
CEAI, Vol.18, No.2 pp. 28-36, 2016                                                                                                                  Printed in Romania 
 
 

Experimental Validation of an enhanced Optimal Adaptive Control Scheme using 
Dominant Poles for a Variable Area Process 

 
Anuj Abraham, N. Pappa 



Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai 600044 
India (Tel: +91 8056275035; e-mail: anuj1986aei@gmail.com, npappa@rediffmail.com) 

Abstract: This paper describes an efficient control scheme to enhance the adaptive control in real time 
and an approach to Optimal Model Reference Adaptive Control (OMRAC). The conventional MRAC 
method has its difficulty in choosing the reference model and adaptation gain ‘γ’. An OMRAC adaptive 
controller is used to identify the process dynamics automatically. The selection of reference models in 
OMRAC scheme is based on the Multiple Models (MM) depending on the operating regime of the 
process. In this proposed work, the reference model considered is a second order system having fixed 
roots in denominator polynomial representing the most dominant poles of the process, determined using 
Dominant Pole Algorithm (DPA). The adaptive controller employs an optimal search algorithm for 
tuning ‘γ’ using Particle Swarm Optimization (PSO), that best fits the observed response. Experimental 
validation is performed in a variable area conical tank process and comparative performance evaluations 
are analyzed for standard MRAC, conventional gain scheduled PID and proposed OMRAC method. The 
result gives consistently better setpoint tracking mechanism and error minimization. 
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1. INTRODUCTION 

Conical tanks in hydro-metallurgical industries, concrete 
mixing industries, food process industries, fertilizer industries 
and wastewater treatment industries find exceptionally tight 
control for the best product quality. It is important to keep the 
desired level in a conical tank because the difference in shape 
gives rise to the nonlinearity in the process. An adaptive 
control scheme was used to modify the behaviour in response 
to the changes in dynamics of the processes and the 
disturbances acting on the process (Swarnkar P. et al., 2010). 
Hence, a modified adaptive control technique is necessary to 
obtain the complete adaptive nature. Adaptive control will 
change the control parameters in real time and practical 
applications use MRAC scheme, to compensate for variations 
in the system environment and its nonlinearity (Samah A. M., 
2010). The MRAC scheme should make the process follow a 
reference model. When designing an MRAC using the MIT 
rule, the designer needs to choose the reference model, 
controller structure and the tuning gains for the adjustment 
mechanism. In literature, many efforts have been attempted 
to formulate the reference model (Jang J. et al., 2008 and Tao 
G, 2003). The improved MRAC method is based on a 
recently proposed simulated work in control schemes for a 
non-linear dynamical system design (Anuj Abraham et al., 
2014). In the proposed method, the reference model is 
replaced by a group of weighted reference models combined 
together for operating in the process regime. The focus of the 
work described in this paper is to retain two maximum 
dominant poles of the process in the reference model using 
DPA algorithm. The static sensitivities determined in each 
linearized process model of numerator polynomial are chosen 
as the dynamic sensitivity in the reference model, which 
changes depending on the operating region. An optimal 
search algorithm using PSO (Praveen Kumar Tripathi et al., 

2007), is also used to find the optimal value of the adaptation 
gain in the MIT rule for the design (Bergh F. et al., 2006). In 
this work, the real time implementation is carried out for 
three different control schemes, namely standard MRAC, 
conventional gain scheduled PID and proposed OMRAC. 
The servo and regulatory responses are obtained in the wide 
operating range of the conical tank process and a detailed 
comparison is made on the performance criteria like ISE and 
IAE. 

2. PROCESS DESCRIPTION 

2.1 Mathematical modelling 

The process considered is a conical tank system and the 
schematic diagram of the process is shown in Fig. 1. The 
various process parameters used in the mathematical 
modelling are listed in Table 1. 

 

Fig. 1. Schematic diagram of conical tank process. 
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Table 1. Variables and parameters of conical tank 
process. 

Variable  Variable Name Unit 

inF  Volumetric flow rate of the inlet 
stream 

LPH 

outF  Volumetric flow rate of the 
outlet stream 

LPH 

 R Top radius of the conical tank  cm 

 r 
Radius of the conical tank at 
steady state  

cm 

 H Maximum level of the conical 
tank  

cm 

 h Level of the conical tank at 
steady state  

cm 

θ   Half apex angle degrees 

The Ordinary Differential Equation (ODE) representing the 
mathematical model and simplified expression model of a 
conical tank process are given by Eq.(1) and Eq.(2) 
respectively. 

2F -K h Hdh in= 2 2dt πR h

     (1) 

2 21 dh 2πR h dh
F - F = A +outin 23 dt dtH

 
 
 

          (2) 

2.2 Experimental setup 

The experimental setup of the conical tank process available 
at the process control laboratory is shown in Fig. 2. 

 

Fig. 2. Experimental setup of a conical tank process. 

The level of liquid in the tank is measured by EMERSON 
make capacitive differential pressure transmitter whose 
output is in the form of 4-20 mA current signal. The control 
valve is fitted with EMERSON make smart valve positioner 

which will take 3–15 psi as an input signal. The level 
transmitter and the control valve are interfaced to a PC with 
the help of USB 6008 DAQ device. It has eight analog input 
channels (AI0-AI7) and two analog output channels (AO0-
AO1). The current signal from transmitter is converted into 
voltage signal by a current to voltage (I-V) converter so that 
it could be fed directly into the interfacing device unit. 
Similarly, the voltage signal from the interfacing device unit 
is converted into current signal by a voltage to current (V-I) 
converter and then to pressure signal by a current to pressure 
(I-P) converter so that it could be fed to the control valve to 
take corresponding control action. A detailed schematic 
diagram of the conical tank process available at the process 
control laboratory is shown in Fig. 3. 
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Fig. 3. Schematic diagram for liquid level control of a conical 
tank process. 

In the conical tank process the outflow from the reservoir is 
pumped continuously for maintaining a constant head at the 
main tank reservoir. The inflow into the conical tank is 
constant from the main tank reservoir, whereas the inflow 
into the conical tank is a function of control valve position to 
have a negligible effect on the pump flow. The nominal 
values for process parameters of experimental conical tank 
process are listed in Table 2. 

3.  OPTIMAL MODEL REFERENCE ADAPTIVE 
CONTROL SCHEME 

3.1 The Proposed Method 

The proposed OMRAC can switch the reference models 
instantly depending upon the operating region based on the 
weights scheduled in accordance with the given input flow 
(Han Z. et al., 2012, Kuipers M. et al., 2010; Hespanha J. et 
al., 2001). The schematic diagram of the proposed optimal 
MRAC scheme with multiple reference models is shown in 
Fig.4, in which the weight scheduler will select the proper 
linearized model corresponding to the operating regime of the 
process (Anderson B. D. O. et al., 2001 and Narendra K.S. et 
al., 1995). 
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Table 2. Nominal values for process parameters of conical 
tank process. 

Part Name   Details 

Conical 
tank  

Material  : Stainless steel  

Height : 60 cm 

Top diameter  : 43.68 cm 

Total Capacity : 24 litres 

Half  apex angle : 20 degrees 

Pump  
Type : 

Centrifugal, 
0.5HP 

Make : Kirloskar 

Differential 
Pressure 
Transmitter 
(DPT) 

Type  : Capacitance 

Make : 
Rosemount 
(EMERSON) 

Supply : 
12 to 45 VDC 
Max 

Output : 4 - 20 mA 

Max W.P : 140 kg/cm2 

Control 
valve 

Type  : Air to Open 

Size 

: 

Body: 3/4", 
Trim:1/2",  
Pneumatic 
actuated 

Flow 
coefficient, Cv 

: 5 

Input : 3 -15 psi 

Actuator 
pressure 

: 35 psig (max) 

I/P 
Converter 

Make : ABB 

Input : 4 - 20 mA 

Output : 3-15 psi 

Supply : 20 ± 1.5 psi 

Air filter 
regulator 

Input pressure  : 18 kg/cm2(max) 

Output pressure : 2.1 kg/cm2 

In the OMRAC control scheme, the reference model 
considered is a second order system having fixed the roots of 
the denominator polynomial representing the most dominant 
poles of the process, determined using Dominant Pole 
Algorithm (DPA). 

A detailed description of calculating the dominant poles of 
the system using Dominant Pole Algorithm is shown in 
section 3.2. The static sensitivities determined in each 

linearized process model of numerator polynomial are chosen 
as the dynamic sensitivity in the reference model which 
changes depending on the operating region. 

When there is a step change in setpoint, an appropriate 
reference model is chosen based on which the controller 
parameters are adjusted quickly with optimized adaptation 
gain. The adjustment mechanism is not iterative and also, the 
proposed OMRAC scheme is not computationally intensive. 
Hence, it can be used for online applications. The time taken 
by the optimal adjustment mechanism is found to be very 
small when it is compared to the sampling time.  

REFERENCE MODEL 1

REFERENCE MODEL 2

REFERENCE MODEL N

WEIGHT 
SCHEDULER

CONTROLLER PROCESS

OPTIMAL 
ADJUSTMENT 
MECHANISM

 
Fig. 4. Optimal MRAC Scheme with Multiple Models. 

The multi reference model defines the desired system 

dynamics and produces a model output mny . 

   

mn

n
q r 2 2

j k k
j=1 k=1

Y (s) = G(s) R(s)

K
 = R(s)           (3)

s s+p s +2ξω s+ω  
 
 

 

where, n=1,2…N;  N is the total number of linear models. 
The one which has the dominant effect in the system 
transients is known as dominant closed loop pole and 
determined using DPA algorithm. Assume, the dominant 

complex for k=1 as 2 2
1 1s +2ξω s+ω  .  

where, 

 is the damping ratio , and 

1ω is the natural frequency. 

The value of K which is known as dynamic sensitivity in the 
referenced model is selected from the each static sensitivities 
obtained from the linearized model in the various operating 
regime given in Table 4. Due to dynamic sensitivities Kn, 
there is multiple reference models present in the proposed 
scheme (Anderson B. D. O. et al., 2001). 

For simplicity, let us consider the nonlinear plant dynamics 
assumed to behave as described in Eq. (4), 

p p  (4)
2

b
Y (s) =  G (s) U (s) =                              

s +s+a
 

The process dynamics of the considered process is given in 
Eq.(5) 
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p p p+ 
 

y + y ay = bu                                                  (5)   

Also, the process dynamics should follow the reference 
dynamics as given by Eq.(6), 

2
mn k mn k mn n (6)
 

y + 2ξω y + ω y = K r                              

Now, assume the control law to be in the form as shown in 
Eq. (7), 

1n p 2nu = r θ - y θ                                                    (7)  

where, 1nθ and 2nθ  represent two parameters to be estimated 

from the control law. 

Now substituting Eq. (7) in Eq. (5), the expression obtained is 
given in Eq. (8). 

p p 2n p 1na+bθ θ r                   
 

y + y + ( )y = b             (8)  
 

On comparing Eq.(8) and Eq.(6), the assumed estimated 

values of 1nθ and 2nθ are obtained as shown in Eq.(9) and 

Eq.(10) respectively. 

k

n
1n

2

2n

    (9)

   (10)

K
θ =                                                        

b

ω -a
θ =                                                     

b

 
 
 
 
  
 

 

for all values of kξω = 0.5  

However, as the true values ‘a’ and ‘b’ are unknown, 

adaptation mechanism estimation for 1nθ and 2nθ are to be 

determined. The experiments are conducted using the MIT 
rule. The cost function J  is defined as shown in Eq.(11). 

21
J= e                                                                  (11)

2
 

where ‘e’ is the error signal defined by, p mne = (y - y ) . 

The main idea is to change θ along the steepest descent of the 
cost function J . Cost function will be reduced if a small step 
along θ; that is, the steepest descent condition is satisfied. 
Therefore, the time derivative is proportional to the negative 
gradient with an adaptation gain γ as given in Eq.(12). 

(12)
θ J e(θ )

e                                      
t t θ

d

d
 
 

   
   

Now, 1n
p

2n

(13)
bθ

y = r                                     
s+a+bθ

 
 
 

 

The sensitivity derivative
e(θ)

θ




, is calculated as shown in 

Eq.(14). 

 p mn
1 1

1n
mn

1 2n

2n

(14)

e
y -y

θ θ

bθ
        r-y

θ s+a+bθ

b
        = r                                          

s+a+bθ

n n

n


 

 





 
 
 

 
 
 

 

Similarly, 

 p mn
2n 2n

1n
mn

2n 2n

p
2n

e
y -y

θ θ

bθ
         r-y

θ s+a+bθ

-b
         = y                                       (15)

s+a+bθ

 


 





 
 
 

 
 
 

 

The sensitive derivatives found in Eq.(14) and Eq.(15) are 
substituted in Eq.(12), to obtain the updated law with 

estimated parameters 1nθ and 2nθ as given in Eq.(16) and 

Eq.(17) respectively. 

1
2 2

1 1

1 2 2
1 1

θ b
e                      

t s +2ξω s+ω

b
θ e                              (16)

s +2ξω s+ω

n

n

d
r

d

r





 

  

 
 
 

 
 
 

 

Similarly, 

2n
p2 2

1 1

2n p2 2
1 1

θ b
e y                      

t s +2ξω s+ω

b
θ y                             (17)

s +2ξω s+ω

d

d

e







 

 
 
 

 
 
 

 

The obtained response from open loop test which represents 

first order transfer function with zero dead time mnG (s)
 
is 

given in Eq. (18). The reference models are categorized into 
six regions as indicated in Table 4. 

p
mn

K
G (s)                                                      (18)

1+sτ
  

An OMRAC adaptive controller is used to identify the 
process dynamics (reference model) automatically for the 
step changes. The adaptive controller employs an optimal 
search algorithm that finds the reference model based on the 
operational region of interest by optimally tuning for an error 
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minimization that best fits the observed response is given in 
section 3.3. 

3.2 Dominant Pole Algorithm (DPA) 

DPA computes dominant poles of the transfer function G(s)  
based on Newton method [7]. A pole i  that corresponds to a 

residue iR with large magnitude jR is called a dominant 

pole. A dominant pole is well observable and controllable in 
the transfer function. This can also be observed from the 
corresponding Bode plot of G(s) , where peaks occur at 

frequencies close to the imaginary parts of the dominant 
poles of G(s) . 

 
n1 i

i
i=1

i

G (s)=C sI-A B =                            (19)
s

R







 

where, residue    i i iC  BR x y  and i i i, ,x y  are eigen 

triplets (i=1,2,..n). 

Consider a pole λ=α+ jβ, with residue R then it is shown that, 

  

 
n-1

n-1
j=1

lim G ( ) lim

C
                  G ( )      (20)

j

R
j

j j

R
j

j


      


 


   

  


 

Hence pole j is dominant if
Re( )

j

j

R


is large and causes 

peak in the Bode plot. Model identification of the conical 
nonlinear process is accomplished by means of open loop 
procedure. With a specified variation in the input variable 

inF , the output level H for the system is recorded. The 

equivalent transfer function iG (s) given in Eq.(21) is 

obtained by mentioning 3 poles and 0 zeros in the system 
identification toolbox. 

i
0 .2086

3 2 549.3327 58.4490 5.844 10
G (s)   (21)

s s s

 
      

  

The various poles obtained are p1 = -1 10-6, p2 = -1.2147, p3 

=   -48.1180. 

System identification of the nonlinear process is done using 
black box modelling. Among the 3 poles determined, two 
most dominant poles in the process are selected using DPA 
algorithm and are fixed as the poles in the multiple reference 
models. 

3.3 Heuristic Search Algorithm  

Particle Swarm Optimization is one of the bio-inspired 
computation techniques, based on the social behaviors of 
birds flocking or fish schooling, biologically inspired 
computational search (Chang WookAhn et al., 2006; Zwe-

Lee Gaing, 2004). This optimization method is an Artificial 
Intelligence (AI) technique that can be used to find 
approximate solutions to extremely difficult or impossible 
numeric maximization and minimization problems (Kennedy, 
J. et al., 1995). The PSO search optimization algorithm is 
mathematically described using equations from Eq.(22) to 
Eq.(26). 

1 1

2 2

t+1 t
i,D i,D

t t
i,D i,D

t t (22)i,D i,D

V =WV +C R P -S

                      +C R G -S                         

 
  

 
  

 

max m
max

max

    (23)
W -W

W =W - iter                                  
iter

 

t+1
i,D

t t tV C R P -S1 1i,D i,D i,D

t tC R G -S   (24)2 2 i,D i,D

V = Ψ +  

             + Ψ                           

  
    

  
    

 

2
,

22 4

where,  ; 4                                  (25)1 2C C

  

 

 
  

  
 

 
t+1 t t+1
i,D i,D i,D     (26)S = S + V                                             

 

where, 1R and 2R  are the random numbers in the range (0-

1), 1C and 2C are the cognitive and global learning rate. 

The parameters and variables used in PSO optimization 
algorithm are listed in Table 3. 

Table 3. Variables and Parameters of PSO. 

Variable Variable Name 

W  Inertia weight 
1t

Di,V 
 Current velocity of the particle 

t
Di,S  Current position of the particle 

1t
Di,V 

 Updated velocity 

1t
Di,S 

 Updated position 

maxW  Maximum iteration number 

minW  Minimum iteration number 

t
Di,P  pbest, i = 1,2…N particles 

t
Di,G  gbest, i = 1,2…N particles 

iter Current iteration 

maxiter  Maximum iteration 

Ψ  Construction factor 
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It is the velocity vector that drives the optimization process, 
and reflects both the experiential knowledge of the particle 
and socially exchanged information from the particle’s 
neighbourhood.  

4. CONVENTIONAL METHODS 

4.1 Standard MRAC method  

The MRAC method is a direct adaptive control technique 
which uses a reference model and adjustment mechanism 
strategy, so that the process output tracks the output of a 
reference model. In this paper, a standard MRAC scheme is 
designed using MIT rule. The reference model chosen is first 
order with a constant gain of 2.5 and time constant of 50 s for 
the entire operating regime.    

4.2 Gain Scheduled PID method  

The conventional gain scheduled PID method is very easy to 
apply and parameters can be changed quickly in response to 
changes in plant dynamics, but it is an open-loop adaptation 
scheme with no real learning or intelligence (Pakmehr M. et 
al., 2014). For the lower regions of operation, the controller 
settings will not work properly and more multiple models are 
required for a tight control (Stefanovic M. et al., 2008). 

The nonlinear conical tank process is split into 6 linear 
regions and their respective PI controller settings are 
calculated using Direct Synthesis method given by Eq. (27), 

c c
p

min
1

K =       ;       τ = τ , ( )                              
K

(27)  

where, cK is Proportional gain and cτ is Integral time. 

Table 4. Operating points of the conical tank process. 

Operating 
regime 
zones 

Inflow 
Rate  

Height 

(LPH) Vmax (cm) (V) 
0-10 0     - 520.10 2.5 4.2 1.3 

11-27 520.10 - 647.40 3.0 20.0 2.3 

28-38 647.40 - 750.57 3.5 32.9 3.2 

39-48 750.57 - 830.30 4.0 44.0 3.9 

49-56 830.30 - 880.64 4.5 52.5 4.5 

56-57 880.64 - 950.00 5.0 57.0 4.8 

Process model for various zones of conical tank process and 
the controller parameters obtained for a gain scheduling 
method are summarized in Table 5.   

 

 

Table 5. Process model and controller parameters of 
conical tank process for gain scheduling method. 

 
 
 

Zones 

Process model 
parameters 

Controller parameters 
settings 

Proportion
al gain 

Time 
Constant 

Proportion
al gain 

Integral 
time 

Kp 
τ (min

) 
Kc cτ (min

) 
1 0.399 0.067 2.500 0.067 

2 2.100 0.500 0.476 0.500 

3 1.727 0.520 0.579 0.520 

4 1.475 1.310 0.678 1.310 
5 1.140 1.800 0.877 1.800 
6 0.599 2.910 1.670 2.910 

5.  RESULTS AND DISCUSSION 

5.1 Multiple reference model scheme validation  

The response of multiple reference models for stepping 
reference input in the various operating regime is shown in 
Fig.5. It is observed that the reference model has good 
tracking capabilities in each region of operation with stepping 
reference input. The sampling time chosen for the simulation 
and real process is 0.5 s. 

The gain characteristics of the system iG (s)  is compared 

with the model equivalent using DPA algorithm as shown in 
Fig.6. It is observed that the essential dynamics of the system 
lie in the frequency range of 0.5 to 1 rad/s from the frequency 
response. The magnitude drops in both the very low and the 
high frequency ranges. 

 

Fig. 5. Response of multiple reference model scheme for 
stepping reference input variation. 

The two most dominant poles among p1, p2 and p3 in the 
process are obtained as p1 and p2, using DPA algorithm and 
are fixed as the poles in the multiple reference models. The 
denominator polynomial of the multiple reference models is 
of the form as shown in Eq.(28). 
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2 -5
1 2

+(s - p )(s - p ) = s  1.2147s + 0.1215×10   (28)  
      

 

Fig. 6. Comparison of gain characteristics of iG (s) and 

model equivalent using DPA. 

5.2 Controller parameter estimation 

The two estimated parameters 1θ and 2θ  
of the controller 

represented in control law, are generally updated at each 
sampling instant based on the current estimates of the model 
parameters, so that its performance can be made similar to the 
reference model.  

The algorithm ensures a better parameter estimates for 
control design and the variation in controller parameter 

1θ and 2θ , obtained using PSO for stepping reference inputs 

is shown in Fig. 7 and Fig. 8 respectively.  

 
Fig. 7. Variation in controller parameter 1θ obtained using 

PSO for stepping reference input. 

It is observed from the Fig. 7 and Fig. 8, that atleast one 
estimated parameter will converge to zero and provides a 
required nominal value of inflow to the conical tank. When 
the inflow balances with the outflow in the conical tank, then 

1θ and 2θ  
variations are constant. The controller parameters 

are adjusted to compensate for the changes in dynamics of 
the plant for desired closed loop performances.  

 

Fig. 8. Variation in controller parameter 2θ obtained using 

PSO for stepping reference input. 

5.3 Closed loop response of OMRAC scheme 

In the proposed work, the values of PSO parameters chosen 
are listed in Table 6. The sum of cognitive learning rate (C1) 
and global learning rate (C2) is chosen to be a constant value 

which is greater than 4, (i.e. C1+C2=
φ>4) (Kennedy, J. et al., 

1995). Total number of iteration during the search is equal to 
N multiplied by the number of swarm steps. The objective 
function for the optimization algorithm is error minimization. 
The optimal adaptation gain of MRAC using PSO algorithm 
is obtained as 0.2773.  

 

Fig. 9. Setpoint tracking of level in a conical tank for 
proposed OMRAC method. 

Fig. 9 gives the real time closed loop results for setpoint 
tracking of level in a conical tank for the proposed optimal 
MRAC method. The response in Fig.9 shows for an actual 
and filtered process variable of level in the conical tank 
system. The filtering or smoothening of process variable 
values is done based on an averaging method using ten 
previous data sets and indicates good tracking performances. 

The level in the conical tank goes to ramp when an 
unbalanced state occurs at the inflow and outflow. For any 
change in setpoint, the manipulated flow must drive past the 
equilibrium for the level to reach the new setpoint. When the 
volume of the inflow and outflow are equal, then the ramp 
stops. When a decrease in setpoint is given, then the feed
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 flow must be driven lower than the exit flow. A higher level 
does not force out more flow and a lower level does not force 
out less force. The response for proposed control scheme 
shows a better performance for good tracking capabilities. 
The error curve of proposed optimal MRAC control scheme 
is plotted in Fig.10. 

 

Fig. 10. Error variation of proposed OMRAC control scheme. 

Table 6. PSO parameters. 

Parameters Value 

Dimension of the search (D) 3 

Total number of swarm (N) 50 

Number of swarm steps 50 

Cognitive learning rate (C1) 2.2 

Global learning rate (C2) 2.2 

It is observed in Fig. 10 that the proposed optimal MRAC 
method has minimum error and converges to zero very 
quickly. The quantitative analysis of error response for the 
proposed method is listed in Table 7. 

The control force u depends on the plant output, reference 

input and the estimated parameters 1θ and 2θ .The maximum 

inflow rate of the tank ( inF ) is calculated as 950 LPH. The 

control force variation of proposed control scheme is plotted 
in Fig.11. The cluster of points represents the control force at 
various sampling instants of proposed OMRAC control 
scheme. 

 

Fig. 11. Control force variation of proposed OMRAC control 
scheme. 

It is observed from Fig. 11, that when a decrease in setpoint 
is given, then the feed flow is driven lower than the exit flow. 

Similarly, for an increase in setpoint, the feed flow is driven 
to maximum inflow rate. 

5.4 Comparison of gain scheduled PID and proposed 
OMRAC scheme 

The response to set point changes in the level for a conical 
tank system with standard MRAC, gain scheduled PID 
control structure and proposed optimal MRAC control 
structure is shown in Fig. 12. The responses indicate good 
tracking capabilities of the proposed method than 
conventional methods. It is obvious that the proposed control 
scheme has better responses to track the setpoint with less 
settling time and minimum overshoot. As a measure of 
assessing control system performance for the control 
schemes, ISE and IAE values are calculated.  

 

Fig. 12. Setpoint tracking of level in a conical tank for 
standard MRAC, gain scheduled PID and OMRAC method. 

Table 7. Performance comparison of standard MRAC, 
gain scheduled PID and OMRAC method.  

Sam
pl- 

-ing 
Inte
r. 

Control schemes 

Gain Scheduled 
PID 

Standard MRAC OMRAC Method 

ISE IAE ISE IAE ISE IAE 

0 - 
232 

2.5880
 104 

1.2757
 103 

2.1311
 104 

1.3245
 103 

2.3554
 103 

3.1085
 102 

233- 
306 

1.1435
 103 

2.0896
 102 

1.8954
 103 

2.7402
 102 

1.1148
 103 

1.7047
 102 

307- 
406 

1.0536
 104 

7.0922
 102 

0.4796
 104 

6.8372
 102 

7.3661
 103 

5.6822
 102 

407- 
636 

3.2352
 104 

1.8176
 103 

3.4895
 104 

2.056
 103 

2.3986
 104 

1.3335
 103 

637- 
797 

2.2758
 104 

1.4645
 103 

1.5731
 104 

1.3198
 103 

1.7524
 104 

1.1171
 103 

Table 6 summarizes the performance indices for conventional 
gain scheduled PID control structure and proposed optimal 
MRAC method at different sampling intervals. The 
performance indices such as ISE and IAE are significantly 
lower in proposed OMRAC method for the chosen conical 
tank process in all the regions of operation. 

Around sampling instant of 700, a small disturbance in the 
form of slightly closing the outlet valve was applied and 
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observed that the response has gone sluggish due to the 
closing of outlet valve and the controller is able to track the 
setpoint in the presence of disturbance. 

6. CONCLUSION 

In this paper, an approach to adaptive control for a class of 
SISO systems using a dominant pole technique has been 
proposed. An optimal MRAC algorithm utilizes multiple 
models and results in improving the transient performances 
when compared to a standard MRAC algorithm, which has 
only a single reference model reported in the literature. The 
efficacy of the proposed control scheme has been 
demonstrated by carrying out real time validation of a conical 
tank process which exhibits nonlinear dynamics. The 
heuristic based optimization using the PSO algorithm shows 
improved performance of the process in terms of time domain 
specification, error minimization, setpoint, and multiple 
setpoint tracking. This method creates a closed loop 
controller with parameters that can be updated to change the 
response of the system or process. It is observed that the 
performance indices mainly, ISE and IAE values are much 
lower for proposed optimal MRAC control structure 
compared to both the standard MRAC and conventional gain 
scheduled PID control structure. The results indicate that the 
proposed scheme has better parameter convergence, hence 
leads to an improvement in transient performance for good 
tracking capabilities.  

Formulation of suitable reference model is a difficult process 
in standard MRAC which is overcome by automating the 
reference model selection in the proposed OMRAC scheme. 
It is simple and also an alternative method for gain scheduled 
PID owing to the complexity in the design procedure. The 
proposed control scheme can be applied to other similar 
application areas such as higher order complex systems and 
highly nonlinear processes. 
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