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Abstract: Algorithms in computer engineering and applied informatics often require extraction of data 
with some desired properties from large sets. Such tasks appear within different clustering algorithms in 
the scope of data mining, in classification of objects in accordance with given criteria, in knowledge 
acquisition obtained from controlled environments, in statistical analysis and in other areas. Many of 
these tasks involve widely used data processing techniques that are sorting and searching and for 
numerous practical applications, especially in real-time and high-performance systems, speeding-up is 
important. The paper suggests effective portable solutions that enable fast parallel information processing 
to be implemented in all-programmable systems-on-chip that combine multi-core computations with 
programmable logic interacting through multiple high-performance interfaces. Acceleration is achieved 
with parallel networks for data sorting created in programmable logic and enabling software running in 
multi-core processing units to be speeded-up, which is demonstrated in numerous practical examples 
fully implemented and tested in commercial microchips. 

Keywords: parallel processing, microsystems, information retrieval, data processing, performance 
evaluation, multiprocessing systems. 

 

1. INTRODUCTION 

Data extraction and ordering are required in many algorithms 
of control engineering and applied informatics. Some 
common problems are listed below (see also Fig. 1):  

1) Extracting the maximum/minimum (sorted) subsets from 
the given set; 

2) Extracting subsets with such values that fall within an 
interval bounded by the given maximum and minimum; 

3) Encountering the most repeated value or a set of the most 
repeated values; 

4) Computing medians; 
5) Solving problems indicated in points 1)-4) for tables (for 

values in rows/columns of the tables). 

All these problems can efficiently be solved applying data 
sorting that is one of the most common types of computations 
(Knuth, 2011) required in different information processing 
systems. Let us describe practical applications where 
solutions of the problems listed above are needed. Clustering 
is a data mining activity that permits a given set of objects 
with similar properties to be grouped (Kovacs et al., 2007). 
Hierarchical clustering methods represent a major technique 
allowing the desired set to be built through searching 
common attributes and combining objects with such 
attributes (Serban et al., 2008). For instance, clinical 
investigators, health professionals and managers are often 

interested in clustering patients into clinically meaningful 
groups according to their expected length of stay (Garg et al., 
2011). Similar problems arise in statistical data manipulation 
(Salter-Townshend et al., 2012; Sklyarov et al., 2014a), in 
classification (Chrysos et al., 2013; Abdelhamid et al., 2015) 
and in many other areas. 
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Fig. 1. Common problems that frequently need to be solved 
in algorithms of control engineering and applied informatics. 

In (Baker et al., 2006) one common task is explained on an 
analogy of a shopping activity. A basket is a set of items 
purchased at one time. A frequent item is an item that often 
occurs in a database. A frequent set of items often occur 
together in the same basket. A researcher can request a 
particular support value and find the items which occur 
together in a basket either a maximum or a minimum number 
of times within the database. Similar problems appear to 
determine frequent inquiries at the Internet, customer 
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transactions, credit card purchases, etc., producing very large 
volumes of data in the span of a day. Sorting is involved in 
many known algorithms from this area (e.g. Sun, 2011a; Sun 
et al., 2011b; Wu et al., 2014; Firdhous, 2010). We believe 
that fast solvers for the problems listed above would be very 
helpful in service oriented, knowledge-based systems that use 
advanced search, data analytics and prediction tools such as 
in (Borangiu et al., 2014). Data need also to be processed in 
many other environmental, medical, and biological 
applications. Let us consider some examples. Applying the 
technique (Zmaranda et al., 2013) in real-time systems 
requires knowledge acquisition from a controlled 
environment (e.g. plant). For example, signals from sensors 
may be filtered and analyzed to prevent error conditions. To 
provide more exact and reliable conclusions, it is necessary to 
order and examine a combination of different values. Similar 
tasks appear in monitoring thermal radiation from volcanic 
products (Field et al., 2012), filtering and integration of 
information from a variety of different sources in medical 
applications (Zhang et al., 2014). Since many such systems 
are real-time, performance is important and hardware 
accelerators may provide significant assistance for software. 

This paper suggests effective portable software/hardware 
designs executing different types of sorting and merging 
methods in recently appeared on the market Zynq-7000 
devices from Xilinx (Xilinx, 2014a). These devices are based 
on Xilinx all programmable system-on-chip (APSoC) 
architecture, which combines the dual-core ARM 
CortexTM–A9 central processing unit with Xilinx 
programmable logic (PL) appended with on-chip memories 
(OCM), high-performance (HP) interfaces, a rich set of 
input/output peripherals, and a number of embedded to the 
PL components, such as digital signal processing (DSP) 
slices. APSoC devices permit complete solutions to be 
realized on a single microchip running software that may be 
enhanced with easily customizable hardware. Various 
advantages of APSoC platform are summarized in (Santarini, 
2014; Santarini, 2015). Interactions between the ARM-based 
processing system (PS) and PL are supported by nine on-chip 
Advanced eXtensible Interfaces (AXI): four 32-bit general-
purpose (GP) ports; four 32/64-bit HP ports and one 64-bit 
accelerator coherency port (ACP) (Xilinx, 2014a). Different 
interfaces for hardware/software communications in Zynq-
7000 devices were compared and analyzed in detail in (Silva 
et al., 2015). We will use these results for selecting the most 
appropriate hardware/software system architecture.  

The remainder of the paper is organized in five sections. 
Section 2 discusses the background and potential applications 
of the proposed technique in the scope of applied informatics 
and control engineering. Section 3 introduces the adopted 
computation methods. Section 4 is dedicated to data 
processing in multi-core APSoC-based software/hardware 
systems. Section 5 describes implementation details and the 
results of experiments and comparisons. The conclusion is 
given in Section 6.  

2. BACKGROUND AND POTENTIAL APPLICATIONS 

Combining capabilities of software and hardware permits 
many characteristics of developed applications to be 

improved. The earliest work in this direction was done at the 
University of California at Los Angeles (Estrin, 1960). The 
idea was to create Fixed + Variable structure computer and 
to augment a standard processor by an array of reconfigurable 
logic assuming that this logic can be utilized to solve some 
processor tasks faster and more efficiently. Such combination 
of flexibility of software and speed of hardware was 
considered as a new way to evolve higher performance 
computing from any general-purpose computer. The level of 
technology in 1959-1960 was not sufficient for this method 
to be put in practice. Today Zynq-7000 architecture enables 
the ideas from (Estrin, 1960) to be realized in a wide scope of 
engineering designs (see examples in Santarini, 2014; 
Santarini, 2015). The basic reasons for choosing a 
software/hardware platform based on the Zynq-7000 APSoC 
are listed below: 

1) ARM has become the standard embedded processing 
architecture for about anything that is not a PC 
(Santarini, 2014). 

2) Newer more advanced microchips, such as Ultrascale 
Multiprocessing SoC, combine a quad-core 64-bit ARM 
Cortex-A53 application processor, a 32-bit ARM Cortex-
R5 real time processor, and an ARM Mali-400 MP 
graphics processor together with 16 nm logic on a single 
chip (Santarini, 2015). This permits advanced portable 
systems on a single microchip possessing computational 
resources comparable with that of a PC and with 
significantly lower power consumption to be developed. 
Easily scalable designs (such as that described in the 
paper) can be implemented in currently available and 
future microchips that are faster, have more advanced 
resources, and consume less power.  

3) Multicore on-chip architectures provide a way around 
the implementing limits of Moore's low (Bertels et al., 
2010; Santarini, 2015). Today the Zynq SoC is at the 
heart of many of the world’s newest and most innovative 
automotive, medical and security vision products 
(Santarini, 2014). It is very appropriate for numerous 
designs described, for example, in (Bertels et al., 2010; 
Kestur et al., 2010; Krueger et al., 2011). Thus, the 
proposed solutions may be adopted and used in a wide 
range of practical applications. 

Let us look at Fig. 1 and the problems 1)-5) listed in section 
1. These problems can be solved applying a technique 
described below: 

1) We consider network-based data sorting as a core 
method for different problems. Much like (Mueller et al., 
2012) to speed up the sorting, we suggest augmenting 
software running in the PS with HP hardware 
accelerators. However, the proposed methods differ from 
(Mueller et al., 2012) and they permit better solutions to 
be found applying such a network, which runs in parallel 
with data transfers, occupies significantly smaller 
hardware resources, and enables wider parallelism to be 
achieved in the dual-core PS and PL. Besides, the 
proposed solutions are scalable and may be used in a PS 
with more than two cores. 
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2) The problems 1)-5) are mainly based on extraction of 
data with certain characteristics, which is done using 
sorted sets. This is significantly easier and faster than 
solving similar tasks for unsorted subsets. 

Since data sorting is the core method, we will analyze it with 
more detail. Performance is important for many information 
processing systems. The analysis presented in (Sklyarov et 
al., 2014a) enables us to conclude the following: 

• The known even-odd merge and bitonic merge networks 
(Baddar et al., 2011) are the fastest and enable the best 
throughput to be achieved. However, they are very 
resource consuming and can only be built in the APSoC 
PL for sorting very small data sets. For example, in 
(Mueller, 2010) any set is composed of only 8 items. 

• Pipelined solutions permit even faster circuits than in the 
point above to be designed. Usually pipelining can be 
based on flip-flops from APSoC PL slices used for the 
network, and resource consumption is almost the same as 
in the point above. Once again, in practice, only very 
small data sets can be processed in APSoC PL. Besides, 
the bottleneck is in fact not in the hardware sorter but in 
communications between software and hardware (Silva 
et al., 2015). 

• To use even-odd merge and bitonic merge circuits for 
larger data sets, the following two methods are most 
commonly applied: a) large data sets are sorted in host 
computers/processors based on sorted blocks produced 
by hardware accelerators (see, for example, Mueller et 
al., 2012; Chamberlain et al., 2009); b) sorting networks 
for large sets are segmented such that any segment can 
be processed easily and the results are handled 
sequentially to form the sorted set like for example, in 
(Zulada et al., 2012; Gapannini et al., 2012). Both 
methods involve intensive communications between the 
PS and PL. The necessity in frequent data exchanges 
reduces potential benefits from the fastest burst mode, 
limiting burst sizes.  

• The existing even-odd merge and bitonic merge circuits 
are not very regular (compared, for example, to the even-
odd transition network (Kipfer et al., 2005)). The routing 
overhead may be considerable in the PL, increasing the 
occupied resources.  

• It is shown in (Sklyarov et al., 2014a) that very regular 
even-odd transition networks with two sequentially 
reusable vertical lines of comparators are more practical 
because they operate with higher clock frequency, 
provide sufficient throughput, and enable a significantly 
larger number of items to be processed in the PL.  

• Experiments that were done give additional motivation 
to apply the methods (Sklyarov et al., 2014a) which 
finally have been chosen as a base for sorting networks 
in the PL of APSoC. Two novel solutions compared to 
(Sklyarov et al., 2014a) are proposed: a) the number of 
combinational levels in the sorting network is reduced 
from 2 to just 1, permitting clock frequency in the PL to 

be increased; b) data processing is executed during data 
transmission, which enables throughput to be increased.  

Let us discuss now effectiveness and applicability of the 
technique outlined in points 1)-2) of this section in the scope 
of applied informatics and control engineering.  

One common problem is clustering objects in accordance 
with their attributes. Different methods have been proposed 
for solving this problem and many of them may recur to 
sorting and searching as frequently used operations (e.g. Sun, 
2011a; Wu et al., 2014; Firdhous, 2010). For example, in 
CPES (Clustering with Prototype Entity Selection) method 
(Kovacs et al., 2007), a fitness function f(xi) is proposed to 
decide if given objects can be clustered and it is computed on 
the basis of the Euclidean distance d(xi,xj): 

22
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where p is the number of attributes for objects xi and xj, 
xi1,…,xip, xj1,…,xjp are attributes for objects xi and xj. 
Generally, such two objects xi and xj are chosen for clustering 
for which the value of the fitness function f is higher. Sorting 
the Euclidean distances and the relevant fitness functions 
permits finding solutions with the method referenced above 
faster. Besides, a number of support functions can be 
suggested. For example, let attributes be associated with rows 
of a matrix µ and objects be associated with columns of the 
matrix µ. Intersection of a row r and a column c is marked 
with value 1 if an object in column c has an attribute in the 
row r. We assume that all unmarked positions in the matrix µ 
are zeros. Discovering and sorting Hamming weights for all 
the rows allows frequencies of attributes in different objects 
to be found. This simplifies allocating candidates for merging 
in clusters. A similar technique is considered in (Baker et al., 
2006). Thus, it is important to make sorting built-in much 
like it is done for such operations that compute Hamming 
weights of binary vectors, e.g. POPCNT (population count) 
(Intel, 2007) and VCNT (Vector Count Set Bits) (ARM, 
2013). Similar proposals were made in (Arnold et al., 2014). 

The following problem that requires fast sorting is described 
in (Sklyarov et al., 2013a). Suppose there are predefined 
values α1,…,αQ and we would like to discover how many 
values αq∈{α1,…,αQ} can be found in a given set. Let us 
consider a set of data items I0,…IN-1. The result R(αq) of 
comparing αq∈{α1,…,αQ} with all the items I0,…IN-1 is a 
binary vector. The Hamming weight of the vector R(αq) is 
equal to the number of items with the value αq. Sorting the 
results R(α1),…,R(αQ) gives the distribution of data items 
with the values from {α1,…,αQ} in the set I0,…IN-1. Such a 
problem appears in pattern recognition, image and signal 
processing. 

The algorithm (Abdelhamid, 2015) discovers rules associated 
with a set of classes and it has been tested on a real world 
application data set related to website phishing. The 
experimental results show the effectiveness of this algorithm 
in which the classifier sorts classes within each rule based on 
their frequency. Thus, sorting is also needed. 
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In (Mueller, 2010) small even-odd merge and bitonic sorting 
networks were used to implement a median operator over a 
count-based sliding window. Such an operator is commonly 
needed to eliminate noise in sensor readings (Rabiner et al., 
1975) and in data analysis (Tukey, 1977) that are tasks often 
solved in control engineering. These methods (Mueller, 2010) 
were also applied to wireless sensor networks.  

The method proposed in (Batista et al., 2014) evaluates 
systematically the possible behaviors of a closed-loop system 
by analyzing its time response. This permits various 
techniques to be applied for solving the problems commonly 
encountered in the networked control systems. The proposed 
technique (Batista et al., 2014) is based on the Monte Carlo 
method coupled with a sorting algorithm (Sedgewick, 1978) 
and a gradient search (Yuan, 2008).  

The software/hardware solutions proposed in this paper are 
faster. They combine a multi-core processor with hardware 
accelerators running in parallel. Effectiveness of 
hardware/software solutions is underlined in (Goodman, 
2011), addressing the importance of portable computing 
hardware environments to handle massive data. According to 
Goodman, data miners and statisticians should collaborate 
and thus common design techniques are promising. We 
believe that sorting networks are one of such design 
techniques, which is also stated in (Mueller, 2010).  

3. METHODS 

Fig. 2 outlines the basic architecture of the proposed 
hardware accelerator for data sorting. The core component is 
an iterative even-odd transition network. As distinct from 
(Sklyarov et al., 2014a), the same comparator/swapper is 
reused for even and odd levels and switching between the 
even and odd levels is done by multiplexers that are not 
shown in Fig. 2. The maximum number of clock cycles τmax 
for sorting N data items is equal to τmax=N (Kipfer et al., 
2005). 

The primary idea is to enable data transfers and sorting in 
parallel. This is the main distinctive feature as compared to 
all the methods published and referenced above.  

Let L be the number of items that have to be sorted and N be 
the number of items in one sorting block. The maximum 
delay from the beginning of source data transfer to the end of 
the result transfer is L/N×N+2×N = (L/N+2)×N. Indeed, 
N clock cycles are needed to transfer the initial block of data 
from memory to the input register, N clock cycles - to 
transfer the sorted block of data from the output register to 
memory, and N clock cycles for sorting each block in the 
iterative network. Comparison/swapping is done for all N 
data items in parallel and we need N iterations at maximum. 
Beginning from the second block, sorting is done in parallel 
with data transfer to the input register. Thus, receiving input 
items and sorting require N clock cycles. As soon as N items 
are sorted, they are copied in parallel to the output register. 
Hence, 2×N clock cycles are needed to prepare the first 
sorted block in the output register. In subsequent N clock 
cycles: a) N data items are transferred to the input register; b) 
N previously transferred data items are sorted in the network; 

and c) N previously sorted data items are transferred from the 
output register to the PS (memory). Clearly, three operations 
a), b), and c) are executed at the same time, i.e. in parallel. 
Transferring N data items from the memory to the sorter 
needs N clock cycles. Transferring N data items from the 
sorter to the memory needs also N clock cycles. Therefore, if 
sorting can be done even without any delay, then only the 
data transfer requires L+N clock cycles. Indeed, N clock 
cycles are needed to get the first block and subsequent blocks 
can be received in parallel with transferring the results. For a 
simplification, we ignore additional clock cycles that are 
needed between burst packages (they are negligible and 
appear in any method). The difference between the described 
unrealistic case and the proposed solution in Fig. 2 is 
approximately N clock cycles that are required for the first 
sorting. Thus, the proposed solution is indeed very fast. 
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Fig. 2. Basic architecture of the hardware accelerator for data 
sorting. 

The next distinctive feature is an opportunity to process data 
in the network with the maximum speed of data transfer. This 
can be done thanks to the minimal delay in comparators/ 
swappers for the network in Fig. 2. Indeed, all signals 
propagate through only one level of comparators/swappers at 
different iterations. The number of levels with 
comparators/swappers in combinational networks (Knuth, 
2011; Baddar et al., 2011) is equal to log2N×(log2N+1)/2 
and, even for small values of N, let us say 128, the delay in 
(Knuth, 2011; Baddar et al., 2011) is 28 times bigger. 
Possible pipelining permits this delay to be reduced (Mueller 
et al., 2012). However, there is another very serious problem 
with the networks (Baddar et al., 2011). The proposed 
technique permits significantly more complicated sorters to 
be implemented with the same hardware resources. Indeed, 
for N=128 the number of comparators/swappers in Fig. 2 is 
N-1=127 and the number of comparators/swappers for the 
best network from (Baddar et al., 2011) is 1,471. This means 
that the required hardware resources for the networks 
(Baddar et al., 2011) are more than 10 times larger. Sorting 
large data sets is done by merging sorted blocks (in which the 
given large set is decomposed) in software.  
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Some additional improvements can be done taking into 
account an opportunity to transfer 64 bits in parallel. Any 
individual transfer in Fig. 2 is done for M=32 bit data items. 
AXI HP and AXI ACP interfaces in (Xilinx, 2014a) enable 
64 bits to be transferred in one transaction. Thus, two M=32-
bit data items can be parked in one AXI word, enabling the 
number of data transfers to be reduced by a factor of 2. 
However, in this case the iterative networks from (Sklyarov 
et al., 2014a) can directly be used, which enable sorting to be 
done in N/2 clock cycles at maximum (instead of N clock 
cycles in Fig. 2). Each method has advantages and 
disadvantages. For the method (Sklyarov et al., 2014a), the 
maximum number of data items (that can be processed in the 
PL) is reduced compared to Fig. 2, and the delay in the 
iterative network is increased (because signals propagate 
through two levels of comparators instead of one level in Fig. 
2). This does not allow the maximum clock frequency for the 
PL to be used. Hence, the speed of transfers is decreased for 
2×L items (L for reading and L for writing). However, the 
number of data transfers (when we pack 2 items in one AXI 
word) is also decreased and this is an advantage. In section 5 
we will compare these two methods. Transferring 2×32 bit 
items can also be practical for the architecture in Fig. 2 using 
FIFOs on inputs and outputs. Although there is no speed-up 
in data processing in the PL, communication overheads are 
reduced by a factor of 2 and a shared memory (DDR/OCM) 
can be used by the PS for solving other problems in parallel. 

Let us discuss now how the hardware accelerator shown in 
Fig. 2 can be used for solving problems 1)-5) listed in section 
1. Extracting the maximum/minimum (sorted) subsets (see 
point 1) is done trivially, copying the required number of 
items either from the beginning or from the end of the sorted 
set. Since we need just to read data from memory, this 
process is very fast in the PS software. Alternatively, the 
maximum and the minimum sorted subsets may be 
accumulated in the PL and this can be done even faster. 
Extracting subsets with such values that fall between the 
given maximum and minimum can also be done in software 
applying, for example, a binary search tree (Cormen et al., 
2009) to the sorted set of data. 

The most repeated value can easily be encountered in a 
parallel hardware circuit that receives the sorted set on inputs 
and finds the most repeated item in ξ-1 clock cycles, where ξ 
is the number of repetitions of the most frequent item 
(Sklyarov et al., 2014b). Additional details will be given in 
subsection 5.1. 

Computing medians on the basis of the results of sorting is 
described in (Mueller, 2010). Similar problems 1)-5) for 
tables can easily be solved taking input data from the selected 
rows/columns. Besides, the proposed methods may widely be 
used to solve other problems of control engineering and 
applied informatics discussed in the previous section. 

4. PARALLEL DATA PROCESSING IN AN APSOC-
BASED SOFTWARE/HARDWARE SYSTEM  

We will analyze below the following four designs for solving 
the sorting problem: 

1) A single core implementation where software in the PS 
and hardware in the PL operate sequentially. Analysis of 
such design permits communication overheads to be 
evaluated easier. 

2) A single core implementation where software in the PS 
and hardware in the PL operate in parallel. The PS and 
PL frequently share the same memory, which may lead 
to performance degradation. The considered design 
permits to evaluate potential advantages/drawbacks.  

3) A dual-core implementation where software in the PS 
and hardware in the PL operate sequentially. This 
permits comparison of dual-core and single-core 
solutions taking into account communication overheads 
between software and hardware. 

4) A multi-core implementation where software in the dual-
core PS and hardware in the PL operate in parallel allows 
the highest level of parallelism to be examined and 
evaluated. 

Designs 3) and 4) permit merge operations in the PS to be 
parallelized in different cores. Designs 2) and 4) permit 
merge operations to be executed in the PS concurrently with 
sorting blocks in the PL. Access to memories can be done in 
lite and burst modes. The latter is faster (Silva et al., 2015), 
especially for transferring large data sets and it will be used 
in all the proposed designs. Note that higher parallelism 
requires more sophisticated interactions between the 
processing units that execute parallel operations. Besides, the 
used memories often have to be shared between the 
processing units. Potentialities for APSoC standalone 
applications are limited and applications running under 
operating systems (such as Linux) involve additional delays 
caused by the relevant programs of the operating systems. 
Furthermore, the programs allocate memory spaces and the 
size of available memory for data sorters is reduced. 
Consequently, more constraints are introduced. So, the results 
of the designs listed above need to be carefully evaluated and 
compared and they cannot be predicted in advance. 

4.1 Single Core Implementation 

Fig. 3 shows the proposed hardware/software architecture, 
which includes hardware in the PL synthesized from 
specifications in VHDL in Xilinx Vivado 2014.4 design suite 
and software written in C language and developed in Xilinx 
Software Development Kit SDK 2014.4.  

The PL reads blocks of data from the chosen memory, sorts 
them by the iterative network, and copies the sorted blocks to 
the same location in the memory. Note that on-chip cache 
may be extensively used by other software programs running, 
for example, under Linux operating system. The available 
space for application-specific software and hardware is 
almost always unknown. However, as soon as the cache is 
filled up, an on-chip controller selects another available 
memory. We found that the use of cache memory is more 
efficient for standalone applications rather than for Linux 
applications. 
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Fig. 3. Hardware/software architecture for a single core 
implementation. 

As soon as all sorted blocks are ready and copied to 
memories, the PL forms an interrupt to the PS, indicating that 
further processing (i.e. merging) can be started. The PS reads 
the sorted subsets from memory and merges them in 
software, producing the final sorted set. 

4.2 Single Core Implementation with Parallel Operations 

Fig. 4 shows the proposed hardware/software architecture. 
L/N blocks with up to N M-bit data items are copied from 
the chosen memory to the PL, sorted, and the sorted blocks 
are transferred back to the memory. As soon as the first two 
blocks are sorted and transferred, the PL generates an 
interrupt, indicating that the first two blocks can be merged in 
software of the PS. Further merging in software and sorting 
the remaining blocks in hardware are done in parallel. The 
number of currently sorted blocks is periodically updated 
through a GP port. As soon as the PS finishes merging, it 
checks the number of newly available blocks from the PL 
through a GP port. If a new pair of blocks is available, a new 
merge operation is started, otherwise either a merge of the 
previously merged blocks is initiated (if such blocks are 
ready) or software is suspended until blocks for merging from 
the PL become available. The latter situation (although 
supported) actually never occurs because hardware is faster 
than software even taking into account the communication 
overheads. Thus, the PS and the PL run in parallel until the 
final result of sorting is produced. Memories may be shared 
but such sharing is minimized through potential invocation of 
different memories (DDR, OCM and cache). Sorting of 
blocks in the PL is finished much earlier than merging the 
sorted blocks in the PS. 
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Fig. 4. Hardware/software architecture for single core 
implementation with parallel operations in the PS and PL. 

4.3 Dual-core Implementation 

We consider here a dual-core project running under Linux. A 
similar project may be used for more than two cores as soon 
as they become available in APSoCs (Santarini, 2015). 
Hardware for the project is the same as in sections 4.1 and 
4.2. There are 4 threads in software executed in the 
processing cores of the PS such that two processing cores 
may be active at the same time (i.e. in parallel). The first 
thread is responsible for transferring unsorted subsets from 
the PS to the PL and sorted subsets from the PL to the PS. 
Finally, L/N sorted subsets will be ready for the PS and 
they are divided into two halves. The second and the third 
threads activate the functions (halfMerger) that merge the 
first and the second halves of the sorted subsets, creating two 
large blocks of data that are further merged in the function 
finalMerger activated in the last (fourth) thread. Two 
functions halfMerger may run in different cores in parallel. 
Multiple threads are managed by the operating system. In this 
type of implementation, hardware and software operate 
sequentially, i.e. at the beginning software is suspended, 
waiting until all the blocks have been sorted in hardware. 

4.4 Dual-core Implementation with Parallel Operations 

Fig. 5 shows the proposed hardware/software architecture. 
L/N blocks with up to N M-bit data items are copied from 
the chosen memory to the PL, sorted, and the sorted subsets 
are transferred back to the memory. As soon as the first two 
blocks are sorted and transferred, the PL generates an 
interrupt, indicating that the first two blocks can be merged in 
the software of the PS running in one core. At the beginning, 
software running in the second core checks availability of the 
sorted blocks through a GP port. As soon as such blocks are 
available, merging is started in parallel with merging in the 
first core. Subsequent operations are similar to those in 
section 4.2, i.e. as soon as any core finishes the merging, it 
checks the number of newly available blocks from the PL 
through a GP port. If a new pair of blocks is available, a new 
merge operation is started, otherwise either a merge of the 



CONTROL ENGINEERING AND APPLIED INFORMATICS                     115 

     

 

previously merged blocks is initiated or software is 
suspended until blocks for merging become available. Thus, 
software in two cores of the PS and hardware in the PL may 
run in parallel until the final result of sorting is produced. A 
similar project can be implemented for more than two cores. 
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Fig. 5. Hardware/software architecture for multi-core 
implementation with parallel operations in the PS and PL. 

5. EXPERIMENTS AND COMPARISONS 

5.1 Implementation Details and Experimental Setup 

All the designs described in points 4.1-4.4 have been 
implemented and tested in two prototyping systems: ZyBo 
with the Xilinx APSoC xc7z010-1clg400C (Digilent, 2014) 
and ZedBoard with the Xilinx APSoC xc7z020-1clg484c 
(Avnet, 2014). Two different APSoCs were chosen not for 
comparison between them. Our aim was just to show that the 
results are applicable to APSoCs with different complexity, 
including the cheapest and the less advanced microchip 
xc7z010-1clg400C. Interactions between hardware and 
software were done through Xilinx IP cores (Xilinx, 2014b). 
The number of data items in the initial (unsorted) set varies 
from N (i.e. from the size of one block) to L=33,554,432 (i.e. 
up to more than 33 million of 32-bit data items). Fig. 6 shows 
the organization of the experiments. 

We have used a multi-level computing system. Initial 
unsorted data are either generated randomly in the software 
of the PS with the aid of C language rand function or 
prepared in the host PC. In the last case, data may be 
randomly generated by the rand or other functions or copied 
from benchmarks. Sorting is done completely in APSoC 
using architectures from section 4. The results are verified in 
software. 

Standalone software applications have been created and 
uploaded to the PS memory from SDK. Interactions are done 
through the SDK console window. An example of 
interactions for a project from section 4.1 is shown in Fig. 7 
for ZedBoard and N=256. 
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Fig. 6. The experimental setup. 

 
Fig. 7. The results of experiments and comparisons (speed-up 
is measured compared to software only data sorter running in 
the PS and using C function qsort). 

The measurements include all the involved communication 
overheads. The number of blocks varies from 1 to 131,072, 
N=256, and, thus, the number of 32-bit data items ranges 
from 256 to more than 33 million. For all the experiments, 
AXI ACP port was used for transferring blocks between the 
PL and memories. 

The developed software and hardware may also solve tasks of 
higher hierarchical levels. As examples, we considered 
creating objects in software for further clustering and 
frequent items encountering in hardware (see Fig. 6). 
Attributes of any individual object are generated randomly in 
software within a given range. Objects and attributes are 
associated with rows and columns of the matrix µ, which is 
built in accordance with the rules given in section 2. Clearly, 
the Hamming weight of any row r of the matrix µ indicates 
how many times the attribute associated with r appeared in 
different objects (associated with columns). Two tasks are 
solved in the PL: 1) calculating the Hamming weights using 
the methods and tools from (Sklyarov et al., 2013a); and 2) 
sorting the Hamming weights with the aid of the methods 
described above. The sorted values are used to simplify 
solving different problems from the scope of data mining.  
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Encountering the most frequent item is entirely done in 
hardware. Suppose we have a set of N sorted data items 
which might include repeated items and we need the most 
frequently repeated item to be found. This problem is solved 
in a hardware circuit shown in Fig. 8 (Sklyarov et al., 2014b) 
where N-1 comparators (Comp) form a binary vector. The 
most frequently repeated item can be discovered if we find 
the maximum number of consecutive ones in the vector and 
take the item from any input of the comparators that is used 
to form the sub-vector with the maximum number of 
successive ones. The binary vector that represents the result 
of comparison is saved in the feedback register R. The right-
hand circuit in Fig. 8 implements the method described in 
(Sklyarov et al., 2014b), which enables the same 
combinational unit (such as that composed of AND gates in 
Fig. 8) to be reused iteratively in each subsequent clock 
cycle. This forces any intermediate binary vector that is 
formed on the outputs of the AND gates to be stored in the 
register R. Hence, any new clock cycle reduces the maximum 
number of consecutive ones Omax in the vector by one and as 
soon as all outputs of the AND gates are set to 0, we can 
conclude that Omax = ξ+1, where ξ is the number of the last 
clock cycle. Indeed, when there is just one value 1 in the 
register R, all the outputs of the AND gates are set to 0 and an 
additional clock cycle is not needed to reach a conclusion. 
The index of the single 1 in the register is the index (position) 
of the first value 1 (from the top) in the set with Omax. The 
feedback from the outputs of the AND gates enables any 
intermediate binary vector to be stored in the register R. The 
circuit in Fig. 8 is very simple and fast. It is composed of just 
N-1 AND gates, the register R, and minimal supplementary 
logic. Thus, the maximum attainable clock frequency is high.  

5.2 Experimental Comparison of Software Only and 
Hardware/Software Sorters 

Table 1 presents the result of our experiments that permit 
communication overheads to be estimated. We consider 
standalone applications and the following three types of data 
sorters: 

• Software only sorters (see the row SO) where sorting is 
completely done in the software of the PS by C language 
qsort function. Initial data are taken from memory and 
the sorted data are saved in the same memory.  

• Hardware only sorters (see the row HO) where sorting is 
completely done in the hardware of the PL without 
transmitting data items between the PS and PL. Initial 
data are taken from the PL registers and the sorted data 
are saved in the PL registers. We assumed that data items 
in the registers are ready before sorting and the results 
are not copied to anywhere. This case does not reflect 
reality but it is useful because it permits potentialities of 
hardware to be estimated. 

• Hardware/software sorters (see the row HS) where 
unsorted blocks are copied from memory to the PL in 
AXI ACP burst mode and the sorted blocks are copied 
from the PL to memory in AXI ACP burst mode. The PS 
participates only in data transfers and does not execute 

merging. This case permits sorting in hardware plus 
communication overheads to be evaluated. The memory 
is shared between the PS and PL and will be used later 
on for subsequent merging of the sorted blocks in the PS. 
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Fig. 8. Most frequent data item computation in a given sorted 
set of N data items. 

Table 1. The results of experiments with one block of size N 
of 32-bit data items.  

N 32 64 128 256 512 
SO in µs ZyBo 12.9 29.4 52.2 160.7 418.4 

Zed 12.0 28.2 51.6 160.5 417.7 
HS in µs ZyBo 2.7 3.6 5.6 - - 

Zed 2.6 3.5 5.5 15.8 35.3 
HO in µs ZyBo 0.32 0.64 1.28 - - 

Zed 0.32 0.64 1.28 2.56 5.12 
Acc with 

CO (A_CO) 
ZyBo 4.8 8.2 9.3 - - 
Zed 4.6 8.1 9.4 10.2 11.8 

Acc without 
CO (A) 

ZyBo 40.3 45.9 51.7 - - 
Zed 37.5 44.1 51.2 62.7 81.5 

The rows Acc with CO (A_CO) and Acc without CO (A) 
show accelerations of HS and HO sorters compared to SO 
sorters (i.e. communication overheads - CO are either taken, 
in the row A_CO, or not taken, in the row A, into account). 
The clock frequency of the PS is 650 MHz for ZyBo and 666 
MHz for ZedBoard (the rows Zed). The clock frequency for 
the PL was set to 100 MHz. The values in Table 1 are 
average times spent for sorting from 10 examples of 
randomly generated data. The iterative sorter in ZyBo for 
N=256 cannot be implemented because of the lack of 
hardware resources. We implemented the iterative sorter for 
N = 1,024 in ZedBoard but the remaining resources are not 
sufficient to provide support for interactions with the PS. We 
compared the results for two types of sorters: 1) from Fig. 2; 
and 2) from (Sklyarov et al., 2014a). The circuit from 
(Sklyarov et al., 2014a) has longer propagation delay. Thus, 
the clock frequency in the PL is decreased. Besides, the 
circuit in Fig. 2 enables resources to be reduced in almost 
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twice. Thus, the value N for the same PL resources is 
increased also by a factor of 2. Hence, larger blocks are 
sorted in hardware and the depth of merging in software is 
reduced. Since software is always slower (see conclusion 
below), the overall performance of HS solver is increased. 
From the results in Table 1 we can conclude the following:  

1) Communication time (for data transfer between the PS 
and PL) is significantly larger than the time for sorting 
data in the PL by iterative networks. This is easily seen 
comparing values in the rows HS and HO and taking into 
account that no merging (or additional sorting 
operations) is done in software for the considered 
examples. Clearly, communication overhead is equal to 
HS time minus HO time. For example, for N=32, 
interactions between the PL and memory for ZyBo 
require additional time that is equal to 2.7 µs - 0.32 µs ≈ 
2.4 µs. So, using faster but significantly more resource 
consuming sorting networks does not make any sense. 
Indeed, any additional acceleration in hardware 
(allowing the value 0.32 µs in the example above to be 
reduced) does not permit overall performance of HS 
sorters to be increased. 

2) The row A makes sense only for evaluating hardware 
capabilities but the results in this row are not very 
important for practical applications requiring sorting 
large data sets because data items have to be transferred 
to/from internal registers and our experiments have 
shown that it takes significantly more time than sorting 
in the PL. Sorting larger data sets entirely in FPGA is 
possible but only in advanced devices, such as (Xilinx, 
2014c, d). 

3) The row A_CO shows actual accelerations in APSoC. It 
is clearly seen that the larger the size of the blocks, the 
higher is the acceleration. Taking into account the results 
of point 1), we can conclude that better acceleration can 
be achieved by increasing the size of blocks.  

Let us now sort blocks in the PL and merge the sorted blocks 
in the PS. Since the results of Table 1 are very similar for 
ZyBo and ZedBoard, we will study the case with N=256 only 
for ZedBoard. Fig. 9 permits all the results of HS projects 
with different architectures to be compared.  

We can see that dual-core implementations in HS sorters 
where software runs sequentially with hardware are the 
fastest. This is because hardware operates considerably faster 
than software, even including communication overheads. 
Hence, merging in software can be faster when both cores are 
involved. Sorting in hardware is completed much sooner than 
merging in software and although additional parallelism 
might give advantages, they do not appear in our projects. 
We explain this situation because of additional efforts done 
by the operating system (all multi-core implementations are 
executed under Linux) to support parallelism in software and 
in hardware, causing larger delays than sorting blocks in 
hardware. From the results of experiments we found the 
following: for the same N, the larger the number L of data 
items, the smaller is the acceleration. We can explain this by 
the necessity of more extensive data processing in software 

that is slower than hardware. Indeed, the size N of one block 
is the same, but the number of merges in software is larger 
and deeper for larger values of L. Thus, hardware processes 
blocks very fast (see Table 1) but merging in software 
becomes slower for larger data sets. 
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Fig. 9. The results of projects for architectures proposed in 
sections 4.1-4.4. 

Let us discuss now potential future improvements. Fig. 10 
shows the consumed time for sorting blocks of size N in SO 
using C function qsort and in HO using the iterative network 
from Fig. 2. The difference between SO and HO is very large 
(see the dotted area). Thus, future efforts have to be made to 
enlarge blocks processed in the PL. 
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Fig. 10. Sorting blocks in software only (SO) and in hardware 
only (HO). 

For example, we found that merging two blocks (N=256) in 
hardware using embedded to the PL block RAM takes 512 
clock cycles. Subsequent merging of two new blocks with 
N=512 requires additional 1024 clock cycles. Thus, 
sequential sorting of 1024 data items for N=256 in the 
network of Fig. 2 and further partial merge in embedded to 
the PL block RAM would need 
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4×N+2×N+4×N=10×N=2,560 clock cycles or 25,600 ns 
assuming frequency 100 MHz. Potential parallel execution of 
different operations (i.e. sorting+partial merging) would 
permit the number of clock cycles indicated above to be 
additionally reduced. If we compare 25,600 ns with 778,000 
ns for SO sorter (see Fig. 10), we can see that acceleration is 
by a factor of 30. The involved communication overheads 
significantly reduce this value, but the time of merging in the 
PS is also decreased. Thus, this technique can be additionally 
explored in the future research. 

5.3 Discussion of the Results 

It was demonstrated in sections 1, 2 that sorting is widely 
required for different applications in the scope of applied 
informatics and control engineering. It is clearly shown in 
subsection 5.2 that HS sorters are faster than SO sorters. We 
found also that AXI ACP port is faster than HP AXI port for 
standalone applications. The difference is the largest for 
small data sets and almost does not exist for large data sets. 
For projects running under Linux, the speed of data transfer is 
almost the same for AXI ACP and HP AXI. Both standalone 
and Linux projects are important and frequently practiced. 
The choice of a particular type depends on many factors, such 
as the complexity of the designed system, performance 
requirements, needs for device drivers available for operating 
systems and other factors. The results of experiments 
demonstrate that for both types of projects, HS solutions are 
always faster. One additional issue that should be addressed 
is the power consumption. We compared the power 
consumption in software only systems that use the ARM 
processor and the proposed hardware/software systems. 
Power estimation tools available for Xilinx Vivado allow 
necessary measurements to be done. We found that in the last 
case the power consumption is slightly increased but the 
difference is less than 5%. Note that the power consumption 
in new ARM-based microchips is decreased by a factor of 2-
5 (Santarini, 2015). The results reported in (Kestur et al., 
2010) show that FPGAs offer 2.7 to 293 times better energy 
efficiency compared to CPU and GPU for solving linear 
algebra problems. The FPGA-accelerated architectural 
simulation platform developed in (Krueger et al., 2011) to 
accurately evaluate the power and performance of the green 
wave design for seismic modeling also demonstrates 
reduction in power consumption. In (Mueller et al., 2012) 
power consumption was compared for a hardware/software 
data sorter and microprocessor-based data sorters. It was 
shown on examples that power consumption in FPGA 
hardware/software data sorters is lower. Taking into account 
the results reported, the proposed APSoC solutions are power 
efficient. Besides, much like (Bertels et al., 2010), our main 
objective is acceleration of algorithms in software/hardware 
data sorters compared to software only data sorters.  

Our suggestion is that additional acceleration may be 
achieved by: 

1) Increasing the size of the blocks sorted in hardware such 
that parallel merge of the sorted blocks (in software) and 
sorting of blocks (in hardware) can be done more 
efficiently.  

2) Designing multi-core standalone applications. We have 
developed multi-core applications running under Linux 
operating system where programs with multiple parallel 
threads have been tested. However, potentialities for 
multi-core standalone applications may also be studied in 
depth. 

3) Interaction between software and hardware through more 
than one HP AXI port. Zynq APSoCs permit up to five 
such ports to be used: four AXI HP ports and one AXI 
ACP port.  

4) Parallel merge in more than two cores.  

5.4 Comparison of the Results with Existing Solutions 

There are three major procedures in software/hardware data 
sorters common to the proposed and existing solutions: 1) 
pre-processing in hardware; 2) communication between 
hardware and software; 3) post-processing in software. Let us 
compare these procedures in the proposed designs and in the 
best known alternatives. Pre-processing is aimed at sorting 
blocks of data that are further handled in software. There are 
two major characteristics of hardware sorters: a) the delay 
time from supplying unsorted inputs to producing the sorted 
outputs and b) the used resources. The best known solutions 
are based on Batcher’s even-odd merge and bitonic merge 
networks (Baddar et al., 2011). If a pipeline is used (Mueller 
et al., 2012), then the delay is the same as in the networks 
described in the paper. However, hardware resources in the 
proposed networks are significantly decreased. For example, 
for N=16, they are decreased by a factor of 4.2 and for 
N=512 by a factor of 19. The details can be found in (Kipfer 
et al., 2005; Mueller et al., 2012; Sklyarov et al., 2014a). Our 
experiments have shown the following results: the best 
network from (Baddar et al., 2011) can be implemented in the 
PL of ZedBoard for N=64 and the proposed network can be 
built for N = 1,024. The network described in (Mueller et al., 
2012) was built in FPGA for only N = 8.  

Let us compare now post-processing in software. The FPGA 
accelerator in (Mueller et al., 2012) uses Batcher’s networks 
(Baddar et al., 2011). The sorted blocks are then merged in 
software. For sorting L elements, log2L − log2N merge 
levels are needed (Mueller et al., 2012). Since the value N is 
increased (from N = 8 in the referenced publication to N = 
512 in the proposed network), the number of merge levels in 
software is decreased, for example, for L = 216 it is decreased 
from log2216 − log28 = 13 to log2216 − log2512 = 7. 
We made experiments in the PS and merging blocks with N = 
8 to sort L = 512 items requires more than 100,000 clock 
cycles while the same operation in the PL sorting network 
requires approximately 500 clock cycles. The clock 
frequency of the PS is 666 MHz and the clock frequency of 
the PL is 100 MHz. However, even taking into account the 
difference in the clock frequency, it is easily seen that the 
actual acceleration in the proposed solutions is significant. 
Communication between hardware and software involves 
additional time, which has been optimized (see section 3 and 
Fig. 2).  
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Finally, we compared the results of (Mueller et al., 2012) 
shown in Fig. 29 and our results for the same values of L 
(from 256 to 16M data items) that are chosen in (Mueller et 
al., 2012) and found that sorting throughput in the proposed 
solutions has been increased by a factor from 1.6 (for the 
largest value of L) to almost 10 (for the smallest value of L). 
Comparison with other hardware/software data sorters 
referenced in section 2 has also demonstrated performance 
increase of the proposed solutions in all design cases.  

6. CONCLUSIONS 

Sorting and searching are common operations in different 
types of data processing required in various computing 
systems. Frequently, performance and portability are 
important and we have studied how these requirements can 
be satisfied using all programmable systems-on-chip from the 
Xilinx Zynq-7000 family. Four proposed architectures have 
been implemented and evaluated. They involve different 
iterative networks for sorting blocks of data in hardware and 
subsequent merge of the sorted blocks in software. The 
projects make use of parallelism including multi-core 
capabilities and data processing in hardware during data 
exchange. Two types of sorters have been developed that are 
standalone and running under the Linux operating system. 
The results of the paper demonstrate that hardware/software 
solutions are always the fastest. It is also proved that the 
larger the blocks processed in hardware, the better is the 
achieved acceleration. It is shown how to use the proposed 
solution in the scope of control engineering and applied 
informatics, including examples that were tested. 

ACKNOWLEDGEMENTS 

This work was supported by National Funds through FCT - 
Foundation for Science and Technology, in the context of the 
project PEst-OE/EEI/UI0127/2014. 

REFERENCES 

Abdelhamid N. (2015). Multi-label rules for phishing 
classification. Applied Computing and Informatics, 
Elsevier, vol. 11, pp. 29–46. 

Aj-Haj Baddar S.W., Batcher K.E. (2011). Designing Sorting 
Networks. A New Paradigm. Springer. 

ARM, Ltd. (2013). NEON™ Version: 1.0 Programmer’s 
Guide. http://infocenter.arm.com/help/index.jsp?topic= 
/com.arm.doc.den0018a/index.html. 

Arnold O., Haas S., Fettweis G., Schlegel B., Kissinger 
T., Lehner W. (2014). An application-specific instruction 
set for accelerating set-oriented database 
primitives. SIGMOD Conf., pp. 767-778. 

Avnet, Inc. (2014). ZedBoard (ZynqTM Evaluation and 
Development) Hardware User’s Guide. Version 2.2. 
http://www.zedboard.org/sites/default/files/ 
documentations/ZedBoard_HW_UG_v2_2.pdf. 

Baker Z.K., Prasanna V.K. (2006). An Architecture for 
Efficient Hardware Data Mining using Reconfigurable 
Computing Systems, Proc. 14th Annual IEEE Symp. on 
FCCM, Napa, USA, pp. 67-75. 

Batista A.P., Jota F.G. (2014). Effects of Time Delay 
Statistical Parameters on the Most Likely Regions of 
Stability in an NCS. CEAI, vol.16, no.1, pp. 3-11. 

Bertels K., Sima V., Yankova Y., et al. (2010). HArtes: 
Hardware-Software Codesign for Heterogeneous 
Multicore Platforms. IEEE Micro, vol. 30, no. 5, pp. 88-
97.  

Borangiu A., Popescu D. (2014). Digital Signal Processing 
for Knowledge Based Sonotubometry of Eustachian 
Tube Function. CEAI, vol. 16, no. 3, pp. 56-64. 

Chamberlain R.D., Ganesan N. (2009). Sorting on 
Architecturally Diverse Computer Systems, Proc. 3rd 
Int. Workshop on High-Performance Reconfigurable 
Computing Technology and Applications – HPRCTA’09, 
USA, pp. 39-46. 

Chrysos G., Dagritzikos P., Papaefstathiou I., and Dollas A. 
(2013). CART: A Parallel System Implementation of 
Data Mining Classification and Regression Tree (CART) 
Algorithm on a Multi-FPGA System, ACM Transactions 
on Architecture and Code Optimization, vol. 9, no. 4, pp. 
47.1-47.25. 

Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. (2009). 
Introduction to Algorithms. 3rd ed. MIT Press, 
Cambridge. 

Digilent, Inc. (2014). ZyBo Reference Manual. 
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM
_B_V6.pdf. 

Estrin G. (1960). Organization of Computer Systems – The 
Fixed Plus Variable Structure Computer, Proc. of 
Western Joint IRE-AIEE-ACM Computer Conference, 
New York, pp. 33-40. 

Field L., Barnie T., Blundy J., Brooker R.A., Keir D., Lewi 
E., Saunders K. (2012). Integrated field, satellite and 
petrological observations of the November 2010 eruption 
of Erta Ale, Bulletin of Volcanology, vol. 74, no. 10, pp. 
2251–2271. 

Firdhous M.F. (2010). Automating Legal Research through 
Data Mining, Int. Journal of Advanced Computer 
Science and Applications, vol. 1, no. 6, pp. 9-16. 

Gapannini G., Silvestri F., and Baraglia R. (2012). Sorting on 
GPU for large scale datasets: A thorough comparison, 
Information Processing and Management, vol. 48, no. 5, 
pp. 903–917. 

Garg L., McClean S., Meenan B.J., Millard P. (2011). Phase-
Type Survival Trees and Mixed Distribution Survival 
Trees for Clustering Patients’ Hospital Length of Stay. 
Informatica, vol. 22, no. 1, pp. 57-72. 

Goodman A. (2011). Perspective Emerging Topics and 
Challenges for Statistical Analysis and Data Mining, 
Statistical Analysis and Data Mining, vol. 4, pp. 3-8. 

Intel, Corp. (2007). Intel® SSE4 Programming Reference. 
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_in
struction_set.pdf.  

Kestur S., Davisz J.D. Williams O. (2010). BLAS 
Comparison on FPGA, CPU and GPU. Proc. of IEEE 
Computer Society Annual Symposium on VLSI, Lixouri, 
Greece, pp. 288-293. 

Kipfer P., Westermann R. (2005). GPU Gems, chapter 46. 
Improved GPU Sorting. http://http. 

http://dblp.uni-trier.de/pers/hd/a/Arnold:Oliver�
http://dblp.uni-trier.de/pers/hd/h/Haas:Sebastian�
http://dblp.uni-trier.de/pers/hd/f/Fettweis:Gerhard�
http://dblp.uni-trier.de/pers/hd/k/Kissinger:Thomas�
http://dblp.uni-trier.de/pers/hd/l/Lehner:Wolfgang�
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf�
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf�
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf�
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf�


120                                                                                                                  CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

developer.nvidia.com/GPUGems2/gpugems2_chapter46.
html. 

Knuth D.E. (2011). The Art of Computer Programming. 
Sorting and Searching, vol. III. Addison-Wesley. 

Kovacs E., Ignat I. (2007). Clustering with Prototype Entity 
Selection Compared with K-means, CEAI, vol. 9, no. 1, 
pp. 11-18. 

Krueger J., Donofrio D., Shalf J., et al. (2011) 
Hardware/Software Co-design for Energy-Efficient 
Seismic Modeling. Proc. Int. Conf. for High 
Performance Computing, Networking, Storage and 
Analysis, Seattle, USA, pp. 1-12. 

Mueller R. (2010). Data Stream Processing on Embedded 
Devices. Ph.D. thesis, ETH, Zurich. 

Mueller R., Teubner J., Alonso G. (2012). Sorting Networks 
on FPGAs, The Int. Journal on Very Large Data Bases, 
vol. 21, no. 1, pp. 1-23. 

Rabiner L.R., Marvin R. Sambur M.R., Schmidt C.E. (1975). 
Applications of a nonlinear smoothing algorithm to 
speech processing. IEEE Trans. on Acoustics, Speech 
and Signal Processing, vol. 23, no. 6, pp.552-557. 

Salter-Townshend M., White A., Gollini I., Murphy T.B. 
(2012). Review of Statistical Network Analysis: Models, 
Algorithms, and Software. Analysis and Data Mining, 
vol. 5, pp. 243-264. 

Santarini M. (2014). Products, Profits Proliferate on Zynq 
SoC Platforms, XCell Journal, issue 88, pp.8-15. 

Santarini M. (2015). Xilinx 16nm UltraScale+ Devices Yield 
2-5X Performance/Watt Advantage. XCell Journal, issue 
90, pp. 8-15. 

Sedgewick, R. (1978). Implementing quicksort programs, 
Communications of the ACM, pp. 847-857. 

Serban G., Câmpan A. (2008). Hierarchical Adaptive 
Clustering. Informatica, vol.19, no 1, pp. 101-112. 

Silva J., Sklyarov V., Skliarova I. (2015). Comparison of On-
chip Communications in Zynq-7000 All Programmable 
Systems-on-Chip. IEEE Embedded Systems Letters, vol. 
7, no. 1, pp. 31-34. 

Sklyarov V., Skliarova I. (2013a). Digital Hamming Weight 
and Distance Analysers for Binary Vectors and 
Matrices, International Journal of Innovative 
Computing, Information and Control, vol. 9, no. 12, pp. 
4825-4849. 

Sklyarov V., Skliarova I. (2013b). Fast regular circuits for 
network-based parallel data processing, Adv. Electr. 
Comput. Eng., vol. 13, no. 4, pp. 47–50. 

Sklyarov V., Skliarova I. (2014a). High-performance 
implementation of regular and easily scalable sorting 
networks on an FPGA, Microprocessors and 
Microsystems, vol. 38, no. 5, pp. 470-484. 

Sklyarov V., Skliarova I., Barkalov A., Titarenko L. (2014b) 
Synthesis and Optimization of FPGA-based Systems. 
Springer. 

Sklyarov V., Skliarova I., Silva J., Rjabov A., Sudnitson A., 
Cardoso C. (2014c). Hardware/Software Co-design for 
Programmable Systems-on-Chip. TUT Press. 

Sun S. (2011a). Analysis and acceleration of data mining 
algorithms on high performance reconfigurable 
computing platforms. Ph.D. thesis, Iowa State 
University. http://lib.dr.iastate.edu/cgi/ 
viewcontent.cgi?article=1421&context=etd. 

Sun S., Zambreno J. (2011b). Design and Analysis of a 
Reconfigurable Platform for Frequent Pattern Mining, 
IEEE Trans. on Parallel and Distributed systems, vol. 
22, no. 9, pp. 1497-1505. 

Tukey J.W. (1977). Exploratory Data Analysis. Addison-
Wesley. 

Wu X., Kumar V., Quinlan J.R. et al. (2014). Top 10 
algorithms in data mining, Knowledge and Information 
Systems, vol.14, no. 1, pp. 1-37. 

Xilinx, Inc. (2014a). Zynq-7000 All Programmable SoC 
Technical Reference Manual. http://www.xilinx.com/ 
support/documentation/user_guides/ug585-Zynq-7000-
TRM.pdf. 

Xilinx, Inc. (2014b). LogiCORE IP AXI DMA v7.1. 
http://www.xilinx.com/support/documentation/ 
ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf.  

Xilinx, Inc. (2014c). Evaluation Board for the Virtex-7 
FPGA User Guide. UG885 (v1.5). 
http://www.xilinx.com/ 
support/documentation/boards_and_kits/vc707/ug885_V
C707_Eval_Bd.pdf. 

Xilinx, Inc. (2014d). All Programmable SoC Evaluation Kit 
(Vivado Design Suite 2014.3). UG961 (v6.0). 
http://www.xilinx.com/support/documentation/ 
boards_and_kits/zc706/2014_3/ug961-zc706-GSG.pdf. 

Yuan, Y. (2008). Step-sizes for the gradient method, 
International Press American Mathematical Society, pp. 
785-796. 

Zhang W, Thurow K., Stoll R. (2014). A Knowledge-based 
Telemonitoring Platform for Application in Remote 
Healthcare, Int. Journal of Computers, Communications 
and Control, vol. 9, no. 5, pp. 644-654. 

Zmaranda D., Silaghi H., Gabor G., Vancea C. (2013). Issues 
on Applying Knowledge-Based Techniques in Real-
Time Control Systems, Int. Journal of Computers, 
Communications and Control, vol. 8, no. 1, pp. 166-175. 

Zuluada M., Milder P., Puschel M. (2012). Computer 
Generation of Streaming Sorting Networks, Proc. of the 
49th Design Automation Conference, San Francisco, pp. 
1245-1253. 

 

http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php?title=International_Journal_of_Innovative_Computing%2C_Information_and_Control&action=edit&redlink=1�
http://wiki.ieeta.pt/wiki/index.php?title=International_Journal_of_Innovative_Computing%2C_Information_and_Control&action=edit&redlink=1�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�

