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Abstract:
This paper proposes a new adaptive synchronization scheme in order to avoid many defects which
may occur in the estimation of unknown parameters during synchronization of uncertain chaotic
systems. To carry out the synchronization of chaotic systems and to estimate the unknown
parameters, a controller is designed into two parts: a fuzzy PI controller used as an eliminator
of perturbations (EOP), and a main controller based on the use of active control method. This
approach ensures a good estimation of the parameters without taking linear independence (LI)
condition into account, which is considered as an important requirement for estimation of the
unknown parameters.
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1. INTRODUCTION

Since the discovery of chaos theory by Edward Lorenz
(Lorenz 1963), many problems have been appeared in
physical theory in many fields. One of the bright prob-
lems was emerged by the pioneer work of Pecora et
al. in 1990 (Pecora & Carroll 1990). They proved that
the synchronization of many chaotic systems was possi-
ble by using only one signal to synchronize them. This
discovery attracted the attention of many researchers in
many fields such as secure communication (Li, Liao &
Wong 2004), chemical reaction (Srivastava, Srivastava &
Chattopadhyay 2013) , modeling some complex systems
like brain activity (Ivancevic & Ivancevic 2007). This diffu-
sion makes synchronization and control of chaotic systems
are an interesting field to study.

In the synchronization of chaotic systems, one of the
systems is considered as a master or drive system and
the other is a slave or response system. The main idea of
chaos synchronization is to create a synchronization signal
generator using an efficient control approach. The role of
the synchronization signal is to make the slave system
outputs track the master system outputs when there are
uncertainties on the parameters of both systems.

First, synchronization of chaotic systems was investigated
in the ideal case where there are no uncertainties on the
parameter. In this case, the majority of control approaches
were applied successfully. However, In the presence of
uncertainties on the parameters, the efficiency of many
conventional control approaches is severely reduced to en-
sure the stability and the synchronization. Hence, different

methods such as backstepping control (Zhang, Li, Zhang
& Yu 2004), H∞ control (Suykens, Curran, Vandewalle &
Chua 1997), sliding mode control method (Zhang, Ma &
Liu 2004), adaptive control method (Chua, Yang, Zhong
& Wu 1996), sampled-data feedback method (Zhao &
Lu 2008), fuzzy logic control (Yau & Shieh 2008) and
many others, have been suggested for synchronization of
uncertain chaotic systems.

Among all these methods, adaptive synchronization has
taken a big area in the literature. Many adaptive ap-
proaches have been applied successfully, but some prob-
lems have appeared in many of them. In (Sun, Zhu, Si, Ge
& Zhang 2013), the adaptive synchronization defects are
categorized into five cases: infeasible parameter updating
laws (Sudheer & Sabir 2009), the neglect of the linear inde-
pendence condition (Wang & Sun 2011), wrongly designed
controller functions (Xiang-Jun Wu 2011), adaptive syn-
chronization or parametric synchronization? (Yang 2011),
the impracticability of a pragmatic adaptive synchroniza-
tion scheme (M. M. El-Dessoky 2012). In order to cor-
rect the defects in these articles, they presented modified
schemes and emphasized the linear independence condi-
tion(LI), which was considered as an essential factor to
ensure a good estimation of unknown parameters.

Since the emergence of fuzzy set theory by (Zadeh
1965), many fields have taken advantage of this theory
in order to resolve outstanding problems such as image
processing (Van De Ville, Nachtegael, Van der Weken,
Kerre, Philips & Lemahieu 2003),biology analysis (Woolf
& Wang 2000), control robots (Das & Kar 2006).
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Fuzzy logic control (FLC) is another strategy that has
been widely used for controlling of nonlinear systems
(KOTHANDARAMAN, Satyanarayana & Ponnusamy 2015)
(Rebai, Guesmi & Hemici 2015) (Kumar 2015); further-
more, it has shown a good performance towards prob-
lems that concern uncertainties on the parameters and
modeling error. In many cases, the fusion of FLC with
a formal controller generates a new effective controller.
For instance, the fusion of FLC with conventional PI
controller generates powerful non-conventional controller
called fuzzy PI controller (Tang, Man, Chen & Kwong
2001a), which is more efficient and suitable for controlling
nonlinear systems.

On the other hand, FLC has been used with classical
control approaches as an assistant in order to avoid many
problems(Driss & Mansouri 2015a). For example, the
use of FLC with sliding-mode control (FSMC) helps to
avoid chattering problem caused by the discontinuation of
the sign function in the reaching control law in (SMC)
(Roopaei, Jahromi, Ranjbar-Sahraei & Lin 2011) (Yau &
Chen 2006) (Bouarroudj 2015).

In this paper, a novel adaptive approach for synchroniza-
tion of uncertain chaotic systems is presented in order
to avoid many defects, which have appeared in the es-
timation of unknown parameters due to the negligence
of the LI condition in many articles such as (Al-sawalha
& Noorani 2010),(Miao, Tang, Lu & Fang 2009),(Mossa
Al-sawalha & Noorani 2012),(Li, Leung, Han, Liu &
Chu 2011). To achieve the synchronization, the controller
is divided into two parts. The task of the first part is
to eliminate the perturbation terms due to uncertainties
on the parameters, and it is named the eliminator of
perturbation (EOP). The second part represents the main
controller, and its task is to synchronize the two chaotic
systems. For the design of the EOP, a fuzzy PI controller
is used, whereas the main controller is based on the use of
active control method.

The other parts of this paper are arranged as follows: Sec-
tion 2 presents the synchronization problem. The design
of the EOP using a fuzzy PI controller is developed in
Section 3, while Section 4 is consecrated to the design
of the main controller using active control method. The
effectiveness of the proposed approach is illustrated by
different results presented in Section 5, and the conclusion
is given in Section 6.

2. SYNCHRONIZATION PROBLEM AND SYSTEM
DESCRIPTION

Consider two chaotic systems that must be synchronized.
As a master, The following system is defined:





ẋ1 = f1(x, t)
ẋ2 = f2(x, t),

...
...

ẋn = fn(x, t)

(1)

x = [x1, x2, ..., xn] ∈ <n,

and as slave





ẏ1 = h1(y, t) + g1(y, t) + u1(y, x, t)
ẏ2 = h2(y, t) + g2(y, t) + u2(y, x, t),

...
...

ẏn = hn(y, t) + gn(y, t) + un(y, x, t)

(2)

y = [y1, y2, ..., yn] ∈ <n,

where x(t), y(t) ∈ <n represent the state vectors of the
master and the slave system respectively.

f, h : <n → <n are continuous nonlinear vector functions,
g(t, y) : <n → <n are the perturbation terms resulting
from uncertainties on the parameters; they are supposed
to be bounded. u1(t, x, y), u2(t, x, y), ...un(t, x, y) are the
control inputs to be designed.

Chaotic systems represent the intersection between de-
terministic systems and randomness. The deference be-
tween chaotic systems and normal nonlinear systems is the
butterfly effect or sensitivity to initial conditions, which
makes chaotic systems exhibit random behavior. Because
of this feature, synchronization of chaotic systems has been
considered as an interesting topic to study.

The aim of the synchronization is to design a feedback
controller such that the error between the two systems
converges to zero

lim
t→∞

‖y(t)− x(t)‖ = 0, (3)

for all x(0) ∈ <n and y(0) ∈ <n.

The synchronization errors are defined by

em = ym − xm,m = 1, 2, ..., n, (4)

and their dynamics by



ė1 = h1(y, t)− f1(x, t) + g1(y, t) + u1(y, x, t)
ė2 = h2(y, t)− f2(x, t) + g2(y, t) + u2(y, x, t).

...
...

ėn = hn(y, t)− fn(x, t) + gn(y, t) + un(y, x, t)

(5)

In this paper, the uncertainties on the parameters are
considered as terms added to the slave system. These terms
affect the behavior of the system, and the main controller
cannot handle any new dynamic out of its environment.
However, if another system operates to eliminate these
terms, the design of the main controller becomes very
simple. The main aim to eliminate the perturbation terms
is to avoid the problem of linear dependence of the function
terms.

Therefore, the controller is designed into two parts. The
first part is the eliminator of perturbation (EOP), and
its task is to eliminate the perturbation terms due to
uncertainties on the parameters, and the second one serves
to synchronize the two chaotic systems.

3. DESIGN OF THE ELIMINATOR OF
PERTURBATION (EOP)

Fuzzy logic control has a special structure that helps to
design an efficient controller for nonlinear systems even
though the models are not accurate or not available,
and the parameters are uncertain. It is easy to ensure
the stability by understanding the behavior of the con-
trolled system and by adjusting the rules instead of using
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the nonlinear terms of the models which trigger some
problems such as uncertainties on the parameters(Chen
& Ying 1993)(Misir, Malki & Chen 1996)(Tang, Man,
Chen & Kwong 2001b). FLC has been used for synchro-
nization of uncertain chaotic systems and has shown a
good performance than many classical control approaches
(Precup, Tomescu & Dragos 2014)(Ginarsa, Soeprijanto
& Purnomo 2013)(Sadeghi & Menhaj 2012)(Kuo, Pai &
Yau 2009)(Driss & Mansouri 2015b). Thus, fuzzy PI con-
troller is used to deal with uncertainties as an eliminator
of perturbations. Fuzzy PI controller is derived from the
convention analog PI controller which is given in the fre-
quency s-domain as follows:

uPIm(s) = (Kc
pm +

Kc
im

s
)Em(s), (6)

where Kc
pm and Kc

im, and Em(s) are the proportional gain
, integral gain and the tracking error signal, respectively.

To get the digital version, the bilinear transform is applied
s = (2/T )(z − 1)/(z + 1), where T > 0, is the sampling
time, which leads to the following form:

uPIm(z) = (Kc
pm −

Kc
imT

2
+

Kc
imT

1− z−1 )Em(z), (7)

letting

Kpm = Kc
pm −

Kc
imT

2
and Kim = Kc

imT,

and using the inverse z-transform, we get the digital form
of the controller

uPIm(kT )− uPIm(kT − T ) = Kpm[em(kT )−
em(kT − T ) +Kimem(kT )].

(8)

Dividing (8) by T , we obtain

∆uPIm(kT ) = Kpmevm(kT ) +Kimepm(kT ), (9)

where

∆uPIm(kT ) =
uPIm(kT )− uPIm(kT − T )

T
, (10)

evm(kT ) =
em(kT )− em(kT − T )

T
, (11)

epm(kT ) = em(kT ), (12)

∆uPIm(kT ) is the incremental control output of the PI
controller, epm(kT ) the error between the master and the
salve system, and evm(kT ) is the error rate. Equation (10)
can be written as the folloing form:

uPIm(kT ) = uPIm(kT − T ) + T∆uPIm(kT ). (13)

To get the fuzzy PI controller, the increment control input
T∆uPIm(kT ) will be replaced by a fuzzy control action
KuPIm∆uPIm(kT ) such that

uPIm(kT ) = uPIm(kT − T ) +KuPIm∆uPIm(kT ),
(14)

where KuPIm is a fuzzy control gain.

The inputs of the Fuzzy PI controller are the error between
the two systems, epm(kT ), and the error rate, evm(kT ).
On the other hand, the fuzzy PI controller has only one
output, the incremental control output ∆uPIm(kT ), which
is used as input to the slave system. The design of the
fuzzy PI controller needs three parts: fuzzification, control
rule base, and defuzzification. Fig.1 gives the membership
functions for the fuzzification of the inputs, whereas Fig.2
gives the membership functions of the output.

Fig. 1. The input membership functions.

Fig. 2. The output membership functions.

The design of fuzzy control rules is very important part
in order to ensure the stability of the controlled system.
The choice of the rules gives the relation between the
inputs and the output which represents the role of the
controller. The fuzzy PI controller serves as the eliminator
of perturbation terms that come from the uncertainties
on the parameters. More precisely, the output of the
controller must eliminate the perturbation terms according
to the inputs which represent the error and the change
of the error rate between the two chaotic systems, but
how the fuzzy PI controller can act only to the variation
of the error comes from the effect of uncertainties on
the parameters. In order to solve this problem, another
controller must be designed. The role of the new controller
is to ensure the synchronization when the parameters used
in the design of it are the same as the parameters of
the master and the slave systems without uncertainties.
The ability of the second control is restricted to ensure
the synchronization when there are no uncertainties. In
presence of uncertainties, the parameters will be unknown
and because the main controller is designed using known
parameters without adaptation, the synchronization is
destroyed, which leads to the emergence of errors come
from the effect of uncertainties on the parameters.

Using the membership functions, the following control
rules are assigned for the fuzzy PI controller:
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(R1) IF epm = epm.n AND evm = evm.n THEN PI-
output=o.p,
(R2) IF epm = epm.n AND evm = evm.p THEN PI-
output=o.z,
(R3) IF epm = epm.p AND evm = evm.n THEN PI-
output=o.z,
(R4) IF epm = epm.p AND evm = evm.p THEN PI-
output=o.n,

where epm.n means error negative, o.n means output
negative and PI-output is ∆uPIm(kT ). The role of the
fuzzy PI controller is to make the error converge to zero.
Thus, if epm is negative(epm.n) means that the error is
below zero, and if the error rate is negative(epm.n) implies
the controller at the previous step is driving the system
output downward, the control output, ∆uPIm(kT ), must
be set to be positive, for example. Similarly, for rule 4 (R4),
if the error is positive, and the error rate is positive implies
that the error is above zero, and the previous control
action is driving the system output upward. Therefore, the
control output must set to be negative. For the rules 2 (R2)
and 3 (R3), the control output is set to be zero because
the error rate is negative when the error is positive, which
drives the system output upward for R2, and vice versa
for R3.

Center of mass formula is used in order to defuzzify the
incremental control of the fuzzy control law

∆uPIm =

∑
MVI×MVO∑

membership value of input
, (15)

where MVI is membership value of input and MVO is
output corresponding to the membership value of input.
Twenty adjacent input-combination (IC) regions are used
to decompose the value-ranges of the two inputs, as shown
in Fig.3.
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Fig. 3. Regions of the fuzzy controller values.

The membership functions of the error signal, which given
by epm in Fig.1, are put over the horizontal Kim.epm(kT )-
axis, whereas the membership functions of the rate of
change of the erro signal, which given by evm in Fig.1,

are put over the horizontal Kpm.evm(kT )-axis, which form
the third axis. The intersection between the inputs se-
lects which IC region is concerned for the defuzzifica-
tion. For instance, if these three conditions are held,0 <
Kim.epm(kT ) < Lm , −Lm < Kpm.evm(kT ) < 0 and
Kpm.evm(kT ) + Kim.epm(kT ) > 0 implies that the IC1
region is selected. By using the rules and Zadeh’s logical
”AND” , the following input-output membership func-
tions are selected:

(R1)

{
The input membership value is epm.n
The output membership value is o.p

(R2)

{
The input membership value is epm.n
The output membership value is o.z

(R3)

{
The input membership value is evm.n
The output membership value is o.z

(R4)

{
The input membership value is evm.p
The output membership value is o.n

It is easy to verify that the above combinations are true for
the region IC2, too. Using formula (15) , the defuzzification
formula of the regions IC1 and IC2 is given as follows:

∆uPIm =
Q

epm.n+ epm.n+ evm.n+ evm.p
, (16)

where

Q = epm.n× o.p+ epm.n× o.z+ evm.n× o.z+ evm.p× o.n.

By using the following formulas that describe the geometry
of the input membership functions:

epm.p =
Kimepm(kT ) + Lm

2Lm
, epm.n =

−Kimepm(kT ) + Lm

2Lm
,

evm.p =
Kpmevm(kT ) + Lm

2Lm
, evm.n =

−Kpmevm(kT ) + Lm

2Lm
,

and by applying o.p = Lm, o.n = −Lm and o.z = 0, the
output in the regions IC1 and IC2 is given as follows:

∆uPIm(kT ) =
−Lm[Kim.epm(kT ) +Kpm.evm(kT )]

2(2Lm −Kim.epm(kT ))
.

(17)

Similarly, the output in the regions IC5 and IC6 is given
as follows:

∆uPIm(kT ) =
−Lm[Kim.epm(kT ) +Kpm.evm(kT )]

2(2Lm +Kim.epm(kT ))
.

(18)

The difference between the IC1,IC2 and IC5,IC6 is the sign
of Kim.epm(kT ), which is positive in IC1, IC2 and negative
in IC5,IC6. Therefore, the four regions can be combined
using the following equation:
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∆uPIm(kT ) =
−Lm[Kim.epm(kT ) +Kpm.evm(kT )]

2(2Lm −Kim. |epm(kT )|) .

(19)

In the same way, the output ∆uPIm(kT ) in the 20 regions
is given as follows:

in the regions IC 1,2,5,6

∆uPIm(kT ) =
−Lm[Kim.epm(kT ) +Kpm.evm(kT )]

2(2Lm −Kim. |epm(kT )|) ,

(20)
in the regions IC 3,4,7,8

∆uPIm(kT ) =
−Lm[Kim.epm(kT ) +Kpm.evm(kT )]

2(2Lm −Kpm. |evm(kT )|) ,

(21)

in the regions IC 9,10

∆uPIm(kT ) = −1/2[Kpmevm(kT ) + Lm], (22)

in the regions IC 11,12

∆uPIm(kT ) = −1/2[Kimepm(kT ) + Lm], (23)

in the regions IC 13,14

∆uPIm(kT ) = −1/2[Kpmevm(kT )− Lm], (24)

in the regions IC 15,16

∆uPIm(kT ) = −1/2[Kimepm(kT )− Lm], (25)

in the regions IC 18,20

∆uPIm(kT ) = 0, (26)

in the region IC17

∆uPIm(kT ) = −Lm, (27)

in the region IC19

∆uPIm(kT ) = Lm. (28)

From the rules, the EOP output acts against the error
variation. The appearance of errors between the master
and the slave systems indicates that the main controller
loses the synchronization due to the existence of the
perturbation terms. The EOP reacts by adding new terms
(ϕm = uPIm) to ( 5) so as to eliminate them. Thus, ( 5)
becomes





ė1 = h1(y, t)− f1(x, t) + g1(y, t) + U1(t)
ė2 = h2(y, t)− f2(x, t) + g2(y, t) + U2(t),

...
...

ėn = hn(y, t)− fn(x, t) + gn(y, t) + U3(t)

(29)

with





U1(t) = u1(y, x, t) + ϕ1(t)
U2(t) = u2(y, x, t) + ϕ2(t).

...
...

Un(t) = un(y, x, t) + ϕn(t)

(30)

If EOP eliminates the perturbation terms during the
synchronization process, the following condition is held:

gm(t) + ϕm(t) = 0, (31)

and (29) becomes





ė1 = h1(y, t)− f1(x, t) + u1(y, x, t)
ė2 = h2(y, t)− f2(x, t) + u2(y, x, t).

...
...

ėn = hn(y, t)− fn(x, t) + un(y, x, t)

(32)

This set of equations represents a simple system without
perturbations, and it is easy to design a controller using
Lypunov theory.

The rules are important to reach the stability; however,
they are not enough to ensure asymptotic stability. There-
fore, the following theorem (Chen & Ying 1993) (Misir
et al. 1996) , which is based on bounded-input bounded-
output Stability (BIBO) and the small gain theorem, is
used to find the gain Kim, Kpm, KuPIm and Lm.

Theorem 1. A sufficient condition for the nonlinear fuzzy
PI control system to be stable is that the given nonlinear
process has a bounded norm (gain) ‖N‖ < ∞ and the
parameters of the fuzzy PI controller satisfy

KuPIm(γKpm +Kim)Lm

T (2Lm −KMm)
‖N‖ < 1, (33)

where

γ = max {1, T}
and

KMm = max {KpmMpm,KimMvm} ,

with

Mpm = sup
k≥0
|epm(kT )| ,

Mvm = sup
k≥0
|evm(kT )| ≤ 2

T
Mpm.

The gain of MIMO nonlinear system is the largest gain
value across all input/output channels

‖N‖ = max {‖N1‖ , ‖N2‖ , .., ‖Nn‖} .

To calculate the gain of one of the input/output channels,
the following formula is used:

‖Nm‖ = sup
v1 6=v2,k≥0

|Nm(v1(kT ))−Nm(v2(kT ))|
|v1(kT )− v2(kT )| , (34)

where v1 and v2 are two bounded signals. The slave system
is used to calculate the gain ‖Nm‖





ẏ1 = h1(y, t) + g1(y, t) + vj
ẏ2 = h2(y, t) + g2(y, t) + vj ,

...
...

ẏn = hn(y, t) + gn(y, t) + vj

(35)

where j = 1, 2.
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4. DESIGN OF THE MAIN CONTROLLER USING
ACTIVE CONTROL METHOD

For the design of the main controller, active control
method is chosen (Vincent 2005) (Yassen 2005) (Bhalekar
& Daftardar-Gejji 2010). To illustrate the effectiveness of
the proposed approach, it is applied for the synchroniza-
tion of two uncertain Lorenz systems.

The Lorenz master system is
{
ẋ1 = a1(x2 − x1)
ẋ2 = (−x1x3 + c1x1 − x2),
ẋ3 = x1x2 − b1x3

(36)

where x1, x2, x3 are the state variables, a1, c1 and b1
are positive uncertain parameters. The Lorenz chaotic
trajectories are shown in Fig.5.

The Lorenz slave system is

{
ẏ1 = a2(y2 − y1) + u1
ẏ2 = (−y1y3 + c2y1 − y2) + u2,
ẏ3 = y1y2 − b2y3 + u3

(37)

where y1, y2, y3 are the state variables, a2, c2 and b2
are positive uncertain parameters, and u1, u2, u3 are the
controllers to be designed.

The dynamics of the error system is defined as

{
e1 = y1 − x1
e2 = y2 − x2,
e3 = y3 − x3

(38)

while the errors of the parameters of the systems are given
by

{
ea = a2 − a1
ec = c2 − c1.
eb = b2 − b1

(39)

After a simple calculation, the error states are given by
{
ė1 = g1(y) + a1(e2 − e1) + u1
ė2 = g2(y)− y2 − y1y3 + c1e1 + x2 + x1x3 + u2,
ė3 = g3(y)− b1e3 + y1y2 − x1x2 + u3

(40)

where {
g1(y) = ea(y2 − y1)
g2(y) = ecy1,
g3(y) = −eby3

(41)

A main controller

Eliminator of the

perturbations(EOP)

Error system

࢓࣐

࢓࢛ +
+

ࡾ = ૙
࢓ࢁ

Fig. 4. Block diagram of the EOP and the main controller,
where R(t) = 0 is the reference of the error system.
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Fig. 5. The chaotic trajectories of Lorenz system.

represents the perturbation terms . All the perturbation
terms can be neglected due to the actions of the EOP, and
(40) becomes

{
ė1 = a1(e2 − e1) + u1
ė2 = −y2 − y1y3 + c1e1 + x2 + x1x3 + u2.
ė3 = −b1e3 + y1y2 − x1x2 + u3

(42)

Hence, the active controllers are defined as follows:

{
u1 = −e1 − a1(e2 − e1)
u2 = −e2 + y2 + y1y3 − c1e1 − x2 − x1x3.
u3 = −e3 − y1y2 + x1x2 + b1e3

(43)

The parameters used in the design of the active controllers
are fixed to be a1 = a2 = 10, b1 = b2 = 8/3 and
c1 = c2 = 28, which restrict the controller to reach the
synchronization when the parameters of the two systems
are the same as the fixed parameters of the active con-
trollers. The substitution of (43) into (42) gives a linear
system of the form

{
ė1 = −e1
ė2 = −e2.
ė3 = −e3

(44)

Choose a Lyapunov function of the form

V (e) =
1

2
(e21 + e22 + e23). (45)

The derivative of V is
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V̇ (e) = −e21 − e22 − e23, (46)

this implies that the controlled system is globally asymp-
totically stable.

The estimation of the parameters a2, b2 and c2 is concluded
for (41) and (31) as follows:





â2(t) =
−ϕ1(t)

y2(t)− y1(t)
+ a1 y2 − y1 6= 0

ĉ2(t) =
−ϕ2(t)

y1(t)
+ c1 y1 6= 0.

b̂2(t) =
ϕ3(t)

y3(t)
+ b1 y3 6= 0

(47)

Fig.6 shows the detailed control scheme used for the
synchronization of uncertain chaotic systems.

5. NUMERICAL RESULTS

The described approach is applied for the synchronization
of two uncertain Lorenz systems. There are two objectives
to reach: the first is to make the error dynamics asymptot-
ically stable, and the second is to estimate the unknown
parameters of the systems.

For the numerical simulation, the fourth order Runge-
Kutta method with T = 0.001 is used. The parameters
of the master and the slave systems without perturbations
are chosen as follows:

a1 = 10, c1 = 28, b1 = 8/3,

a2 = 10, c2 = 8/3, b2 = 8/3.

The parameters of the systems are randomly perturbed
using a generator of perturbation (GP) based on MATLAB
function ”rand”.

The initial conditions are taken as:

x1(0) = −5, x2(0) = 5, x3(0) = 0,

y1(0) = −6, y2(0) = −8, y3(0) = 12.

The parameters ,Kim,Kpm,KuPIm and Lm, can be de-
fined using theorem 1 and (34) which is used to determine
the gain ‖Nm‖. However, the gain ‖Nm‖ depends on the
uncertainties which are unknown. In order to solve this
problem, worst-case gains must be defined, which repre-
sents the maximum gains over-all possible values of the
parterres of the slave system. Tables 1,2 and 3 give the
gain ‖Nm‖ variations as a function of the parameters a2,
b2, c2.

The gain of the controlled system (slave system) is the
maximum of the worst-case gains

‖N‖ = max {4.6192, 5.6824, 4.5644} = 5.6824.

Thus , the parameters of the controllers are given as
follows:

L1 = L2 = L3 = 1,
Kp1 = 0.9,Ki1 = 2,KuPI1 = 2.43,
Kp2 = 1.4,Ki2 = 0.2,KuPI2 = 1.3,
Kp3 = 1,Ki3 = 1.2,KuPI3 = 2.

In order to illustrate the performances of the EOP and the
main controller, the range of time is divided into five parts.

Each part corresponds to a state; this allows to figure out
acts of the EOP. The different considered situations are
reported in Table 4.

Fig.7 and Fig.8 show the behavior of the main controller
and the EOP concerning the synchronization of the two
systems. The following behaviors are observed for the
different cases reported in Table 4:

1. For 0 < t < 5, the controllers are turned off, so the
trajectories of the two systems are uncorrelated.
2. For 5 < t < 15, there are no perturbation terms due
to uncertainties on the parameters, the active controller is
turned on, and the two systems are perfectly synchronized.
3. For 15 < t < 25, the generator of perturbation is turned
on, this factor destroys the synchronization between the
two systems. The active controller cannot handle the new
situation.
4. For 25 < t < 35, the EOP is turned on, the error
dynamics converge to zero, and the active controller works
well as there is no perturbation.
5. For 35 < t < 50,the EOP stops exactly when the
perturbation on the parameters is turned off.

Table 4. The table of the states.

Time(sec) Active controller GP EOP

0 to 5 Off Off Off
5 to 15 On Off Off
15 to 25 On On Off
25 to35 On On On
35 to 50 On Off On
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Fig. 8. The actions of EOP and the main controller.
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Fig. 6. The proposed control scheme.

Table 1.

a2 4 5 6 7 8 9 10 11 12 13 14 15 16

‖N1‖ 0.5728 0.8932 3.9990 3.9441 4.0783 3.9083 3.4187 3.1995 2.2931 4.3068 4.6192 4.0652 4.5133

Table 2.

c2 22 23 24 25 26 27 28 29 30 31 32 33 34

‖N2‖ 0.8964 3.1250 4.4389 5.2312 3.8311 3.6413 5.3288 4.2208 4.8563 5.0255 5.0460 5.6824 5.6548

Table 3.

b2 8/3-1.2 8/3-1 8/3-0.8 8/3-0.6 8/3-0.4 8/3-0.2 8/3 8/3+0.2 8/3+0.4 8/3+0.6 8/3+0.8 8/3+1 8/3+1.2

‖N3‖ 3.7341 3.7110 3.8548 4.1019 3.5795 3.7194 3.8815 3.7964 4.4686 4.5644 3.7546 4.3534 3.8984

The second part of the numerical simulation is focused on
the estimation of the unknown parameters of both systems
so as to check out the performance of the adaptive scheme.

To appreciate the importance of the LI condition, the
authors, in (Sun et al. 2013), introduced multi- switching
synchronization between two uncertain Lorenz systems
(Wang & Sun 2011) as an example. They indicated the
differences between the first and the second switches in
the estimation of unknown parameters sense. They found
that the estimation of the unknown parameters was failed
in the first switch Fig.9; however, in the second switch, the
estimation was successful. The failure to estimate of the
unknown parameters was referred to the function terms
−(x2 − x1), x3 and −x1 which are linearly dependent
to −(y2 − y1), y3,−y1; as a result, all the six unknown
parameters have been failed to be identified.

Many modifications have been occurred to avoid the
problem of linear dependence of the function terms such as
altering the synchronization orbits, adding extra signals to
the state function, changing the structures of the function
groups and adjusting the persistent time and transient
time.

In the next part, the performance of the proposed adap-
tive approach is checked with the same case studied in
(Sun et al. 2013). It is possible to identify the unknown
parameters using (47). However, in the presence of the
unknown parameters in both systems, (47) gives only the
error between the parameters of the systems and becomes





ea(t) =
−ϕ1(t)

y2(t)− y1(t)
y2 − y1 6= 0

ec(t) =
−ϕ2(t)

y1(t)
y1 6= 0.

eb(t) =
ϕ3(t)

y3(t)
y3 6= 0

(48)
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Fig. 9. The wrong estimation of the unknown parameters
of the first switch.
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Fig. 10 shows the error between the parameters of both
systems in the case when initial values of the unknown

parameters are chosen as: â1(0) = 2, b̂1(0) = 10, ĉ1(0) =

−6, â2(0) = −2, b̂2(0) = 5, ĉ2(0) = 1. The true values of
the parameters of the master system are a1 = 11, b1 =
8/3+0.4, c1 = 26, while the parameters of the salve system
are a2 = 9, b2 = 8/3 + 0.2, c2 = 27.

To find the true values of the parameters, the unknown
parameters of the master or the slave system must be
estimated at least. To solve this problem, a reference
Lorenz system with known parameters must be designed.
The reference system allows to estimate the parameters
of the master or the slave system. Hence, the unknown
parameters of the slave system can be estimated using (47)
as follows:




â2(t) =
−ϕ1(t)

y2(t)− y1(t)
+ ar y2 − y1 6= 0

ĉ2(t) =
−ϕ2(t)

y1(t)
+ cr y1 6= 0,

b̂2(t) =
ϕ3(t)

y3(t)
+ br y3 6= 0

(49)

where ar = 10, br = 8/3, cr = 28 are the parameters of the
reference system.

The estimation of the unknown parameters of the master
system can be derived from (48) and (49) as follows:
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Fig. 10. The parameter errors using (48).
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


â1(t) = â2(t)− ea(t)
ĉ1(t) = ĉ2(t)− ec(t).
b̂1(t) = b̂2(t)− eb(t)

(50)

Fig.11 shows the estimation of the parameters of the
master and the slave systems using (48),(49) and (50).
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Fig. 11. The identification of the parameters.

6. CONCLUSION

The defects which have appeared in many adaptive syn-
chronization approaches have given many questions about
the way that should be taken to avoid them. In this paper,
a novel adaptive synchronization scheme is introduced in
order to develop an easy and efficient method for chaos
synchronization and estimation of unknown parameters.
The synchronization and the estimation of unknown pa-
rameters are performed by combining the fuzzy set theory
and Lyapunov theory. The proposed approach is applied
successfully without using many mathematical formulas
and without taking into account the linear independence
condition which makes it easier to use. The problem of
LI condition is solved by involving fuzzy PI controller in
a part of the controller as an eliminator of perturbation
terms, and this reconfirm that FLC is a powerful tool that
concerns the control of very complex and complicated non-
linear systems like chaotic systems. The effectiveness of the
proposed approach is verified by numerical simulations.
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hyperchaotic system with uncertain parameters
based on single-input controller, Nonlinear Dynamics
63(3): 447–454.

Yassen, M. (2005). Chaos synchronization between two
different chaotic systems using active control, Chaos,
Solitons & Fractals 23(1): 131–140.

Yau, H.-T. & Chen, C.-L. (2006). Chattering-free fuzzy
sliding-mode control strategy for uncertain chaotic
systems, Chaos, Solitons & Fractals 30(3): 709–718.

Yau, H.-T. & Shieh, C.-S. (2008). Chaos synchronization
using fuzzy logic controller, Nonlinear analysis: Real
world applications 9(4): 1800–1810.

Zadeh, L. A. (1965). Fuzzy sets, Information and control
8(3): 338–353.

Zhang, H., Ma, X.-K. & Liu, W.-Z. (2004). Synchroniza-
tion of chaotic systems with parametric uncertainty
using active sliding mode control, Chaos, Solitons &
Fractals 21(5): 1249–1257.

Zhang, J., Li, C., Zhang, H. & Yu, J. (2004). Chaos
synchronization using single variable feedback based
on backstepping method, Chaos, Solitons & Fractals
21(5): 1183–1193.

Zhao, J. & Lu, J.-a. (2008). Using sampled-data feed-
back control and linear feedback synchronization in a
new hyperchaotic system, Chaos, Solitons & Fractals
35(2): 376–382.


	Introduction
	Synchronization problem and system description
	Design of the Eliminator Of Perturbation (EOP) 
	Design of the main controller using active control method
	Numerical Results
	Conclusion

