution produced chromosomes consisting of 4
to more than 30 components, i.e. chromosomes consisting of
more than 200 bits. The first component of each chromosome
is considered as a string of bits, while the next components
represent integer values (scaled to real values), which are
further elements of the matrix. In the illustrated example
(Fig. 3), the first component of the chromosome determines
the topology of the neural network by indicating the elements
of matrix cNDM, which should be reset (white boxes), and
other which should adopt the values determined by the
successive components of the chromosome c1, c2 and c3
(black boxes).

Consecutive bits included in "topology" component
determine, if the following elements of matrix (beginning
from the first column and row, and ending on the last row and
column) are zero or non-zero (Fig. 3). Bit string "topology" is
too short to determine all the elements of the matrix,
therefore, the string is repeated, i.e. after the last bit is the
first bit of the string, then second bit, etc., until the all
elements are determinated. Bit which has a zero value
determines zero value of the relating element in the matrix.
This element is illustrated by white box in the table in Fig. 3.
Bit which has value “1” determines non-zero value of the
relating element in the matrix. The non-zero element is
marked by grey box in the table in Fig. 3. The precise values
of non-zero elements are determinated by another
components of the chromosome "coefficient no. 1",
"coefficient no. 2" and "coefficient no. 3". The assignment of
values c1, c2 and c3 for successive elements of matrix cNDM
is carried out according to the same principle as it is applied
to the bits of the component "topology".

86 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 3. Generation of matrix cNDM defining coding neural
network by chromosome consisting of four components.

Matrix cNDM shown in Fig. 3 has n rows and n + 2 columns,
where n is the number of neurons in the network layers
sequentially input, hidden and output. Elements of matrix
cNDM from the first element to the element of n-th row and
n-th column determine the weights of connections between
neurons. Column n + 2 determines the type of activation
function, and the column n + 1 is a constant added to the total
weight of input neurons called bias.

Fig. 4 shows the architecture of an artificial neural network
generated by means of information included in the
chromosome and the relating matrix cNDM.

In the Fig. 4 chromosome components are presented in a
different forms: the first component in the form of a binary
sequence, the other in the form of real numbers (in fact,
chromosomes include integers, which become real numbers
after scaling). Individual neurons were visualized by
succeeding numbers N1, N2, …, Nn and the type of the
activation function: S - sigmoid, L - linear and additionally
numerical value of the bias. The resulting neural network in
the Fig. 4 comprises 4 neurons. The distribution of these
neurons to the input and output layers and possibly hidden is
determined by the designer of the system. In this case, it is
assumed that two neurons are in the input layer, one is hidden
neuron and one is located in output layer. As mentioned
previously, the matrix NDM can define the coding neural
network cNDM and also neural network for the rules
aggregation aNDM in the same way as it was described for
cNDM.

In the research, it was assumed that the coding neural
network is composed of nine neurons: three in the input layer,
three in the output layer, and three are the hidden neurons.
Therefore matrix cNDM is composed of 9 rows and 11
columns (Praczyk, 2015).

Fig. 4. Generation of neural network based on neural
Network Definition Matrix NDM, which in turn, was
obtained based on information included in the chromosome.

3.5 Method of filling FSNA matrices

Fig. 3 shows how to fill the matrices elements representing
the FSNA. The values of the elements are produced by the
coding networks. The coding networks have three inputs and
three outputs. The inputs of the network determine
parameters of the element, whose value is produced by the
network on its output. The first and second inputs determine
the row and the column of the matrix, and the third input
determine the ordinal number of the matrix. The coding
network produce on its outputs following values:

(1) the strenght: in a situation, where there is more than one
network, this parameter determines which coding network
should be used to "fill" the matrix in the current step
("wining" coding network, which has the largest
strength),

(2) the threshold: this parameter determines whether the
value should be written to a specific element of the
matrix, or the item should be zero (the element is reset if
the threshold value is less than the desired threshold for
the matrix),

(3) the value: assigned to the specific matrix element, defined
by the coding network inputs, if the network has the
largest strength, and the threshold output is greater than
the desired threshold for this matrix.

CONTROL ENGINEERING AND APPLIED INFORMATICS 87

Fig. 5. Method of filling elements of FSNA matrices by
coding neural networks in selected steps 2), 24), 25).

Fig. 5 shows selected steps of "filling" the FSNA matrices by
coding network, generated based on chromosomes evolving
in two populations (two coding networks). Step 2 illustrates a
situation in which the first coding neural network (defined by
cNDM1) has a larger strength and its threshold output is
greater than the desired threshold for VBI. Therefore, the first
coding network writes a value to a specified element of the
matrix. Step 24 illustrates the case in which the second
coding network is a "stronger" (has a larger value at the
output strenght), but the network’s threshold value is less
than the desired threshold for this matrix. In this case, the
element specified by the coding network inputs obtains zero
value. Step 25 illustrates a situation similar to that which
occurred in step 2, with the difference that in this case, the
second element of the second matrix aNDM is filled.
Generation of the all elements of the matrices requires
iterations equal to the sum of elements in these matrices.

It can be seen that using the described indirect encoding
method CCGA-INE, matrices defining FSNA consisting of
even hundreds of parameters can be filled by means of
information included in several chromosomes (depending on
the number of the population).

In the next section predator-prey problem used as a test
problem is described in details.

4. PREDATOR-PREY PROBLEM

4.1 Assumptions

During the previous research, the predator-prey problem was
applied to compare different methods, e.g. fuzzy expert
system tuned in experimental way by an expert (Praczyk and
Szymak, 2011). Therefore, using the same test problem in the

research presented in this paper enable to indicate if the new
method is effective and how much it is effective comparing
to the fuzzy expert system.

In general, in the predator-prey problem, underwater vehicles
acting as predators have to catch another underwater vehicle,
which plays a role of a prey. In the research presented further,
the three predators had to catch the single prey. Both the prey
and the predators were underwater vehicles moving in the
horizontal plane. To simulate the motion of the vehicles,
control-oriented model of the underwater vehicle “Ukwial”
was used (Praczyk and Szymak, 2011). The vehicles moved
in artificial environment – the square of 200x200 meters. The
environment did not contain any obstacles, but it was open at
each side. Therefore, the vehicle which “disappeared” on the
left edge of the environment, appeared at this time on the
right edge, and vice versa. Similarly, the vehicle which
“disappeared” on the top edge of the environment, it
appeared at this moment on the bottom edge, and vice versa.
This simple mechanism allowed an infinite environment to be
created.

During the experiments, the motions of predators were
controlled by designed fuzzy system. The predators moved
with constant velocity 0.5 m/s, but their directions of motion
were determined by the fuzzy system. The courses of the
vehicles could be changed by 0,5,10,...,355 degrees. It was
assumed that the predators captured the prey, if the distance
between the nearest predator and prey was lower than 5
meters. The prey was able to move with higher velocity (even
two times) than the predators. The prey used the following
strategy:

(1) Do not move if there is no predators in your field of
vision,

(2) Run in the direction opposite to the course of predator
when there is only one predator in your field of vision,

(3) In the case when there are two or three predators in the
field of vision, move the following course:

n
d

dn

i
i

i
s

∑
== 1

min ψ
ψ (1)

where ψs is a set value of the prey course (for maneuver to
escape from predators), di is a distance between i-th predator
and the prey, dmin is a minimum distance between the
predators and the prey, ψi is a course of i-th predator (in the
range ±180°) and n is a number of predators in the field of
vision of the prey.

The ratio dmin/di determines what is the influence of the
distance between the prey and predators on desired course of
the prey in the case, when the prey sees two or more
predators, i.e. the predator which is closer to the prey should
decides more on set value of the prey course, or otherwise,
the prey should escape in the opposite direction, in particular
to the direction of motion of the closest predator.

Taking into account especially larger velocity of motion of
the prey and the artificial infinite environment without

88 CONTROL ENGINEERING AND APPLIED INFORMATICS

obstacles, it can be seen that the prey can be caught only as a
result of coordinated effort of all the predators.

4.2 Scenarios

In order to tune the FSNA by CCGA-INE, and then verify the
achieved solutions of FSNA in different situations,
respectively 30 learning scenarios and further 60 validating
scenarios were designed. The scenarios differ in the
following parameters:

(1) the prey velocity (Table 1),

(2) the vision range of predators by the prey (Table 1),

(3) the starting position of the prey (Table 2).

Table 1. Velocity and vision range of the prey for learning
(no. 1-30) and validating (no. 31-90) scenarios.

Scenario no. Prey velocity
[m/s]

Vision range of
prey [m]

1-5 0,5 40
6-10 0,75 40
11-15 1 40
16-20 0,5 50
21-25 0,75 50
26-30 1 50
31-40 0,5 40
41-50 0,75 40
51-60 1 40
61-70 0,5 50
71-80 0,75 50
81-90 1 50

In all the scenarios, the underwater vehicles acting as
predators start from position with coordinates (0, 0).

Table 2. Starting position of the prey for learning
(no. 1-30) and validating (no. 31-90) scenarios.

Scenario
no.

Coordinates of
prey starting

position [m; m]

Scenario
no.

Coordinates of
prey starting

position [m; m]
1, 6, 11,

16, 21, 26
50; 50 31, 36, 41,

46, 51, 56
0; 100

2, 7, 12,
17, 22, 27

150; 50 32, 37, 42,
47, 52, 57

30; 170

3, 8, 13,
18, 23, 28

50; 150 33, 38, 43,
48, 53, 58

40; 180

4, 9, 14,
19, 24, 29

100; 100 34, 39, 44,
49, 54, 59

50; 100

5, 10, 15,
20, 25, 30

150; 150 35, 40, 45,
50, 55, 60

100; 0

 61, 66, 71,
76, 81, 56

100; 50

 62, 67, 72,
77, 82, 87

100; 150

 63, 68, 73,
78, 83, 88

170; 30

 64, 69, 74,
79, 84, 89

150; 100

 65, 70, 75,
80, 85, 90

180; 40

Scenarios presented in Tables 1 and 2 were designed in the
way to increase their difficulty level. In the first scenario, the
prey has a smaller range of vision and the same velocity of its
movement as the predators. In the following scenarios, the
prey velocity is increased by 50%, and in the part of the
scenarios, even by 100%. Also in the scenarios, the range of
vision of the prey is increased.

Tuning the FSNA is performed for 5 different starting
positions, and testing the final solution of the FSNA is carried
out for 10 various starting positions. Moreover, tuning and
testing are made for different velocities and various field of
vision of the prey.

4.3 Evaluation function

The scenarios are used for training and then validating
sequentially, i.e. the first scenario was followed by a second,
then the third, etc. Scenario finished at the moment of
catching the prey by the predators or after the maximum
number of decisions taken by the FSNA. During research, the
maximum number of decisions for a single scenario was
assumed to 100 decisions.

The behaviour of the n-th FSNA in 30 scenarios was
evaluated using the fitness function F(FLn). The function
F(FLn) was calculated as the sum of the rewards gained in all
the scenarios. The following form of the reward function f in
k-th scenario was applied (Praczyk and Szymak, 2013):

()

−+

−=

ccaselmmf

bcasepdd
acase

FLf

kcap

kpnk

,/

,)(min
,0

)(

max

max
 (2)

where k is a scenario number, FLn is the estimated n-th
FSNA, dmax is a maximal distance between two points in
artificial environment and dk(p) is a distance between prey
and p-th predator at the end of k-th scenario without success.
Additionally, fcap is a reward for catching prey, equal to 100,
mmax is a maximal number of decisions taken by FSNA, equal
to 100, mk is a number of decisions taken by FSNA to catch
the prey and l is a number of all scenarios.

The cases are as follows:

(a) the UUV – prey was captured in the previous scenario,

(b) the prey was captured in the current scenario,

(c) the prey was caught in the current scenario.

5. RESULTS OF NUMERICAL RESEARCH

5.1 Assumptions

To model motion of UUVs imitating both the prey and the
predators, control oriented simulation model of the
underwater vehicle Ukwial (Fig. 6) was used (Praczyk and
Szymak, 2011). Ukwial is a Remotely-Operated underwater
Vehicle ROV, equipped with a cable called an umbilical
cord, which is used to power supply and control of the robot.
For simplicity and making research more realistic (vehicles

CONTROL ENGINEERING AND APPLIED INFORMATICS 89

should be autonomous) the control-oriented model does not
take into account the effect of the affecting umbilical cord.

Fig. 6. Underwater vehicle Ukwial designed by Gdansk
University of Technology.

Due to the fact that the proposed tuning method CCGA-INE
is complicated and time-consuming and the propellers system
of UUV Ukwial consists of four thrusters located in a
horizontal plane and two in a vertical plane (acting
independently in two planes of motion), the following
simplifications was applied:

(1) the motions in the horizontal and vertical planes are
considered independently – only motion in the horizontal
plane is considered in the research of FSNA (motion in
horizontal plane is more complicated than in vertical
plane – greater manoeuvrability),

(2) the motion parameters are discreted, what is associated
with the used motion model and relating limitation of the
set of control signals, e.g. the velocity is (0.5, 0.75,
1 m/s), the course is (0, 5, 10, ... 355°),

(3) based on initial research, the time between following
decisions is equal to 10 sec,

(4) the effects of sea current was omitted due to the fact that
when the current is small and has a constant direction the
indirect methods for measuring and effectively counteract
the sea current work properly (Praczyk, Szymak, 2013);
however, when the current is relatively large (i.e. close to
the underwater vehicle velocity) and/or with variable
direction of affecting, there are no effective methods to
counteract (in such situations usually mission is not
continued).

5.2 Input and output variables

In the system control of the swarm of underwater vehicles, it
was assumed that the system produced change of course for
each predator on its outputs based on distances vectors
determined from each predator to the prey. For applied
simplification, only motion in horizontal plane is considered,
and each distance vector is represented by two scalar
components: the distance in axis x and the distance in axis y.
In this case, the FSNA has six fuzzy input variables and three
output variables (Fig. 7).

Fig. 7. Input (d1x, d1y, d2x, d2y, d3x, d3y) and output
(∆ψ1, ∆ψ2, ∆ψ3) variables of FSNA controlling the swarm of
underwater vehicles no. 1, 2 and 3 trying to catch underwater
vehicle – the prey.

5.3 Tuning of FSNA by CCGA-INE

In the process of tuning the FSNA, nine preliminary variants
of the system were examined. The variants differed in the
maximum number of fuzzy rules and the number of hidden
neurons (Table 3).

In the first stage of the tuning phase, parameters of
evolutionary method were selected: the mutation and the
crossover probabilities, and the number of iterations between
generation of the next population participating in the co-
evolution. In accordance with the general description of the
CCGA contained in the previous section, coevolution starts
from one population, and when there is a lack of progress in
evolution (no increase of a fitness function value), next
population is created. In this case, more coding neural
networks (generated from chromosomes) are involved in
process of filling the FSNA matrices VBI and aNDM.

Table 3. Nine initial variants of FSNA.

Ordinal
number of

FSNA variant

Maximal
number of fuzzy

rules

Number of
hidden neurons

1 8 0
2 8 2
3 8 5
4 16 0
5 16 2
6 16 5
7 24 0
8 24 2
9 24 5

Based on the initial research, following values of the
evolutionary parameters were used: the crossover probability
equal to 0.7 and the number of iterations between generation
of the next population equal to 10 000. Due to obtaining

90 CONTROL ENGINEERING AND APPLIED INFORMATICS

different results for initial variants of the FSNA, it was
decided to carry out research for the four selected mutation
probability equal to: 0.0005, 0.002, 0.05 and 0.01. Therefore,
each FSNA variant was examined in 120 runs of evolutionary
algorithm (30 runs for each of four mutation probability).

The basic comparison of the FSNA variants was carried out
based on an evaluation index named a number of runs
without success. Runs without success is observed when
predators do not catch the prey in one or more scenarios. In
the case that two FSNA variants have the same values of the
number of runs without success, the average number of the
iterations is taken into account. The average number of
iterations is calculated as an arithmetic average of the number
of iterations of tuning runs ended successfully. Successful run
means that the prey was captured in all 30 learning scenarios.

During the next research, which results were inserted in
Table 4, the number of hidden neurons and the maximum
number of fuzzy rules were examined. Increasing the value of
the both parameters increases the calculations connected with
the FSNA tuning. In this case, it was expected that an
increase in the number of rules will increase the "system
intelligence". At the beginning, the best number of hidden
neurons was determined. As it can be seen, based on
evaluation of the operation of different FSNA variants
(Table 4), the most runs of evolutionary algorithm finished
with success for variants with two hidden neurons, and
therefore, this value of hidden neurons was used in the further
research, in order to determine the best number of rules.
Based on the results inserted in Table 4, the best evaluation
indexes were obtained for variant no. 8, i.e. the FSNA with
the largest maximal number of rules. Therefore, for the initial
variants 24 rules is the best maximal number of rules.

In the next step of tuning phase, two additional FSNA
variants were developed (Table 5) with greater number of
rules than before (Table 4), respectively 32 and 40 rules
(variant no. 10 and 11), with two hidden neurons in
aggregation neural network (based on previously achieved
results).

Table 4. Results of the evolution for the nine initial FSNA
variants in predator-prey problem.

FSNA variant FSNA evaluation (learning)

No.
Number of

hidden
neurons

Number of
rules

Average
number of
iterations

Number of
scenarios
without
success

1 0 8 24749 67
2 2 8 28077 81
3 5 8 21341 85
4 0 16 17927 18
5 2 16 14927 14
6 5 16 14673 21
7 0 24 12360 2
8 2 24 17826 0
9 5 24 10960 3

Based on the obtained results (Table 5), it can be seen that
during tuning the FSNA control system for the swarm of
underwater vehicles:
(1) The best results (all 30 runs with success) were obtained

for variants with 24 or more fuzzy rules,
(2) Increasing number of rules (above 24) reduced the

average number of iterations needed to obtain solutions,
which worked effectively in all 30 learning scenarios,

(3) The best performance of the FSNA in the predator-prey
problem was achieved for the FSNA variants with two
hidden neurons in aggregation neural networks.

Table 5. Results of evolution for two additional FSNA
variants in predator-prey problem.

FSNA variant FSNA evaluation (learning)

No.
Number of

hidden
neurons

Number of
rules

Average
number of
iterations

Number of
scenarios
without
success

10 2 32 11909 0
11 2 40 8336 0

In the next subsection, a verification of obtained FSNA
solutions is presented.

5.4 Validation tests of FSNA solutions

Validation tests of obtained FSNA solutions (for all 11
variants) were performed for 60 validating scenarios
(Table 6). Table 6 presents the fitness functions (mean,
minimum and maximum) obtained for all FSNA solutions
achieved in 30 runs of the evolutionary algorithm, i.e.
presents the average results of 30 FSNA with different
structure obtained in 30 runs of evolutionary tuning in each
of the tested variant. For verification tests, only FSNA
solutions generated in the process of evolution with mutation
probability equal to 0.01 were selected.

Table 6. Results of validation tests for twelve FSNA variants
in predator-prey problem.

FSNA variants FSNA evaluation (generalization)

No.

Number
of

hidden
neurons

Number
of rules

Average
number

of
iterations

Fitness function

mean min max

1 0 8 11 1105 3545 4941
2 2 8 29 2919 151 5141
3 5 8 22 2263 2947 5042
4 0 16 45 4595 49 5141
5 2 16 44 4495 2046 5338
6 5 16 46 4628 151 5439
7 0 24 45 4549 46 5042
8 2 24 44 4498 0 5239
9 5 24 44 4475 46 5340

10 2 32 47 4728 3844 5539
11 2 40 44 4462 3144 5239

CONTROL ENGINEERING AND APPLIED INFORMATICS 91

Based on the results of validation phase illustrated in Table 6
following conclusions could be formulated:

(1) The best results were obtained for the FSNA variant
no. 10; similar results were received for the FSNA variant
no. 11 and 8, which confirmed that FSNA for predator-
prey problem should have a neural network for the
aggregation rules with two hidden neurons,

(2) The best results were achieved for the FSNA with 32
fuzzy rules (variant no. 10);

(3) The best solution of the control system of underwater
vehicle allowed predators to catch prey in 55 scenarios
(FSNA variant no. 10 obtained in 21st test with fitness
function equal to 5539).

Comparing FSNA variant no. 10 with variants no. 8 and 11
(respectively 24 and 40 rules), it is worth underlining that the
FSNA should have the structure possibly simplest (e.g. 32
rules instead of 40 rules), which guarantees generalization
properties.

It is also worth noting that the FSNA variant no. 10 has a
fuzzy inference base consisting of 32 rules and an
aggregation neural network with two hidden neurons. In this
case, the system is encoded in two matrices: VBI with size
32x14 and aNDM with size 37x39. Together these two
matrices have 1891 elements. In practice, some elements are
zero, and some elements of the matrices have the same value.

5.5 Example of FSNA operation

For visualization of the exemplary operation of the system
controlling the swarm of underwater vehicle, the FSNA
variant no. 10 achieved in 22nd test was selected. This system
has achieved the fitness function equal to 4740, which means
that predators caught the prey in 47 scenarios (one of them is
illustrated in Fig. 8).

Fig. 8. Visualization of the FSNA operation in the vertical
plane (variant no. 10 obtained in 22nd test), performing with
success scenario no. 32: S - start position of the prey, 1, 2, 3 -
predators no. 1, 2, 3, which start from position (0, 0).

Fig. 8 shows the strategy for control of underwater vehicles
learned during the process of evolution. The vehicles acting
as predators caught the prey in the position with coordinates
(90, 150). Place of catching the prey was marked by a circle

with a dotted line. Starting position of the prey was marked
by “S”, and trajectories of predators by their ordinal numbers
1, 2, 3. Predators in all scenarios started from the position
specified by the coordinates (0, 0). The next Fig. 9 illustrates
changes of course of all four underwater vehicles.

Fig. 9. Changes of course: the prey (black dashed line) and
predators (number: 1, 2 and 3) – the FSNA variant no. 10
obtained in 22nd run in scenario no. 32.

As can be seen, predators made changes in every step (10 s),
while the predator decided on changes of course, even at 3
decision steps (30 s). The difference is due to a range of
vision of the prey equal in this scenario to 40 m, i.e. the prey
'saw' only predators that were on distance no more than 40 m.

6. CONCLUSIONS

In the paper, new neuro-fuzzy system called FSNA was
presented. The FSNA was tuned by the evolutionary method
named CCGA-INE. The FSNA was correctly learned and
then verified by means of validating scenarios in the
predator-prey problem.

Comparing the results for the FSNA with the results obtained
earlier for the fuzzy expert system (Praczyk, Szymak, 2011),
significant improvement in the effectiveness of the new
FSNA is observed. The best fuzzy expert system effectively
chased the prey only in 12 successive learning scenarios.

Generally, the selected solutions of FSNA obtained during
evolution (Table 6) guarantee good behaviour for the
validation scenarios. It should be noted that in the case of
new scenarios, they always can be used for precise tuning of
the FSNA (additional learning).

REFERENCES

Birk, A., Antonelli, G., Caiti, A., Casalino, G., Indiveri, G.,
Pascoal, A., Caffaz, A. (2011). The CO3AUVs
(Cooperative Cognitive Control for Autonomous
Underwater Vehicles) project: Overview and current
progresses, IEEE Proceedings of the Oceans Conference,
pp. 1 – 10.

Driankov, D., Hellendoorn, H., Reinfrank, M. (1996). An
Introduction to Fuzzy Control, Springer-Verlag.

Fossen, T.J. (1994). Guidance and Control of Ocean
Vehicles, John Wiley and Sons Ltd.

92 CONTROL ENGINEERING AND APPLIED INFORMATICS

Goldberg, D.E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison Wesley,
Reading, Massachusetts.

Guney, K., Sarikaya, N. (2009). Comparison of Mamdani and
Sugeno Fuzzy Inference System Models for Resonant
Frequency Calculation of Rectangular Microstrip
Antennas, Progress In Electromagnetics Research B,
Vol. 12, pp. 81–104.

Healey, A.J., Horner, D.P. (2008). Collaborative Unmanned
Systems for Maritime Interdiction and Riverine
Operations, Proceedings of 17th World Congress of
International Federation of Automatic Control, Seoul.

Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M.,
Lekien, F., Zhang, F. (2010). Coordinated control of an
underwater glider fleet in an adaptive ocean sampling
field experiment in Monterey Bay, International Journal
of Field Robotics, Vol. 27(6), pp. 718–740.

Mamdani, E. H., Assilian, S. (1975). An experiment in
linguistic synthesis with a fuzzy logic controller,”
International Journal of Man-machine Studies, Vol. 7,
pp. 1-13.

Menafo, A., Simetti, E., Turetta, A., Caiti, A., Casalino, G.
(2011). Autonomous underwater vehicle teams for
adaptive ocean sampling: a data-driven approach,
Springer-Verlag, Ocean Dynamics, pp. 1981–1994.

Osowski, S. (2006). Neural Networks for data processing,
Publishing House of Warsaw University of Technology.

Potter, M. (1997). The Design and Analysis of a
Computational Model of Cooperative Coevolution, PhD
Thesis, George Mason University, USA.

Potter, M. A., De Jong, K. A. (2000). Cooperative
coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, Vol. 8(1),
pp. 1–29.

Praczyk, T. (2015). Neural anti-collision system for
Autonomous Surface Vehicle, Neurocomputing, Vol.
149, Part B, pp. 559–572.

Praczyk, T., Szymak, P. (2011). Decision System for a Team
of Autonomous Underwater Vehicles – Preliminary
Report, Elsevier, Neurocomputing, Vol. 74 (17), pp.
3323-3334.

Praczyk, T., Szymak, P. (2013). Using Assembler Encoding
to build neuro-controllers for a team of autonomous
underwater vehicles, Systems Research Institute Polish
Academy of Sciences, Control and Cybernetics, Vol. 42,
No. 1, pp. 267-286.

Szymak, P. (2012). Comparison of Centralized, Dispersed
and Hybrid Multiagent Control Systems of Underwater
Vehicles Team, Trans Tech Publications, Solid State
Phenomena, Vol. 180, pp. 114-121.

Szymak, P., Praczyk, T. (2012). Using Neural-Evolutionary-
Fuzzy Algorithm for Anti-collision System of Unmanned
Surface Vehicle, IEEE, Proceedings of the 17th
International Conference on Methods and Models in
Automation and Robotics, pp. 286-290.

Szymak P., Praczyk, T. (2010). Control of a Team of
Underwater Vehicles in Predator-Prey Problem, Polish
Society of Theoretical and Applied Mechanics,
Scientific Aspects Of Unmanned Aerial Vehicle, pp. 591-
605.

Takagi, T., Sugeno, M. (1985). Fuzzy Identification of
Systems and its Application to Modelling and Control,
IEEE Transactions on Systems, Man and Cybernetics,
vol. 15, pp. 116-132.

Yong, Ch.T., Bishop B.E. (2004). Evaluation of robot swarm
control methods for underwater mine countermeasures,
IEEE, Proceedings of the Thirty-Sixth Southeastern
Symposium on System Theory, pp. 294 – 298.

