
CEAI, Vol.18, No.3 pp. 109-120, 2016 Printed in Romania

Software/Hardware Solutions for Information Processing in All Programmable
Systems-on-Chip

Valery Sklyarov*. Iouliia Skliarova*

João Silva**

*Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro, 3810-193 Aveiro
Portugal (Tel: 351-401-539; e-mail: skl@ua.pt, iouliia@ua.pt)

** Institute of Telecommunications, University of Aveiro, 3810-193 Aveiro
Portugal (e-mail: jpss@ua.pt)

Abstract: Algorithms in computer engineering and applied informatics often require extraction of data
with some desired properties from large sets. Such tasks appear within different clustering algorithms in
the scope of data mining, in classification of objects in accordance with given criteria, in knowledge
acquisition obtained from controlled environments, in statistical analysis and in other areas. Many of
these tasks involve widely used data processing techniques that are sorting and searching and for
numerous practical applications, especially in real-time and high-performance systems, speeding-up is
important. The paper suggests effective portable solutions that enable fast parallel information processing
to be implemented in all-programmable systems-on-chip that combine multi-core computations with
programmable logic interacting through multiple high-performance interfaces. Acceleration is achieved
with parallel networks for data sorting created in programmable logic and enabling software running in
multi-core processing units to be speeded-up, which is demonstrated in numerous practical examples
fully implemented and tested in commercial microchips.

Keywords: parallel processing, microsystems, information retrieval, data processing, performance
evaluation, multiprocessing systems.

1. INTRODUCTION

Data extraction and ordering are required in many algorithms
of control engineering and applied informatics. Some
common problems are listed below (see also Fig. 1):

1) Extracting the maximum/minimum (sorted) subsets from
the given set;

2) Extracting subsets with such values that fall within an
interval bounded by the given maximum and minimum;

3) Encountering the most repeated value or a set of the most
repeated values;

4) Computing medians;
5) Solving problems indicated in points 1)-4) for tables (for

values in rows/columns of the tables).

All these problems can efficiently be solved applying data
sorting that is one of the most common types of computations
(Knuth, 2011) required in different information processing
systems. Let us describe practical applications where
solutions of the problems listed above are needed. Clustering
is a data mining activity that permits a given set of objects
with similar properties to be grouped (Kovacs et al., 2007).
Hierarchical clustering methods represent a major technique
allowing the desired set to be built through searching
common attributes and combining objects with such
attributes (Serban et al., 2008). For instance, clinical
investigators, health professionals and managers are often

interested in clustering patients into clinically meaningful
groups according to their expected length of stay (Garg et al.,
2011). Similar problems arise in statistical data manipulation
(Salter-Townshend et al., 2012; Sklyarov et al., 2014a), in
classification (Chrysos et al., 2013; Abdelhamid et al., 2015)
and in many other areas.

The maximum
sorted subset

The minimum
sorted subset

Sorted subset in
between the given

maximum and
minimum values

The given set of data

Removing
repeated

items

Encountering
the most

repeated item

Statistical data
manipulation

Data sort

Fig. 1. Common problems that frequently need to be solved
in algorithms of control engineering and applied informatics.

In (Baker et al., 2006) one common task is explained on an
analogy of a shopping activity. A basket is a set of items
purchased at one time. A frequent item is an item that often
occurs in a database. A frequent set of items often occur
together in the same basket. A researcher can request a
particular support value and find the items which occur
together in a basket either a maximum or a minimum number
of times within the database. Similar problems appear to
determine frequent inquiries at the Internet, customer

110 CONTROL ENGINEERING AND APPLIED INFORMATICS

transactions, credit card purchases, etc., producing very large
volumes of data in the span of a day. Sorting is involved in
many known algorithms from this area (e.g. Sun, 2011a; Sun
et al., 2011b; Wu et al., 2014; Firdhous, 2010). We believe
that fast solvers for the problems listed above would be very
helpful in service oriented, knowledge-based systems that use
advanced search, data analytics and prediction tools such as
in (Borangiu et al., 2014). Data need also to be processed in
many other environmental, medical, and biological
applications. Let us consider some examples. Applying the
technique (Zmaranda et al., 2013) in real-time systems
requires knowledge acquisition from a controlled
environment (e.g. plant). For example, signals from sensors
may be filtered and analyzed to prevent error conditions. To
provide more exact and reliable conclusions, it is necessary to
order and examine a combination of different values. Similar
tasks appear in monitoring thermal radiation from volcanic
products (Field et al., 2012), filtering and integration of
information from a variety of different sources in medical
applications (Zhang et al., 2014). Since many such systems
are real-time, performance is important and hardware
accelerators may provide significant assistance for software.

This paper suggests effective portable software/hardware
designs executing different types of sorting and merging
methods in recently appeared on the market Zynq-7000
devices from Xilinx (Xilinx, 2014a). These devices are based
on Xilinx all programmable system-on-chip (APSoC)
architecture, which combines the dual-core ARM
CortexTM–A9 central processing unit with Xilinx
programmable logic (PL) appended with on-chip memories
(OCM), high-performance (HP) interfaces, a rich set of
input/output peripherals, and a number of embedded to the
PL components, such as digital signal processing (DSP)
slices. APSoC devices permit complete solutions to be
realized on a single microchip running software that may be
enhanced with easily customizable hardware. Various
advantages of APSoC platform are summarized in (Santarini,
2014; Santarini, 2015). Interactions between the ARM-based
processing system (PS) and PL are supported by nine on-chip
Advanced eXtensible Interfaces (AXI): four 32-bit general-
purpose (GP) ports; four 32/64-bit HP ports and one 64-bit
accelerator coherency port (ACP) (Xilinx, 2014a). Different
interfaces for hardware/software communications in Zynq-
7000 devices were compared and analyzed in detail in (Silva
et al., 2015). We will use these results for selecting the most
appropriate hardware/software system architecture.

The remainder of the paper is organized in five sections.
Section 2 discusses the background and potential applications
of the proposed technique in the scope of applied informatics
and control engineering. Section 3 introduces the adopted
computation methods. Section 4 is dedicated to data
processing in multi-core APSoC-based software/hardware
systems. Section 5 describes implementation details and the
results of experiments and comparisons. The conclusion is
given in Section 6.

2. BACKGROUND AND POTENTIAL APPLICATIONS

Combining capabilities of software and hardware permits
many characteristics of developed applications to be

improved. The earliest work in this direction was done at the
University of California at Los Angeles (Estrin, 1960). The
idea was to create Fixed + Variable structure computer and
to augment a standard processor by an array of reconfigurable
logic assuming that this logic can be utilized to solve some
processor tasks faster and more efficiently. Such combination
of flexibility of software and speed of hardware was
considered as a new way to evolve higher performance
computing from any general-purpose computer. The level of
technology in 1959-1960 was not sufficient for this method
to be put in practice. Today Zynq-7000 architecture enables
the ideas from (Estrin, 1960) to be realized in a wide scope of
engineering designs (see examples in Santarini, 2014;
Santarini, 2015). The basic reasons for choosing a
software/hardware platform based on the Zynq-7000 APSoC
are listed below:

1) ARM has become the standard embedded processing
architecture for about anything that is not a PC
(Santarini, 2014).

2) Newer more advanced microchips, such as Ultrascale
Multiprocessing SoC, combine a quad-core 64-bit ARM
Cortex-A53 application processor, a 32-bit ARM Cortex-
R5 real time processor, and an ARM Mali-400 MP
graphics processor together with 16 nm logic on a single
chip (Santarini, 2015). This permits advanced portable
systems on a single microchip possessing computational
resources comparable with that of a PC and with
significantly lower power consumption to be developed.
Easily scalable designs (such as that described in the
paper) can be implemented in currently available and
future microchips that are faster, have more advanced
resources, and consume less power.

3) Multicore on-chip architectures provide a way around
the implementing limits of Moore's low (Bertels et al.,
2010; Santarini, 2015). Today the Zynq SoC is at the
heart of many of the world’s newest and most innovative
automotive, medical and security vision products
(Santarini, 2014). It is very appropriate for numerous
designs described, for example, in (Bertels et al., 2010;
Kestur et al., 2010; Krueger et al., 2011). Thus, the
proposed solutions may be adopted and used in a wide
range of practical applications.

Let us look at Fig. 1 and the problems 1)-5) listed in section
1. These problems can be solved applying a technique
described below:

1) We consider network-based data sorting as a core
method for different problems. Much like (Mueller et al.,
2012) to speed up the sorting, we suggest augmenting
software running in the PS with HP hardware
accelerators. However, the proposed methods differ from
(Mueller et al., 2012) and they permit better solutions to
be found applying such a network, which runs in parallel
with data transfers, occupies significantly smaller
hardware resources, and enables wider parallelism to be
achieved in the dual-core PS and PL. Besides, the
proposed solutions are scalable and may be used in a PS
with more than two cores.

CONTROL ENGINEERING AND APPLIED INFORMATICS 111

2) The problems 1)-5) are mainly based on extraction of
data with certain characteristics, which is done using
sorted sets. This is significantly easier and faster than
solving similar tasks for unsorted subsets.

Since data sorting is the core method, we will analyze it with
more detail. Performance is important for many information
processing systems. The analysis presented in (Sklyarov et
al., 2014a) enables us to conclude the following:

• The known even-odd merge and bitonic merge networks
(Baddar et al., 2011) are the fastest and enable the best
throughput to be achieved. However, they are very
resource consuming and can only be built in the APSoC
PL for sorting very small data sets. For example, in
(Mueller, 2010) any set is composed of only 8 items.

• Pipelined solutions permit even faster circuits than in the
point above to be designed. Usually pipelining can be
based on flip-flops from APSoC PL slices used for the
network, and resource consumption is almost the same as
in the point above. Once again, in practice, only very
small data sets can be processed in APSoC PL. Besides,
the bottleneck is in fact not in the hardware sorter but in
communications between software and hardware (Silva
et al., 2015).

• To use even-odd merge and bitonic merge circuits for
larger data sets, the following two methods are most
commonly applied: a) large data sets are sorted in host
computers/processors based on sorted blocks produced
by hardware accelerators (see, for example, Mueller et
al., 2012; Chamberlain et al., 2009); b) sorting networks
for large sets are segmented such that any segment can
be processed easily and the results are handled
sequentially to form the sorted set like for example, in
(Zulada et al., 2012; Gapannini et al., 2012). Both
methods involve intensive communications between the
PS and PL. The necessity in frequent data exchanges
reduces potential benefits from the fastest burst mode,
limiting burst sizes.

• The existing even-odd merge and bitonic merge circuits
are not very regular (compared, for example, to the even-
odd transition network (Kipfer et al., 2005)). The routing
overhead may be considerable in the PL, increasing the
occupied resources.

• It is shown in (Sklyarov et al., 2014a) that very regular
even-odd transition networks with two sequentially
reusable vertical lines of comparators are more practical
because they operate with higher clock frequency,
provide sufficient throughput, and enable a significantly
larger number of items to be processed in the PL.

• Experiments that were done give additional motivation
to apply the methods (Sklyarov et al., 2014a) which
finally have been chosen as a base for sorting networks
in the PL of APSoC. Two novel solutions compared to
(Sklyarov et al., 2014a) are proposed: a) the number of
combinational levels in the sorting network is reduced
from 2 to just 1, permitting clock frequency in the PL to

be increased; b) data processing is executed during data
transmission, which enables throughput to be increased.

Let us discuss now effectiveness and applicability of the
technique outlined in points 1)-2) of this section in the scope
of applied informatics and control engineering.

One common problem is clustering objects in accordance
with their attributes. Different methods have been proposed
for solving this problem and many of them may recur to
sorting and searching as frequently used operations (e.g. Sun,
2011a; Wu et al., 2014; Firdhous, 2010). For example, in
CPES (Clustering with Prototype Entity Selection) method
(Kovacs et al., 2007), a fitness function f(xi) is proposed to
decide if given objects can be clustered and it is computed on
the basis of the Euclidean distance d(xi,xj):

22
11 ||...||),(jpipjiji xxxxxxd −++−=

where p is the number of attributes for objects xi and xj,
xi1,…,xip, xj1,…,xjp are attributes for objects xi and xj.
Generally, such two objects xi and xj are chosen for clustering
for which the value of the fitness function f is higher. Sorting
the Euclidean distances and the relevant fitness functions
permits finding solutions with the method referenced above
faster. Besides, a number of support functions can be
suggested. For example, let attributes be associated with rows
of a matrix µ and objects be associated with columns of the
matrix µ. Intersection of a row r and a column c is marked
with value 1 if an object in column c has an attribute in the
row r. We assume that all unmarked positions in the matrix µ
are zeros. Discovering and sorting Hamming weights for all
the rows allows frequencies of attributes in different objects
to be found. This simplifies allocating candidates for merging
in clusters. A similar technique is considered in (Baker et al.,
2006). Thus, it is important to make sorting built-in much
like it is done for such operations that compute Hamming
weights of binary vectors, e.g. POPCNT (population count)
(Intel, 2007) and VCNT (Vector Count Set Bits) (ARM,
2013). Similar proposals were made in (Arnold et al., 2014).

The following problem that requires fast sorting is described
in (Sklyarov et al., 2013a). Suppose there are predefined
values α1,…,αQ and we would like to discover how many
values αq∈{α1,…,αQ} can be found in a given set. Let us
consider a set of data items I0,…IN-1. The result R(αq) of
comparing αq∈{α1,…,αQ} with all the items I0,…IN-1 is a
binary vector. The Hamming weight of the vector R(αq) is
equal to the number of items with the value αq. Sorting the
results R(α1),…,R(αQ) gives the distribution of data items
with the values from {α1,…,αQ} in the set I0,…IN-1. Such a
problem appears in pattern recognition, image and signal
processing.

The algorithm (Abdelhamid, 2015) discovers rules associated
with a set of classes and it has been tested on a real world
application data set related to website phishing. The
experimental results show the effectiveness of this algorithm
in which the classifier sorts classes within each rule based on
their frequency. Thus, sorting is also needed.

112 CONTROL ENGINEERING AND APPLIED INFORMATICS

In (Mueller, 2010) small even-odd merge and bitonic sorting
networks were used to implement a median operator over a
count-based sliding window. Such an operator is commonly
needed to eliminate noise in sensor readings (Rabiner et al.,
1975) and in data analysis (Tukey, 1977) that are tasks often
solved in control engineering. These methods (Mueller, 2010)
were also applied to wireless sensor networks.

The method proposed in (Batista et al., 2014) evaluates
systematically the possible behaviors of a closed-loop system
by analyzing its time response. This permits various
techniques to be applied for solving the problems commonly
encountered in the networked control systems. The proposed
technique (Batista et al., 2014) is based on the Monte Carlo
method coupled with a sorting algorithm (Sedgewick, 1978)
and a gradient search (Yuan, 2008).

The software/hardware solutions proposed in this paper are
faster. They combine a multi-core processor with hardware
accelerators running in parallel. Effectiveness of
hardware/software solutions is underlined in (Goodman,
2011), addressing the importance of portable computing
hardware environments to handle massive data. According to
Goodman, data miners and statisticians should collaborate
and thus common design techniques are promising. We
believe that sorting networks are one of such design
techniques, which is also stated in (Mueller, 2010).

3. METHODS

Fig. 2 outlines the basic architecture of the proposed
hardware accelerator for data sorting. The core component is
an iterative even-odd transition network. As distinct from
(Sklyarov et al., 2014a), the same comparator/swapper is
reused for even and odd levels and switching between the
even and odd levels is done by multiplexers that are not
shown in Fig. 2. The maximum number of clock cycles τmax
for sorting N data items is equal to τmax=N (Kipfer et al.,
2005).

The primary idea is to enable data transfers and sorting in
parallel. This is the main distinctive feature as compared to
all the methods published and referenced above.

Let L be the number of items that have to be sorted and N be
the number of items in one sorting block. The maximum
delay from the beginning of source data transfer to the end of
the result transfer is L/N×N+2×N = (L/N+2)×N. Indeed,
N clock cycles are needed to transfer the initial block of data
from memory to the input register, N clock cycles - to
transfer the sorted block of data from the output register to
memory, and N clock cycles for sorting each block in the
iterative network. Comparison/swapping is done for all N
data items in parallel and we need N iterations at maximum.
Beginning from the second block, sorting is done in parallel
with data transfer to the input register. Thus, receiving input
items and sorting require N clock cycles. As soon as N items
are sorted, they are copied in parallel to the output register.
Hence, 2×N clock cycles are needed to prepare the first
sorted block in the output register. In subsequent N clock
cycles: a) N data items are transferred to the input register; b)
N previously transferred data items are sorted in the network;

and c) N previously sorted data items are transferred from the
output register to the PS (memory). Clearly, three operations
a), b), and c) are executed at the same time, i.e. in parallel.
Transferring N data items from the memory to the sorter
needs N clock cycles. Transferring N data items from the
sorter to the memory needs also N clock cycles. Therefore, if
sorting can be done even without any delay, then only the
data transfer requires L+N clock cycles. Indeed, N clock
cycles are needed to get the first block and subsequent blocks
can be received in parallel with transferring the results. For a
simplification, we ignore additional clock cycles that are
needed between burst packages (they are negligible and
appear in any method). The difference between the described
unrealistic case and the proposed solution in Fig. 2 is
approximately N clock cycles that are required for the first
sorting. Thus, the proposed solution is indeed very fast.

Data item

Data item

Comparator
/swapper

Data item

Comparator
/swapper

Even

Odd

PL

Zynq APSoC

Input
register
for N M-
bit items

Output
register
for N M-
bit items

Input from
HP AXI port

Output to
HP AXI portIterative even-odd

transition sorting
network

M

M

N
 d

at
a

ite
m

s
in

 p
ar

al
le

l

M

M

N
 d

at
a

ite
m

s
in

 p
ar

al
le

l

Fig. 2. Basic architecture of the hardware accelerator for data
sorting.

The next distinctive feature is an opportunity to process data
in the network with the maximum speed of data transfer. This
can be done thanks to the minimal delay in comparators/
swappers for the network in Fig. 2. Indeed, all signals
propagate through only one level of comparators/swappers at
different iterations. The number of levels with
comparators/swappers in combinational networks (Knuth,
2011; Baddar et al., 2011) is equal to log2N×(log2N+1)/2
and, even for small values of N, let us say 128, the delay in
(Knuth, 2011; Baddar et al., 2011) is 28 times bigger.
Possible pipelining permits this delay to be reduced (Mueller
et al., 2012). However, there is another very serious problem
with the networks (Baddar et al., 2011). The proposed
technique permits significantly more complicated sorters to
be implemented with the same hardware resources. Indeed,
for N=128 the number of comparators/swappers in Fig. 2 is
N-1=127 and the number of comparators/swappers for the
best network from (Baddar et al., 2011) is 1,471. This means
that the required hardware resources for the networks
(Baddar et al., 2011) are more than 10 times larger. Sorting
large data sets is done by merging sorted blocks (in which the
given large set is decomposed) in software.

CONTROL ENGINEERING AND APPLIED INFORMATICS 113

Some additional improvements can be done taking into
account an opportunity to transfer 64 bits in parallel. Any
individual transfer in Fig. 2 is done for M=32 bit data items.
AXI HP and AXI ACP interfaces in (Xilinx, 2014a) enable
64 bits to be transferred in one transaction. Thus, two M=32-
bit data items can be parked in one AXI word, enabling the
number of data transfers to be reduced by a factor of 2.
However, in this case the iterative networks from (Sklyarov
et al., 2014a) can directly be used, which enable sorting to be
done in N/2 clock cycles at maximum (instead of N clock
cycles in Fig. 2). Each method has advantages and
disadvantages. For the method (Sklyarov et al., 2014a), the
maximum number of data items (that can be processed in the
PL) is reduced compared to Fig. 2, and the delay in the
iterative network is increased (because signals propagate
through two levels of comparators instead of one level in Fig.
2). This does not allow the maximum clock frequency for the
PL to be used. Hence, the speed of transfers is decreased for
2×L items (L for reading and L for writing). However, the
number of data transfers (when we pack 2 items in one AXI
word) is also decreased and this is an advantage. In section 5
we will compare these two methods. Transferring 2×32 bit
items can also be practical for the architecture in Fig. 2 using
FIFOs on inputs and outputs. Although there is no speed-up
in data processing in the PL, communication overheads are
reduced by a factor of 2 and a shared memory (DDR/OCM)
can be used by the PS for solving other problems in parallel.

Let us discuss now how the hardware accelerator shown in
Fig. 2 can be used for solving problems 1)-5) listed in section
1. Extracting the maximum/minimum (sorted) subsets (see
point 1) is done trivially, copying the required number of
items either from the beginning or from the end of the sorted
set. Since we need just to read data from memory, this
process is very fast in the PS software. Alternatively, the
maximum and the minimum sorted subsets may be
accumulated in the PL and this can be done even faster.
Extracting subsets with such values that fall between the
given maximum and minimum can also be done in software
applying, for example, a binary search tree (Cormen et al.,
2009) to the sorted set of data.

The most repeated value can easily be encountered in a
parallel hardware circuit that receives the sorted set on inputs
and finds the most repeated item in ξ-1 clock cycles, where ξ
is the number of repetitions of the most frequent item
(Sklyarov et al., 2014b). Additional details will be given in
subsection 5.1.

Computing medians on the basis of the results of sorting is
described in (Mueller, 2010). Similar problems 1)-5) for
tables can easily be solved taking input data from the selected
rows/columns. Besides, the proposed methods may widely be
used to solve other problems of control engineering and
applied informatics discussed in the previous section.

4. PARALLEL DATA PROCESSING IN AN APSOC-
BASED SOFTWARE/HARDWARE SYSTEM

We will analyze below the following four designs for solving
the sorting problem:

1) A single core implementation where software in the PS
and hardware in the PL operate sequentially. Analysis of
such design permits communication overheads to be
evaluated easier.

2) A single core implementation where software in the PS
and hardware in the PL operate in parallel. The PS and
PL frequently share the same memory, which may lead
to performance degradation. The considered design
permits to evaluate potential advantages/drawbacks.

3) A dual-core implementation where software in the PS
and hardware in the PL operate sequentially. This
permits comparison of dual-core and single-core
solutions taking into account communication overheads
between software and hardware.

4) A multi-core implementation where software in the dual-
core PS and hardware in the PL operate in parallel allows
the highest level of parallelism to be examined and
evaluated.

Designs 3) and 4) permit merge operations in the PS to be
parallelized in different cores. Designs 2) and 4) permit
merge operations to be executed in the PS concurrently with
sorting blocks in the PL. Access to memories can be done in
lite and burst modes. The latter is faster (Silva et al., 2015),
especially for transferring large data sets and it will be used
in all the proposed designs. Note that higher parallelism
requires more sophisticated interactions between the
processing units that execute parallel operations. Besides, the
used memories often have to be shared between the
processing units. Potentialities for APSoC standalone
applications are limited and applications running under
operating systems (such as Linux) involve additional delays
caused by the relevant programs of the operating systems.
Furthermore, the programs allocate memory spaces and the
size of available memory for data sorters is reduced.
Consequently, more constraints are introduced. So, the results
of the designs listed above need to be carefully evaluated and
compared and they cannot be predicted in advance.

4.1 Single Core Implementation

Fig. 3 shows the proposed hardware/software architecture,
which includes hardware in the PL synthesized from
specifications in VHDL in Xilinx Vivado 2014.4 design suite
and software written in C language and developed in Xilinx
Software Development Kit SDK 2014.4.

The PL reads blocks of data from the chosen memory, sorts
them by the iterative network, and copies the sorted blocks to
the same location in the memory. Note that on-chip cache
may be extensively used by other software programs running,
for example, under Linux operating system. The available
space for application-specific software and hardware is
almost always unknown. However, as soon as the cache is
filled up, an on-chip controller selects another available
memory. We found that the use of cache memory is more
efficient for standalone applications rather than for Linux
applications.

114 CONTROL ENGINEERING AND APPLIED INFORMATICS

Snoop controller

512 KB
cache and
controller

OCM (256 KB) Memory
interfaces

PL to memory
interconnect

AXI ports

M
as

te
r

A
XI

 A
CP

 p
or

t

PS

APU

Central processing
unit and other APU

blocks

Data exchange with
DDR through AXI

D
at

a
ex

ch
an

ge
 w

ith

ca
ch

e
th

ro
ug

h
A

XI
 A

CP

Hardware
accelerators

PL

Central
interconnect

General-purpose port

Master

Slave

Slave

Slave

Sl
av

e

Master

Master

Master

M
as

te
r

Exchange of control
signals

Ex
te

rn
al

 D
D

R

Software

H
ar

dw
ar

e
in

te
rr

up
t

Fig. 3. Hardware/software architecture for a single core
implementation.

As soon as all sorted blocks are ready and copied to
memories, the PL forms an interrupt to the PS, indicating that
further processing (i.e. merging) can be started. The PS reads
the sorted subsets from memory and merges them in
software, producing the final sorted set.

4.2 Single Core Implementation with Parallel Operations

Fig. 4 shows the proposed hardware/software architecture.
L/N blocks with up to N M-bit data items are copied from
the chosen memory to the PL, sorted, and the sorted blocks
are transferred back to the memory. As soon as the first two
blocks are sorted and transferred, the PL generates an
interrupt, indicating that the first two blocks can be merged in
software of the PS. Further merging in software and sorting
the remaining blocks in hardware are done in parallel. The
number of currently sorted blocks is periodically updated
through a GP port. As soon as the PS finishes merging, it
checks the number of newly available blocks from the PL
through a GP port. If a new pair of blocks is available, a new
merge operation is started, otherwise either a merge of the
previously merged blocks is initiated (if such blocks are
ready) or software is suspended until blocks for merging from
the PL become available. The latter situation (although
supported) actually never occurs because hardware is faster
than software even taking into account the communication
overheads. Thus, the PS and the PL run in parallel until the
final result of sorting is produced. Memories may be shared
but such sharing is minimized through potential invocation of
different memories (DDR, OCM and cache). Sorting of
blocks in the PL is finished much earlier than merging the
sorted blocks in the PS.

Hardware in the PL

DDR/OCM/cache memory

Iterative
sorting

network for
blocks with N

items

Data transfer
through AXI

ACP port

Co
nt

ro
l u

ni
t

Interaction with
hardware including
interrupt handler

Ge
ne

ra
tin

g
an

in

te
rr

up
t w

he
n

th
e

fir
st

 tw
o

bl
oc

ks
 a

re

so
rt

ed
 a

nd
 re

ad
y

interrupt

Si
gn

al
s

tr
an

sf
er

re
d

th
ro

ug
h

a
GP

po

rt

Software in the PS

Merging two blocks
or two sets of the
previously merged
blocks in one core

PS PL

Unsorted (⇑)
/ sorted (⇓)

blocks

Sorted (⇑) /
merged (⇓)

blocks

Fig. 4. Hardware/software architecture for single core
implementation with parallel operations in the PS and PL.

4.3 Dual-core Implementation

We consider here a dual-core project running under Linux. A
similar project may be used for more than two cores as soon
as they become available in APSoCs (Santarini, 2015).
Hardware for the project is the same as in sections 4.1 and
4.2. There are 4 threads in software executed in the
processing cores of the PS such that two processing cores
may be active at the same time (i.e. in parallel). The first
thread is responsible for transferring unsorted subsets from
the PS to the PL and sorted subsets from the PL to the PS.
Finally, L/N sorted subsets will be ready for the PS and
they are divided into two halves. The second and the third
threads activate the functions (halfMerger) that merge the
first and the second halves of the sorted subsets, creating two
large blocks of data that are further merged in the function
finalMerger activated in the last (fourth) thread. Two
functions halfMerger may run in different cores in parallel.
Multiple threads are managed by the operating system. In this
type of implementation, hardware and software operate
sequentially, i.e. at the beginning software is suspended,
waiting until all the blocks have been sorted in hardware.

4.4 Dual-core Implementation with Parallel Operations

Fig. 5 shows the proposed hardware/software architecture.
L/N blocks with up to N M-bit data items are copied from
the chosen memory to the PL, sorted, and the sorted subsets
are transferred back to the memory. As soon as the first two
blocks are sorted and transferred, the PL generates an
interrupt, indicating that the first two blocks can be merged in
the software of the PS running in one core. At the beginning,
software running in the second core checks availability of the
sorted blocks through a GP port. As soon as such blocks are
available, merging is started in parallel with merging in the
first core. Subsequent operations are similar to those in
section 4.2, i.e. as soon as any core finishes the merging, it
checks the number of newly available blocks from the PL
through a GP port. If a new pair of blocks is available, a new
merge operation is started, otherwise either a merge of the

CONTROL ENGINEERING AND APPLIED INFORMATICS 115

previously merged blocks is initiated or software is
suspended until blocks for merging become available. Thus,
software in two cores of the PS and hardware in the PL may
run in parallel until the final result of sorting is produced. A
similar project can be implemented for more than two cores.

Hardware in the PL

DDR/OCM/cache memory

Iterative
sorting

network for
blocks with N

items

Data transfer
through AXI

ACP port

Co
nt

ro
l u

ni
t

Interaction with
hardware including
interrupt handler

interrupt

Software in the PS

M
er

gi
ng

 tw
o

bl
oc

ks
 in

 fi
rs

t
co

re

M
er

gi
ng

 tw
o

bl
oc

ks
 in

se

co
nd

co
re

Final merging in any
single core

PS PL

Unsorted (⇑)
/ sorted (⇓)

blocks

Sorted (⇑) /
merged (⇓)

blocks

G
en

er
at

in
g

an

in
te

rr
up

t w
he

n
th

e
fir

st
 tw

o
bl

oc
ks

 a
re

so

rt
ed

 a
nd

 re
ad

y

Si
gn

al
s

tr
an

sf
er

re
d

th
ro

ug
h

a
G

P
po

rt

Fig. 5. Hardware/software architecture for multi-core
implementation with parallel operations in the PS and PL.

5. EXPERIMENTS AND COMPARISONS

5.1 Implementation Details and Experimental Setup

All the designs described in points 4.1-4.4 have been
implemented and tested in two prototyping systems: ZyBo
with the Xilinx APSoC xc7z010-1clg400C (Digilent, 2014)
and ZedBoard with the Xilinx APSoC xc7z020-1clg484c
(Avnet, 2014). Two different APSoCs were chosen not for
comparison between them. Our aim was just to show that the
results are applicable to APSoCs with different complexity,
including the cheapest and the less advanced microchip
xc7z010-1clg400C. Interactions between hardware and
software were done through Xilinx IP cores (Xilinx, 2014b).
The number of data items in the initial (unsorted) set varies
from N (i.e. from the size of one block) to L=33,554,432 (i.e.
up to more than 33 million of 32-bit data items). Fig. 6 shows
the organization of the experiments.

We have used a multi-level computing system. Initial
unsorted data are either generated randomly in the software
of the PS with the aid of C language rand function or
prepared in the host PC. In the last case, data may be
randomly generated by the rand or other functions or copied
from benchmarks. Sorting is done completely in APSoC
using architectures from section 4. The results are verified in
software.

Standalone software applications have been created and
uploaded to the PS memory from SDK. Interactions are done
through the SDK console window. An example of
interactions for a project from section 4.1 is shown in Fig. 7
for ZedBoard and N=256.

Host PC

Output files

Input files

Processing in
software of
the host PC

Software,
developed

in SDK

Hardware,
developed
in VivadoIn

te
rf

ac
es

Getting unsorted data
from the host PC

Ve
rif

yi
ng

 th
e

re
su

lts

Verifying the results
in the host PC

Generating unsorted
data items and

verification of the
results

PS PL

Iterative network (see Fig. 2)
Frequent items encounter

Solving problems that
permit sorting to be used

as a single operation

Generating objects
that need to be

clustered

Merging blocks

M
ea

su
re

m
en

ts
 a

nd

su
pp

or
t f

or
 e

xp
er

im
en

ts

Fig. 6. The experimental setup.

Fig. 7. The results of experiments and comparisons (speed-up
is measured compared to software only data sorter running in
the PS and using C function qsort).

The measurements include all the involved communication
overheads. The number of blocks varies from 1 to 131,072,
N=256, and, thus, the number of 32-bit data items ranges
from 256 to more than 33 million. For all the experiments,
AXI ACP port was used for transferring blocks between the
PL and memories.

The developed software and hardware may also solve tasks of
higher hierarchical levels. As examples, we considered
creating objects in software for further clustering and
frequent items encountering in hardware (see Fig. 6).
Attributes of any individual object are generated randomly in
software within a given range. Objects and attributes are
associated with rows and columns of the matrix µ, which is
built in accordance with the rules given in section 2. Clearly,
the Hamming weight of any row r of the matrix µ indicates
how many times the attribute associated with r appeared in
different objects (associated with columns). Two tasks are
solved in the PL: 1) calculating the Hamming weights using
the methods and tools from (Sklyarov et al., 2013a); and 2)
sorting the Hamming weights with the aid of the methods
described above. The sorted values are used to simplify
solving different problems from the scope of data mining.

116 CONTROL ENGINEERING AND APPLIED INFORMATICS

Encountering the most frequent item is entirely done in
hardware. Suppose we have a set of N sorted data items
which might include repeated items and we need the most
frequently repeated item to be found. This problem is solved
in a hardware circuit shown in Fig. 8 (Sklyarov et al., 2014b)
where N-1 comparators (Comp) form a binary vector. The
most frequently repeated item can be discovered if we find
the maximum number of consecutive ones in the vector and
take the item from any input of the comparators that is used
to form the sub-vector with the maximum number of
successive ones. The binary vector that represents the result
of comparison is saved in the feedback register R. The right-
hand circuit in Fig. 8 implements the method described in
(Sklyarov et al., 2014b), which enables the same
combinational unit (such as that composed of AND gates in
Fig. 8) to be reused iteratively in each subsequent clock
cycle. This forces any intermediate binary vector that is
formed on the outputs of the AND gates to be stored in the
register R. Hence, any new clock cycle reduces the maximum
number of consecutive ones Omax in the vector by one and as
soon as all outputs of the AND gates are set to 0, we can
conclude that Omax = ξ+1, where ξ is the number of the last
clock cycle. Indeed, when there is just one value 1 in the
register R, all the outputs of the AND gates are set to 0 and an
additional clock cycle is not needed to reach a conclusion.
The index of the single 1 in the register is the index (position)
of the first value 1 (from the top) in the set with Omax. The
feedback from the outputs of the AND gates enables any
intermediate binary vector to be stored in the register R. The
circuit in Fig. 8 is very simple and fast. It is composed of just
N-1 AND gates, the register R, and minimal supplementary
logic. Thus, the maximum attainable clock frequency is high.

5.2 Experimental Comparison of Software Only and
Hardware/Software Sorters

Table 1 presents the result of our experiments that permit
communication overheads to be estimated. We consider
standalone applications and the following three types of data
sorters:

• Software only sorters (see the row SO) where sorting is
completely done in the software of the PS by C language
qsort function. Initial data are taken from memory and
the sorted data are saved in the same memory.

• Hardware only sorters (see the row HO) where sorting is
completely done in the hardware of the PL without
transmitting data items between the PS and PL. Initial
data are taken from the PL registers and the sorted data
are saved in the PL registers. We assumed that data items
in the registers are ready before sorting and the results
are not copied to anywhere. This case does not reflect
reality but it is useful because it permits potentialities of
hardware to be estimated.

• Hardware/software sorters (see the row HS) where
unsorted blocks are copied from memory to the PL in
AXI ACP burst mode and the sorted blocks are copied
from the PL to memory in AXI ACP burst mode. The PS
participates only in data transfers and does not execute

merging. This case permits sorting in hardware plus
communication overheads to be evaluated. The memory
is shared between the PS and PL and will be used later
on for subsequent merging of the sorted blocks in the PS.

Item 0
Comp

Item 1
Item 2
Item 3

Comp
Comp
Comp

Item 4
Item 5
Item 6
Item 7

Item N-1

Comp
Comp
Comp
Comp

Comp

Bi
na

ry
 v

ec
to

r

x
y

R

0

clock

El
em

en
ts

 o
f N

-b
it

bi
na

ry
 v

ec
to

r

Te
st

 fo
r 0

Fig. 8. Most frequent data item computation in a given sorted
set of N data items.

Table 1. The results of experiments with one block of size N
of 32-bit data items.

N 32 64 128 256 512
SO in µs ZyBo 12.9 29.4 52.2 160.7 418.4

Zed 12.0 28.2 51.6 160.5 417.7
HS in µs ZyBo 2.7 3.6 5.6 - -

Zed 2.6 3.5 5.5 15.8 35.3
HO in µs ZyBo 0.32 0.64 1.28 - -

Zed 0.32 0.64 1.28 2.56 5.12
Acc with

CO (A_CO)
ZyBo 4.8 8.2 9.3 - -
Zed 4.6 8.1 9.4 10.2 11.8

Acc without
CO (A)

ZyBo 40.3 45.9 51.7 - -
Zed 37.5 44.1 51.2 62.7 81.5

The rows Acc with CO (A_CO) and Acc without CO (A)
show accelerations of HS and HO sorters compared to SO
sorters (i.e. communication overheads - CO are either taken,
in the row A_CO, or not taken, in the row A, into account).
The clock frequency of the PS is 650 MHz for ZyBo and 666
MHz for ZedBoard (the rows Zed). The clock frequency for
the PL was set to 100 MHz. The values in Table 1 are
average times spent for sorting from 10 examples of
randomly generated data. The iterative sorter in ZyBo for
N=256 cannot be implemented because of the lack of
hardware resources. We implemented the iterative sorter for
N = 1,024 in ZedBoard but the remaining resources are not
sufficient to provide support for interactions with the PS. We
compared the results for two types of sorters: 1) from Fig. 2;
and 2) from (Sklyarov et al., 2014a). The circuit from
(Sklyarov et al., 2014a) has longer propagation delay. Thus,
the clock frequency in the PL is decreased. Besides, the
circuit in Fig. 2 enables resources to be reduced in almost

CONTROL ENGINEERING AND APPLIED INFORMATICS 117

twice. Thus, the value N for the same PL resources is
increased also by a factor of 2. Hence, larger blocks are
sorted in hardware and the depth of merging in software is
reduced. Since software is always slower (see conclusion
below), the overall performance of HS solver is increased.
From the results in Table 1 we can conclude the following:

1) Communication time (for data transfer between the PS
and PL) is significantly larger than the time for sorting
data in the PL by iterative networks. This is easily seen
comparing values in the rows HS and HO and taking into
account that no merging (or additional sorting
operations) is done in software for the considered
examples. Clearly, communication overhead is equal to
HS time minus HO time. For example, for N=32,
interactions between the PL and memory for ZyBo
require additional time that is equal to 2.7 µs - 0.32 µs ≈
2.4 µs. So, using faster but significantly more resource
consuming sorting networks does not make any sense.
Indeed, any additional acceleration in hardware
(allowing the value 0.32 µs in the example above to be
reduced) does not permit overall performance of HS
sorters to be increased.

2) The row A makes sense only for evaluating hardware
capabilities but the results in this row are not very
important for practical applications requiring sorting
large data sets because data items have to be transferred
to/from internal registers and our experiments have
shown that it takes significantly more time than sorting
in the PL. Sorting larger data sets entirely in FPGA is
possible but only in advanced devices, such as (Xilinx,
2014c, d).

3) The row A_CO shows actual accelerations in APSoC. It
is clearly seen that the larger the size of the blocks, the
higher is the acceleration. Taking into account the results
of point 1), we can conclude that better acceleration can
be achieved by increasing the size of blocks.

Let us now sort blocks in the PL and merge the sorted blocks
in the PS. Since the results of Table 1 are very similar for
ZyBo and ZedBoard, we will study the case with N=256 only
for ZedBoard. Fig. 9 permits all the results of HS projects
with different architectures to be compared.

We can see that dual-core implementations in HS sorters
where software runs sequentially with hardware are the
fastest. This is because hardware operates considerably faster
than software, even including communication overheads.
Hence, merging in software can be faster when both cores are
involved. Sorting in hardware is completed much sooner than
merging in software and although additional parallelism
might give advantages, they do not appear in our projects.
We explain this situation because of additional efforts done
by the operating system (all multi-core implementations are
executed under Linux) to support parallelism in software and
in hardware, causing larger delays than sorting blocks in
hardware. From the results of experiments we found the
following: for the same N, the larger the number L of data
items, the smaller is the acceleration. We can explain this by
the necessity of more extensive data processing in software

that is slower than hardware. Indeed, the size N of one block
is the same, but the number of merges in software is larger
and deeper for larger values of L. Thus, hardware processes
blocks very fast (see Table 1) but merging in software
becomes slower for larger data sets.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 L = 4,194,304

L
=

2,
09

7,
15

2

4.
1:

 S
eq

ue
nt

ia
l

sin
gl

e-
co

re
im

pl
em

en
ta

tio
n

(s
ta

nd
al

on
e)

Time in seconds

The slowest sorter The fastest sorter

4.
2:

 P
ar

al
le

l
sin

gl
e-

co
re

im
pl

em
en

ta
tio

n
(s

ta
nd

al
on

e)

4.
3:

 S
eq

ue
nt

ia
l

du
al

-c
or

e
im

pl
em

en
ta

tio
n

(L
in

ux
) 4.

4:
 P

ar
al

le
l

du
al

-c
or

e
im

pl
em

en
ta

tio
n

(L
in

ux
)

L
=

1,
04

8,
57

6
L

=
52

4,
28

8

L
=

65
,5

36

Fig. 9. The results of projects for architectures proposed in
sections 4.1-4.4.

Let us discuss now potential future improvements. Fig. 10
shows the consumed time for sorting blocks of size N in SO
using C function qsort and in HO using the iterative network
from Fig. 2. The difference between SO and HO is very large
(see the dotted area). Thus, future efforts have to be made to
enlarge blocks processed in the PL.

1

10

100

1,000

10,000

100,000

1,000,000

16 32 64 128 256 512 1024

SO
HO

Processing time in ns

Size N of block of M=32 data items

778,000 ns

Fig. 10. Sorting blocks in software only (SO) and in hardware
only (HO).

For example, we found that merging two blocks (N=256) in
hardware using embedded to the PL block RAM takes 512
clock cycles. Subsequent merging of two new blocks with
N=512 requires additional 1024 clock cycles. Thus,
sequential sorting of 1024 data items for N=256 in the
network of Fig. 2 and further partial merge in embedded to
the PL block RAM would need

118 CONTROL ENGINEERING AND APPLIED INFORMATICS

4×N+2×N+4×N=10×N=2,560 clock cycles or 25,600 ns
assuming frequency 100 MHz. Potential parallel execution of
different operations (i.e. sorting+partial merging) would
permit the number of clock cycles indicated above to be
additionally reduced. If we compare 25,600 ns with 778,000
ns for SO sorter (see Fig. 10), we can see that acceleration is
by a factor of 30. The involved communication overheads
significantly reduce this value, but the time of merging in the
PS is also decreased. Thus, this technique can be additionally
explored in the future research.

5.3 Discussion of the Results

It was demonstrated in sections 1, 2 that sorting is widely
required for different applications in the scope of applied
informatics and control engineering. It is clearly shown in
subsection 5.2 that HS sorters are faster than SO sorters. We
found also that AXI ACP port is faster than HP AXI port for
standalone applications. The difference is the largest for
small data sets and almost does not exist for large data sets.
For projects running under Linux, the speed of data transfer is
almost the same for AXI ACP and HP AXI. Both standalone
and Linux projects are important and frequently practiced.
The choice of a particular type depends on many factors, such
as the complexity of the designed system, performance
requirements, needs for device drivers available for operating
systems and other factors. The results of experiments
demonstrate that for both types of projects, HS solutions are
always faster. One additional issue that should be addressed
is the power consumption. We compared the power
consumption in software only systems that use the ARM
processor and the proposed hardware/software systems.
Power estimation tools available for Xilinx Vivado allow
necessary measurements to be done. We found that in the last
case the power consumption is slightly increased but the
difference is less than 5%. Note that the power consumption
in new ARM-based microchips is decreased by a factor of 2-
5 (Santarini, 2015). The results reported in (Kestur et al.,
2010) show that FPGAs offer 2.7 to 293 times better energy
efficiency compared to CPU and GPU for solving linear
algebra problems. The FPGA-accelerated architectural
simulation platform developed in (Krueger et al., 2011) to
accurately evaluate the power and performance of the green
wave design for seismic modeling also demonstrates
reduction in power consumption. In (Mueller et al., 2012)
power consumption was compared for a hardware/software
data sorter and microprocessor-based data sorters. It was
shown on examples that power consumption in FPGA
hardware/software data sorters is lower. Taking into account
the results reported, the proposed APSoC solutions are power
efficient. Besides, much like (Bertels et al., 2010), our main
objective is acceleration of algorithms in software/hardware
data sorters compared to software only data sorters.

Our suggestion is that additional acceleration may be
achieved by:

1) Increasing the size of the blocks sorted in hardware such
that parallel merge of the sorted blocks (in software) and
sorting of blocks (in hardware) can be done more
efficiently.

2) Designing multi-core standalone applications. We have
developed multi-core applications running under Linux
operating system where programs with multiple parallel
threads have been tested. However, potentialities for
multi-core standalone applications may also be studied in
depth.

3) Interaction between software and hardware through more
than one HP AXI port. Zynq APSoCs permit up to five
such ports to be used: four AXI HP ports and one AXI
ACP port.

4) Parallel merge in more than two cores.

5.4 Comparison of the Results with Existing Solutions

There are three major procedures in software/hardware data
sorters common to the proposed and existing solutions: 1)
pre-processing in hardware; 2) communication between
hardware and software; 3) post-processing in software. Let us
compare these procedures in the proposed designs and in the
best known alternatives. Pre-processing is aimed at sorting
blocks of data that are further handled in software. There are
two major characteristics of hardware sorters: a) the delay
time from supplying unsorted inputs to producing the sorted
outputs and b) the used resources. The best known solutions
are based on Batcher’s even-odd merge and bitonic merge
networks (Baddar et al., 2011). If a pipeline is used (Mueller
et al., 2012), then the delay is the same as in the networks
described in the paper. However, hardware resources in the
proposed networks are significantly decreased. For example,
for N=16, they are decreased by a factor of 4.2 and for
N=512 by a factor of 19. The details can be found in (Kipfer
et al., 2005; Mueller et al., 2012; Sklyarov et al., 2014a). Our
experiments have shown the following results: the best
network from (Baddar et al., 2011) can be implemented in the
PL of ZedBoard for N=64 and the proposed network can be
built for N = 1,024. The network described in (Mueller et al.,
2012) was built in FPGA for only N = 8.

Let us compare now post-processing in software. The FPGA
accelerator in (Mueller et al., 2012) uses Batcher’s networks
(Baddar et al., 2011). The sorted blocks are then merged in
software. For sorting L elements, log2L − log2N merge
levels are needed (Mueller et al., 2012). Since the value N is
increased (from N = 8 in the referenced publication to N =
512 in the proposed network), the number of merge levels in
software is decreased, for example, for L = 216 it is decreased
from log2216 − log28 = 13 to log2216 − log2512 = 7.
We made experiments in the PS and merging blocks with N =
8 to sort L = 512 items requires more than 100,000 clock
cycles while the same operation in the PL sorting network
requires approximately 500 clock cycles. The clock
frequency of the PS is 666 MHz and the clock frequency of
the PL is 100 MHz. However, even taking into account the
difference in the clock frequency, it is easily seen that the
actual acceleration in the proposed solutions is significant.
Communication between hardware and software involves
additional time, which has been optimized (see section 3 and
Fig. 2).

CONTROL ENGINEERING AND APPLIED INFORMATICS 119

Finally, we compared the results of (Mueller et al., 2012)
shown in Fig. 29 and our results for the same values of L
(from 256 to 16M data items) that are chosen in (Mueller et
al., 2012) and found that sorting throughput in the proposed
solutions has been increased by a factor from 1.6 (for the
largest value of L) to almost 10 (for the smallest value of L).
Comparison with other hardware/software data sorters
referenced in section 2 has also demonstrated performance
increase of the proposed solutions in all design cases.

6. CONCLUSIONS

Sorting and searching are common operations in different
types of data processing required in various computing
systems. Frequently, performance and portability are
important and we have studied how these requirements can
be satisfied using all programmable systems-on-chip from the
Xilinx Zynq-7000 family. Four proposed architectures have
been implemented and evaluated. They involve different
iterative networks for sorting blocks of data in hardware and
subsequent merge of the sorted blocks in software. The
projects make use of parallelism including multi-core
capabilities and data processing in hardware during data
exchange. Two types of sorters have been developed that are
standalone and running under the Linux operating system.
The results of the paper demonstrate that hardware/software
solutions are always the fastest. It is also proved that the
larger the blocks processed in hardware, the better is the
achieved acceleration. It is shown how to use the proposed
solution in the scope of control engineering and applied
informatics, including examples that were tested.

ACKNOWLEDGEMENTS

This work was supported by National Funds through FCT -
Foundation for Science and Technology, in the context of the
project PEst-OE/EEI/UI0127/2014.

REFERENCES

Abdelhamid N. (2015). Multi-label rules for phishing
classification. Applied Computing and Informatics,
Elsevier, vol. 11, pp. 29–46.

Aj-Haj Baddar S.W., Batcher K.E. (2011). Designing Sorting
Networks. A New Paradigm. Springer.

ARM, Ltd. (2013). NEON™ Version: 1.0 Programmer’s
Guide. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.den0018a/index.html.

Arnold O., Haas S., Fettweis G., Schlegel B., Kissinger
T., Lehner W. (2014). An application-specific instruction
set for accelerating set-oriented database
primitives. SIGMOD Conf., pp. 767-778.

Avnet, Inc. (2014). ZedBoard (ZynqTM Evaluation and
Development) Hardware User’s Guide. Version 2.2.
http://www.zedboard.org/sites/default/files/
documentations/ZedBoard_HW_UG_v2_2.pdf.

Baker Z.K., Prasanna V.K. (2006). An Architecture for
Efficient Hardware Data Mining using Reconfigurable
Computing Systems, Proc. 14th Annual IEEE Symp. on
FCCM, Napa, USA, pp. 67-75.

Batista A.P., Jota F.G. (2014). Effects of Time Delay
Statistical Parameters on the Most Likely Regions of
Stability in an NCS. CEAI, vol.16, no.1, pp. 3-11.

Bertels K., Sima V., Yankova Y., et al. (2010). HArtes:
Hardware-Software Codesign for Heterogeneous
Multicore Platforms. IEEE Micro, vol. 30, no. 5, pp. 88-
97.

Borangiu A., Popescu D. (2014). Digital Signal Processing
for Knowledge Based Sonotubometry of Eustachian
Tube Function. CEAI, vol. 16, no. 3, pp. 56-64.

Chamberlain R.D., Ganesan N. (2009). Sorting on
Architecturally Diverse Computer Systems, Proc. 3rd
Int. Workshop on High-Performance Reconfigurable
Computing Technology and Applications – HPRCTA’09,
USA, pp. 39-46.

Chrysos G., Dagritzikos P., Papaefstathiou I., and Dollas A.
(2013). CART: A Parallel System Implementation of
Data Mining Classification and Regression Tree (CART)
Algorithm on a Multi-FPGA System, ACM Transactions
on Architecture and Code Optimization, vol. 9, no. 4, pp.
47.1-47.25.

Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. (2009).
Introduction to Algorithms. 3rd ed. MIT Press,
Cambridge.

Digilent, Inc. (2014). ZyBo Reference Manual.
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM
_B_V6.pdf.

Estrin G. (1960). Organization of Computer Systems – The
Fixed Plus Variable Structure Computer, Proc. of
Western Joint IRE-AIEE-ACM Computer Conference,
New York, pp. 33-40.

Field L., Barnie T., Blundy J., Brooker R.A., Keir D., Lewi
E., Saunders K. (2012). Integrated field, satellite and
petrological observations of the November 2010 eruption
of Erta Ale, Bulletin of Volcanology, vol. 74, no. 10, pp.
2251–2271.

Firdhous M.F. (2010). Automating Legal Research through
Data Mining, Int. Journal of Advanced Computer
Science and Applications, vol. 1, no. 6, pp. 9-16.

Gapannini G., Silvestri F., and Baraglia R. (2012). Sorting on
GPU for large scale datasets: A thorough comparison,
Information Processing and Management, vol. 48, no. 5,
pp. 903–917.

Garg L., McClean S., Meenan B.J., Millard P. (2011). Phase-
Type Survival Trees and Mixed Distribution Survival
Trees for Clustering Patients’ Hospital Length of Stay.
Informatica, vol. 22, no. 1, pp. 57-72.

Goodman A. (2011). Perspective Emerging Topics and
Challenges for Statistical Analysis and Data Mining,
Statistical Analysis and Data Mining, vol. 4, pp. 3-8.

Intel, Corp. (2007). Intel® SSE4 Programming Reference.
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_in
struction_set.pdf.

Kestur S., Davisz J.D. Williams O. (2010). BLAS
Comparison on FPGA, CPU and GPU. Proc. of IEEE
Computer Society Annual Symposium on VLSI, Lixouri,
Greece, pp. 288-293.

Kipfer P., Westermann R. (2005). GPU Gems, chapter 46.
Improved GPU Sorting. http://http.

http://dblp.uni-trier.de/pers/hd/a/Arnold:Oliver�
http://dblp.uni-trier.de/pers/hd/h/Haas:Sebastian�
http://dblp.uni-trier.de/pers/hd/f/Fettweis:Gerhard�
http://dblp.uni-trier.de/pers/hd/k/Kissinger:Thomas�
http://dblp.uni-trier.de/pers/hd/l/Lehner:Wolfgang�
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf�
http://digilentinc.com/Data/Products/ZYBO/ZYBO_RM_B_V6.pdf�
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf�
http://home.ustc.edu.cn/~shengjie/REFERENCE/sse4_instruction_set.pdf�

120 CONTROL ENGINEERING AND APPLIED INFORMATICS

developer.nvidia.com/GPUGems2/gpugems2_chapter46.
html.

Knuth D.E. (2011). The Art of Computer Programming.
Sorting and Searching, vol. III. Addison-Wesley.

Kovacs E., Ignat I. (2007). Clustering with Prototype Entity
Selection Compared with K-means, CEAI, vol. 9, no. 1,
pp. 11-18.

Krueger J., Donofrio D., Shalf J., et al. (2011)
Hardware/Software Co-design for Energy-Efficient
Seismic Modeling. Proc. Int. Conf. for High
Performance Computing, Networking, Storage and
Analysis, Seattle, USA, pp. 1-12.

Mueller R. (2010). Data Stream Processing on Embedded
Devices. Ph.D. thesis, ETH, Zurich.

Mueller R., Teubner J., Alonso G. (2012). Sorting Networks
on FPGAs, The Int. Journal on Very Large Data Bases,
vol. 21, no. 1, pp. 1-23.

Rabiner L.R., Marvin R. Sambur M.R., Schmidt C.E. (1975).
Applications of a nonlinear smoothing algorithm to
speech processing. IEEE Trans. on Acoustics, Speech
and Signal Processing, vol. 23, no. 6, pp.552-557.

Salter-Townshend M., White A., Gollini I., Murphy T.B.
(2012). Review of Statistical Network Analysis: Models,
Algorithms, and Software. Analysis and Data Mining,
vol. 5, pp. 243-264.

Santarini M. (2014). Products, Profits Proliferate on Zynq
SoC Platforms, XCell Journal, issue 88, pp.8-15.

Santarini M. (2015). Xilinx 16nm UltraScale+ Devices Yield
2-5X Performance/Watt Advantage. XCell Journal, issue
90, pp. 8-15.

Sedgewick, R. (1978). Implementing quicksort programs,
Communications of the ACM, pp. 847-857.

Serban G., Câmpan A. (2008). Hierarchical Adaptive
Clustering. Informatica, vol.19, no 1, pp. 101-112.

Silva J., Sklyarov V., Skliarova I. (2015). Comparison of On-
chip Communications in Zynq-7000 All Programmable
Systems-on-Chip. IEEE Embedded Systems Letters, vol.
7, no. 1, pp. 31-34.

Sklyarov V., Skliarova I. (2013a). Digital Hamming Weight
and Distance Analysers for Binary Vectors and
Matrices, International Journal of Innovative
Computing, Information and Control, vol. 9, no. 12, pp.
4825-4849.

Sklyarov V., Skliarova I. (2013b). Fast regular circuits for
network-based parallel data processing, Adv. Electr.
Comput. Eng., vol. 13, no. 4, pp. 47–50.

Sklyarov V., Skliarova I. (2014a). High-performance
implementation of regular and easily scalable sorting
networks on an FPGA, Microprocessors and
Microsystems, vol. 38, no. 5, pp. 470-484.

Sklyarov V., Skliarova I., Barkalov A., Titarenko L. (2014b)
Synthesis and Optimization of FPGA-based Systems.
Springer.

Sklyarov V., Skliarova I., Silva J., Rjabov A., Sudnitson A.,
Cardoso C. (2014c). Hardware/Software Co-design for
Programmable Systems-on-Chip. TUT Press.

Sun S. (2011a). Analysis and acceleration of data mining
algorithms on high performance reconfigurable
computing platforms. Ph.D. thesis, Iowa State
University. http://lib.dr.iastate.edu/cgi/
viewcontent.cgi?article=1421&context=etd.

Sun S., Zambreno J. (2011b). Design and Analysis of a
Reconfigurable Platform for Frequent Pattern Mining,
IEEE Trans. on Parallel and Distributed systems, vol.
22, no. 9, pp. 1497-1505.

Tukey J.W. (1977). Exploratory Data Analysis. Addison-
Wesley.

Wu X., Kumar V., Quinlan J.R. et al. (2014). Top 10
algorithms in data mining, Knowledge and Information
Systems, vol.14, no. 1, pp. 1-37.

Xilinx, Inc. (2014a). Zynq-7000 All Programmable SoC
Technical Reference Manual. http://www.xilinx.com/
support/documentation/user_guides/ug585-Zynq-7000-
TRM.pdf.

Xilinx, Inc. (2014b). LogiCORE IP AXI DMA v7.1.
http://www.xilinx.com/support/documentation/
ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf.

Xilinx, Inc. (2014c). Evaluation Board for the Virtex-7
FPGA User Guide. UG885 (v1.5).
http://www.xilinx.com/
support/documentation/boards_and_kits/vc707/ug885_V
C707_Eval_Bd.pdf.

Xilinx, Inc. (2014d). All Programmable SoC Evaluation Kit
(Vivado Design Suite 2014.3). UG961 (v6.0).
http://www.xilinx.com/support/documentation/
boards_and_kits/zc706/2014_3/ug961-zc706-GSG.pdf.

Yuan, Y. (2008). Step-sizes for the gradient method,
International Press American Mathematical Society, pp.
785-796.

Zhang W, Thurow K., Stoll R. (2014). A Knowledge-based
Telemonitoring Platform for Application in Remote
Healthcare, Int. Journal of Computers, Communications
and Control, vol. 9, no. 5, pp. 644-654.

Zmaranda D., Silaghi H., Gabor G., Vancea C. (2013). Issues
on Applying Knowledge-Based Techniques in Real-
Time Control Systems, Int. Journal of Computers,
Communications and Control, vol. 8, no. 1, pp. 166-175.

Zuluada M., Milder P., Puschel M. (2012). Computer
Generation of Streaming Sorting Networks, Proc. of the
49th Design Automation Conference, San Francisco, pp.
1245-1253.

http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php/skl_journal_2013c�
http://wiki.ieeta.pt/wiki/index.php?title=International_Journal_of_Innovative_Computing%2C_Information_and_Control&action=edit&redlink=1�
http://wiki.ieeta.pt/wiki/index.php?title=International_Journal_of_Innovative_Computing%2C_Information_and_Control&action=edit&redlink=1�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf�
http://www.xilinx.com/support/documentation/�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�
http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf�

